帳號:guest(13.58.82.79)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林育賢
作者(外文):Lin, Yu-Hsien
論文名稱(中文):奈米碳管的光機電行為
論文名稱(外文):The electric-optic-mechanical properties of carbon nanotube
指導教授(中文):徐文光
指導教授(外文):Hsu, Wen-Kuang
口試委員(中文):鍾仁傑
洪毓玨
李紫原
何志浩
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:9531837
出版年(民國):100
畢業學年度:99
語文別:英文
論文頁數:65
中文關鍵詞:奈米碳管光學機械電性
外文關鍵詞:carbon nanotubeopticelectricmechanical
相關次數:
  • 推薦推薦:0
  • 點閱點閱:208
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
Abstract

This thesis consists of 6 chapters:

Chapter 1 introduces the background of carbon nanotubes, including the structure, electronic properties, mechanical properties, and synthetic methods.

Chapter 2, details the experimental procedure.

Chapter 3, describes the low quantum efficiency in aggregated carbon nanotubes and the phenomenon is found related to photocurrent leakage through oxygenated lattices acting as low barrier intertube channels.

Chapter 4, shows micro-beams made from parylene filled arrays of multi-walled carbon nanotubes deflect reversibly at ac field and actuation synchronizes with applied frequency.

Chapter 5, demonstrates that composites made from polymer filled arrays of aligned carbon nanotubes show an excellent cushioning and high damping capacity is evident by large sag factor and dissipation energy.

Chapter 6 concludes the results of our experiments.
摘要

本論文首先主要探討單壁奈米碳管低溫光電實驗中,在成束奈米碳管束量測到的低光電轉換效應。透過連續溫度與電性量測以及電腦模擬而得到氧原子在管束間扮演電子傳遞橋梁的角色。接著,我們合成直立式奈米碳管與高分子的複合材,並探討其在電壓驅動下的電制伸縮特性,有著區別以往利用導電高分子與碳管複合材利用庫倫引力所引發的電制伸縮表現。以及利用碳管的直立排列和複合材中存有孔隙度的特殊結構,在抗震實驗中有著優異的成果。

第一章
首先簡介奈米碳管的基本性質,如結構,電性,機械性質與前人在合成碳管上的研究。

第二章
在進入主題前,本章節先介紹實驗設置以及所使用的儀器和實驗步驟。

第三章
此章節主要探討成束單壁奈米碳管的低光電轉換效率。經過電腦分子模擬與電性量測結果分析,推測是酸化過程後氧原子存在奈米碳管束中扮演電子傳輸橋梁的角色,使得電子容易在管束間躍遷而造成漏電效果,此效應被發現在低溫量測中,是因為隨著溫度降低電子在管束間躍遷的行為才漸趨明顯。

第四章
本章節在介紹直立式奈米碳管複合材加以電壓驅動,發現在交流電壓下有著快速的反應速度以及低驅動電壓的特性。

第五章
此章節說明直立式奈米碳管複合材在結構上有著抗震材料所必須有的關鍵特性,利用碳管本身軸向的高強度以及高分子鏈結強化高密度碳管陣列結構,加上複合材內保有大量的孔隙,這些因素使得在抗震試驗中有優異的成果。

第六章
總結以上各章節的結果。
Contents


Abstract…………………………………………………………………………… I
Contents……………………………………………………………………………Ⅳ
Table list……………………………………………………………………………Ⅵ
Figure Captions……………………………………………………………………Ⅶ

Chapter 1 Introduction

1-1 Structure of carbon nanotubes………………………………………………1

1-2 Electronic properties of carbon nanotubes……………………………………4

1-3 Mechanical properties of carbon nanotubes…………………………………8

1-4 Syntheses of carbon nanotubes………………………………………………10
1-4-1 Brief descriptions of three main techniques…10
1-4-2 Synthesis of well-aligned CNTs………………………………………12

References………………………………………………………………15

Chapter 2 Experimental

2-1 Sample preparation and experimental setup………………………………19
2-1-1 Device fabrication for experiments of low quantum efficiency shown in carbon nanotubes……………………………………………19
2-1-2 Device fabrication for field driven actuations of carbon nanotube reinforced micro-beams…………………………………………21
2-1-3 Device fabrication for field driven actuations of carbon nanotube reinforced micro-beams……………………………………………23

2-2 Characterization instruments……………………………………………26

References………………………………………………………………………28

Chapter 3 Why aggregated carbon nanotubes exhibit low quantum efficiency……………………………………………………………29

References………………………………………………………………………42

Chapter 4 Field driven actuations of carbon nanotube reinforced micro-beams………………………………………………………43

References………………………………………………………………………52

Chapter 5 Excellent cushioning by polymer filled arrays of aligned carbon nanotubes………………………………………………………………53
References…………………………………………………………………………64

Chapter 6 Conclusions……………………………………………………………65


Table list

Table 5.1 □ and ED of current sample and commercial products…………………63

















Figure Captions

Figure 1.1 Schematic representation of a 2D graphite layer with the basis vectors a1 and a2. OA and OB define the chiral vector and the translational vector T of CNT, respectively. The chiral angle Θ is also denoted. Chiral tubes exhibit rollup vectors derived from (n, 0) (zigzag tube, Θ = 0°) or (n,n) (armchair tube, Θ = 30°). The rectangle OAB’B defines the unit cell for the nanotube. In this example, (n, m) = (5, 2)……………………………………………………2

Figure 1.2 An armchair type CNT with rollup vector (n, m) = (5, 5) (a), a zigzag type CNT with (n, m) = (9, 0) (b), and a helix CNT here with (n, m) = (10, 5) (c)………3

Figure 1.3 Band structure and DOS of SWCNT (10,0)…………………………5

Figure 1.4 Band structure and DOS of SWCNT (10,10)………………………6

Figure 1.5 (a) Tight-binding band structure of graphene shows the main high symmetry points (b) Allowed k-vectors of the (5, 5), (7, 1) and (8, 0) tubes (solid lines) mapped onto the graphite Brillouin zone.…………………………………………7

Figure 1.6 Different results of Young’s modulus as a function of tube radius (a) or diameter (b)………………………………………9

Figure 1.7 Schematic of the equipment used for the arc-discharged method……………………………………………………………………………11
Figure 1.8 There are two temperature controllers used in the furnace and the ferrocene-xylene liquid feed is injected into the preheater stage by a syringe pump. Additionally, Ar/H2 gas is introduced at the entrance of the preheater to sweep the reactant vapors into the hot zone of the furnace.[55] X. Zhang et al. have used a similar technique [55-57] and improved average growth rate to 50 μm/min, as shown in Figure 1.9………………………………………………………………………13

Figure 1.9 (a) Low magnification SEM image of as-grown film of CNTs with growth time of 30 min. The thickness of the film is about 1.5 mm. So the calculated average growth rate of CNTs is about 50 μm/min. (b) High-magnification SEM of (a), showing that the CNTs are well-aligned, closely contacted, and clean…………14

Figure 2.1 High magnification SEM image of pristine SWCNTs…………………19

Figure 2.2 Optical (a) and SEM images (b) of Al-electrodes defined silicon substrate………………………………………………………………………………20

Figure 2.3 (a) Device is placed in a chamber equipped with a Cermax xenon optic fiber. (b) The electrical general source meter (middle) and temperature control system (lower) are also equipped. The upper is power supply of Cermax xenon optic fiber…………………………………………………………………21

Figure 2.4 Nanotube array growth and subsequent polymer filling…………………22

Figure 2.5 Optical images of the peeled-off composite.…………………………22

Figure 2.6 Schematic of the equipment used for the aligned MWCNTs array synthesis……………………………………………………………………………23

Figure 2.7 SEM images of thin (a) and thicker (b) aligned MWCNT arrays……24

Figure 2.8 (a) Low and high (b) magnification SEM images of as-grown film of MWCNTs on carbon fiber………………………………………………………25

Figure 3.1 (a) Device built for photocurrent generation. (b) SEM image of a bundle across Al-electrodes and raman spectrum (insert). (c) Resistance vs. temperature at beam-off (upper) and -on states (lower). (d) The Ea profiles at beam-off (upper) and -on states (lower)…………………………………………31

Figure 3.2(a) Time evolved resistance change at RT, 60 K and 4 K. (b) The Iphoto vs. laser power at RT, 60 K and 4 K. (c) Time-evolved resistance change at 1 and 5 mW laser powers for a different sample…………………………………………………35

Figure 3.3(a) FTIR spectra of pristine (upper), purified SWCNTs (lower) and SEM image of purified SWCNTs supported on a TEM grid (insert). (b) Enlarged resistance vs. excitation wavelength profiles and original plots (insert)…………………38

Figure 3.4 (a) Simulated (5,0) tubes stacking in a crisscross fashion and corresponding DOS spectra (insert). (b) Charge distribution profile (top) and corresponding DOS spectra (lower).……………………………………………40

Figure 3.5 The Iphoto dissipation at pristine (left) and oxygenated tube bundles (right)………………………………………………………………………………41

Figure 4.1 (a)-(c) Nanotube array growth and subsequent polymer filling. (d) SEM image of nanotube array before polymerization. (e) SEM image of parylene filled nanotube array. Inserts: enhanced images of filled array at surfaces (top) and cross-section (lower). (f) Structure of device-A and -B (g)……………………………45

Figure 4.2 The □-V (a) and □-V2 profiles (b)…………………………………48

Figure 4.3 The deflection vs. V (a) and fD vs. time profiles (b)……………………50

Figure 4.4 The F conversion processes into MB for device-A (a) and -B (b)………51

Figure 5.1 (a) SEM image of as-made array of aligned CNTs. Insert: enhanced SEM image. (b) Parylene coating procedure and removal of surface polymer by O2 plasma etching. (c) Zoom-in SEM image of polymer coated CNTs. Insert, coating enhanced A. (d) Optical images of flexible composites and film thickness……………………54

Figure 5.2 (a) The □-□ profiles of CNT array before (lower) and after polymerization (upper). Right insert: SEM image of foam cushion. Left insert: the □-□ profiles of pristine array (upper) and foam cushion (lower). The latter is multiplied by 10 for comparison. Compressed arrays of bare (b) and coated CNTs (c)…………………56

Figure 5.3 Snapshots of re-bouncing ball from alloy surface (a), pristine array (b), foam cushion (c), thin (d) and thicker composites (e) and, corresponding rh vs. Rh (f) and energy dissipation profiles (g)…………………………………………………59

Figure 5.4 (a) The □-□ curves of composites and foam cushion (insert) obtained from successive compressions at a fixed strains (□ = 35%). The ED variation of composites (square) and foam cushion (circle) with compression cycles (b). The □ variation of composites (square) and foam cushion (circle) with compression cycles at □ = 35% (c). Gaping profiles of composites (square), foam cushion (circle) (d). Insert: the gaping mechanism. Values of foam cushion are multiplied by 15 and 40 in (b) and (c)…………………………………………………………………………………62
Chapter 1 Introduction

References
[1] R. F. Curl, Rev. Mod. Phys., 69, 691 (1997).
[2] H. Kroto, Rev. Mod. Phys., 69, 703 (1997)
[3] R.E. Smalley, Rev. Mod. Phys., 69, 723 (1997)
[4] S. Iijima, Nature, 56, 354 (1991)
[5] R. H. Baughman, A.A.Z., and W. A. de Heer, Science, 297, 787 (2002)
[6] R.Saito and G.D.a.M.D., Physical Properties of Carbon Nanotubes. Imperial College Press (1998)
[7] T.Dove, M., Introduction to lattice dynamics. Cambridge University Press (1993)
[8] M. Terrones, Annu. Rev. Mater. Res., 33, 419 (2003)
[9] B. I. Yakobson and R. E. Smalley, Am. Sci., 85, 324 (1997)
[10] M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of fullerenes & Carbon Nanotubes, San Diego: Academic Press, 1996.
[11] T. W. Ebbesen and P. M. Ajayan, Nature, 358, 220 (1992)
[12] P. M. Ajayan and S. Iijima, Nature, 358, 23 (1992)
[13] J. C. Charlier and J. P. Michenaud, Phys. Rev. Lett., 70, 1858 (1993)
[14] S. Iijima and T. Ichihashi, Nature, 363, 603 (1993)
[15] Y. C. Choi, Y. M. Shin, S. C. Lim, D. J. Bae, Y. H. Lee, and B. S. Lee, J. Appl. Phys., 88, 4898 (2000)
[16] E. F. Kukovitsky, S. G. L’vov, N. A. Sainov, V. A. Shustov, and L. A. Chernozatonskii, Chem. Phys. Lett., 355, 497 (2002)
[17] L. Kim, E. M. Lee, S. J. Cho, and J. S. Suh, Carbon, 43, 1453 (2005)
[18] N. Wang, Z. K. Tang, G. D. Li, and J. S. Chen, Nature, 408, 50 (2000)
[19] Q. H. Yang, S. Bai, J. L. Sauvajol, and J. B. Bai, Adv. Mater., 15, 792 (2003)
[20] C. H. Kiang, M. Endo, P. M. Ajayan, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. Lett., 81, 1869 (1998)
[21] N. Hamada, S. Sawade, and A. Oshiyama, Phys. Rev. Lett., 68, 1579 (1992)
[22] J. W. Mintmire, B. I. Dunlap, and C. T. White, Phys. Rev. Lett., 68, 631 (1992)
[23] M. S. Dresselhaus, G. Dresselhaus, J. C. Charlier, and E. Hern’andez Phil. Trans. R. Soc. Lond. A, 362, 2065 (2004)
[24] L. Chico, V. H. Crespi, L. X. Benedict, S. G. Louie, and M. L. Cohen, Phys. Rev. Lett., 76, 971 (1996)
[25] Harrisona, K.L.A.a.R.G., Review of Scientific Instruments, 71, 3037 (2000)
[26] K. Tanaka, T.Y., K. Fukui, The Science and Technology of Carbon Nanotubes. Elsevier Science, 1999. 1 edition
[27] M. Meyyappan, L.D., Alan Cassell and David Hash, Plasma Sources Sci. Technol., 12, 205 (2003)
[28] R.E. Smalley, M.S.D., Gene Dresselhaus, Phaedon Avouris, Carbon Nanotubes: Synthesis, Structure, Properties and Applications. Springer, 2001. 1 edition.
[29] Stephanie Reich, C.T., Janina Maultzsch Carbon Nanotubes: Basic Concepts and Physical Properties Wiley-VCH, 2004.
[30] Susumu Yoshimura, R.P.H.C., Supercarbon: Synthesis, Properties and Applications (Springer Series in Materials Science). Springer, 1999. 1 edition.
[31] R. S. Ruoff and D. C. Lorents, Carbon, 33, 925 (1995)
[32] B. I. Yakobson, C. J. Brabec, and J. Bernholc, Phys. Rev. Lett., 76, 2511 (1996)
[33] J. P. Lu, Phys. Rev. Lett., 79, 1297 (1997)
[34] A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, and M. M. Treacy, Phys. Rev. B, 58, 14013 (1998)
[35] D. A. Walters, L. M. Ericson, M. J. Casavant, J. Liu, D. T. Colbert, K. A. Smith, and R. E. Smalley, Appl. Phys. Lett., 74, 3803 (1999)
[36] T. Ozaki, Y. Iwasa, and T. Mitani, Phys. Rev. Lett., 84, 1712 (2000)
[37] M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, Science, 287, 637 (2000)
[38] C. Li and T. W. Chou, Phys. Rev. B, 69, 073401 (2004)
[39] C. A. Coulson, Valence. Oxford University Press, Oxford, 1952
[40] G. Overney, W. Zhong, and D. Tomanek, Z. Phys. D, 27, 93 (1993)
[41] C. F. Cornwell and L. T. Wille, Solid State Comm., 101, 555 (1997)
[42] E. Hernandez, C. Goze, P. Bernier, and A. Rubio, Phys. Rev. Lett., 80, 4502 (1998)
[43] M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Nature, 381, 678 (1996)
[44] M. S. Dresselhaus, G. Dresselhaus, K. Sugihara, I. L. Spain, and H. A. Goldberg, in Graphite Fibers and Filaments Ch 6 (eds U. Gonser, A. Mooradian, K. A. Muller, M. B. Panish and H. Sakaki 120-152) (Springer, New York, 1988)
[45] W. Kratschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, Nature, 347, 354 (1990)
[46] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, Science, 273, 483 (1996)
[47] A. M. Rao, E.R., Shunji Bandow, Bruce Chase,P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy,M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus,M. S. Dresselhaus, Science, 275, 187 (1997)
[48] S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassel, and H. Dai, Science, 283, 512 (1999)
[49] M. Terrones, N. Grobert, J. Olivares, J. P. Zhang, H. terrones, K. Kordatos, W. K. Hsu, J. P. Hare, P. D. Townsend, K. Prassides, A. K. Cheeetham, H. W. Kroto, and D. R. M. Walton, Nature, 388, 52 (1997)
[50] W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao, and G. Wang, Science, 274, 1701 (1996)
[51] Z. W. Pan, S. S. Xie, B. H. Chang, C. Y. Wang, L. Lu, W. Wu, W. Y. Zhou, W. Z. Li, and L. X. Qian, Nature, 394, 631 (1998)
[52] Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, and P. N. Provencio, Science, 282, 1105 (1998)
[53] C. Bower, W. Zhu, S. Jin, and O. Zhou, Appl. Phys. Lett., 77, 830 (2000)
[54] C. N. R. Rao, R. Sen, B. C. Satishkumar, and A. Govindaraj, Chem. Commun., 15, 1525 (1998)
[55] R. Andrews, D. Jacques, A. M. Rao, F. Derbyshire, D. Qian, X. Fan, and E. C. Dickey, Chem. Phys. Lett., 303, 467 (1999)
[56] A. Y. Cao, L. J. Ci, D. J. Li, B. Q. Wei, C. L. Xu, J. Liang, and D. H. Wu, Chem. Phys. Lett., 335, 150 (2001)
[57] X. Zhang, A. Cao, B. Wei, Y. Li, J. Wei, C. Xu, and D. Wu, Chem. Phys. Lett., 362, 285 (2002)

Chapter 2 Experimental

References
[1] H. M. Cheng, F. Li, X. San, S. D. M. Brown, M. A. Pimenta, A. Marucci, G. Dresselhaus, and M. S. Dresselhaus, Chem. Phys. Lett., 289, 602 (1998)
[2] R. Andrews, D. Jacques, A. M. Rao, F. Derbyshire, D. Qian, X. Fan, and E. C. Dickey, Chem. Phys. Lett., 303, 467 (1999)
[3] X. Zhang, A. Cao, B. Wei, Y. Li, J. Wei, C. Xu, and D. Wu, Chem. Phys. Lett., 362, 285 (2002)

Chapter 3 Why aggregated carbon nanotubes exhibit low quantum efficiency

Reference
[1] V. V. Deshpande, B. Chandra, R. Caldwell, D. S. Novikov, J. Hone, M. Bockrath, Science, 323, 106 (2009)
[2] S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, R. B. Weisman, Science, 298, 2361 (2002)
[3] D. Karaiskaj, C. Engtrakkul, T. McDonald, M. J. Heben, A. Mascarenhas, Phys. Rev. Lett., 96, 106805-1 (2006)
[4] W. K. Metzger, T. J. McDonald, C. Engtrakul, J. L. Blackburn, G. D. Scholes, G. Rumbles, M. J. Heben, J. Phys. Chem. C, 111, 3601 (2007)
[5] A. Hagen, M. Steiner, M. B. Raschke, C. Lienau, T. Hertel, H. Qian, Phys. Rev. Lett., 95, 197401-1 (2005)
[6] S. Berger, C. Voisin, G. Cassabois, C. Delalande, P. Roussignol, Nano-Letters, 7, 398 (2007)
[7] M. Aggarwal, S. Khan, M. Husain, T. C. Ming, M. Y. Tsai, T. P. Perng, Z. H. Khan, Eur. Phys. J. B, 60, 319 (2007)
[8] M. S. Fuhrer, J. Nygard, L. Shih, M. Forero, Y.-G. Yoon, M. S. C. Mazzoni, H.-J. Choi, J. Ihm, S. G. Louie, A. Zettl, P. L. McEuen, Science, 288, 494 (2000)
[9] Y.-F. Li, C.-I. Hung, C.-C. Li, W. Chin, B.-Y. Wei, W.-K. Hsu, J. Mater. Chem., 19, 6761 (2009)
[10] S.-H. Jhi, S. G. Louie, M. L. Cohen, Phys. Rev. Lett., 85, 1710 (2000)
[11] M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, J. Balents, P. L. McEuen, Nature, 397, 598 (1999)
[12] M. E. Itkis, E. Borondics, A.-P. Yu, R. C. Haddon, Science, 312, 413 (2006)
[13] M. S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Phys. Rep., 409, 47 (2005)
[14] P. C. Eklund, J. M. Holden, R. A. Jishi, Carbon, 33, 959 (1995)
[15] K. Kuzmany, B. Burger, A. Thess, R. E. Smalley, Carbon, 36, 709 (1998)
[16] H. Stahl, J. Appenzeller, R. Martel, Ph. Avouris, B. Lengeler, Phys. Rev. Lett., 85, 5186 (2000)
[17] H.-C. Li, S.-Y. Lu, S.-H. Syue, W.-K. Hsu, S.-C. Chang, Appl. Phys. Lett., 93, 033104 (2008)
[18] J. Hone, I. Ellwood, M. Muno, A. Mizel, M. L. Cohen, A. Zettl, Phys. Rev. Lett., 80, 1042 (1998)
[19] A. Fujiwara, Y. Matsuoka, H. Suematsu, N. Ogawa, K. Miyano, H. Kataura, Y. Maniwa, S. Suzuki, Y. Achiba, Carbon, 42, 919 (2004)
[20] J.-L. Li, K. N. Kudin, M. J. McAllister, R. K. Prud’homme, I. A. Aksay, R. Car, Phys. Rev. Lett., 96, 176101 (2006)
[21] Y. G. Yoon, M. S. C. Mazzoni, H. J. Choi, J. Ihm, S. G. Louie, Phys. Rev. Lett., 86, 688 (2001)
[22] G.-X. Sun, G.-M. Chen, J. Liu, J.-P. Yang, J.-Y. Xie, Z.-P. Liu, R. Li, X. Li, Polymer, 50, 5787 (2009)
[23] C.-P. Yuan, J.-H. Zhang, G.-M. Chen, J.-P. Yang, Chem.Comm., 47,899 (2011)

Chapter 4 Field driven actuations of carbon nanotube reinforced micro-beams

Reference
[1] Hsu, W.-K.; Chu, H.-Y.; Chen, T.-H.; Cheng, T.-W.; Fang, W.-L. Nanotechnology, 19, 135304 (2008)
[2] Cheng, T.-W.; Lu, C.-L.; Lai, Y.-C.; Kuo, H.-F.; Fang, W.-L.; Tai, N.-H.; Hsu, W.-K. Physical Chemistry Chemical Physics, 12, 8810 (2010)
[3] Liu, G.-T.; Zhao, Y.-C.; Zheng, K.-H.; Liu, Z.; Ma, W.-J.; Ren, Y.; Xie, S.-S.; Sun, L.-F. Nano Lett., 9, 239 (2009)
[4] Last, I.; Levy, Y.; Jortner, J. Proc. Natl. Acad. Sci. USA, 99, 9107 (2002)
[5] Gao, J.; Yu, A.; Itkis, M. E.; Bekyarova, E.; Zhao, B.; Niyogi, S.; Haddon, R. C. J. Am. Chem. Soc., 126, 16698 (2004)
[6] Li, L.; Zawadzka, J.; Uttamchandani, D. J. Microelectromech. Systems, 13, 83 (2004)
[7] W.-L. Fang, H.-Y. Chu, W.-K. Hsu, T.-W. Cheng, N.-H. Tai, Adv. Mater., 17, 2987 (2005)

Chapter 5 Excellent cushioning by polymer filled arrays of aligned carbon nanotubes


Reference
[1] B. I. Yakobson, C. J. Brabec, J. Bernholc, Phys. Rev. Lett., 76, 2511 (1996)
[2] A. Y. Cao, P. L. Dickrell, W. G. Sawyer, M. N. Ghasemi-Nejhad, P. M. Ajayan, Science, 310, 1307 (2005)
[3] W. Fang, H.-Y. Chu, W.-K. Hsu, T.-W. Cheng, N.-H. Tai, Adv. Mater., 17, 2987 (2005)
[4] M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson, Nature, 381, 678. (1996)
[5] O. Lourie, H. D. Wagner, Appl. Phys. Lett., 73, 3527 (1998)
[6] S.-Y. Lu, W.-K. Hsu, ChemPhysChem., 6, 1040 (2005)
[7] L. Ci, J. Suhr, V. Pushparaj, X. Zhang, P. M. Ajayan, Nano Lett., 8, 2762 (2008)
[8] N. C. Hilyard, in Mechanics of cellular plastics, Macmillan, New York 1982, pp. 103 and 226.
(此全文未開放授權)
電子全文
abstract
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *