帳號:guest(3.133.142.193)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):龔頌恩
作者(外文):Kung, Sung-An
論文名稱(中文):能產生對數分佈藥物濃度之生物反應器晶片共養介電泳操控仿肝組織之研究
論文名稱(外文):On-Chip Lobule-Mimetic Construction of Heterogeneous Cells and Co-Culture Via A Logarithmical-Concentration Varying Bioreactor
指導教授(中文):張晃猷
劉承賢
指導教授(外文):Chang, Hwan-You
Liu, Cheng-Hsien
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:9535501
出版年(民國):98
畢業學年度:97
語文別:英文
論文頁數:57
中文關鍵詞:微流道濃度梯度生物反應器介電泳操控肝小葉
外文關鍵詞:MicrochannelConcentration gradientBioreactorDielectrophoresisManipulationHepatic lobule
相關次數:
  • 推薦推薦:0
  • 點閱點閱:583
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
隨著微機電產業的蓬勃發展,實驗室晶片技術已變成近期的熱門領域。由於微機電元件符合生物分子尺度,因此在過去數十年間,吸引了許多工程與生物研究者的興趣,投入許多心血與努力,促成跨領域的結合。人工肝臟的建立是近年來在組織工程上一個重要的趨勢,但是希望大量且快速的建立出具有功能性的人工肝組織,以取代人體受傷的組織是非常難的。因此,有個新方向,在體外建構一個具有功能性的仿肝組織藉此觀察肝臟細胞在不同環境下,活性會如何的變化,也是一個被重視的議題。本論文希望重建肝小葉組織,並研究肝小葉結構在不同濃度藥物下的活性反應行為。
本研究為設計一實驗室晶片,透過晶片上電極的設計,藉由施予適當頻率的交流電壓,使細胞表面被極化成電偶極的基礎下,利用介電泳概念排列細胞,建立肝小葉的圖形。在肝小葉結構排列完成後,再經由微流道設計以及流阻的概念,產生一個持續灌流且藥物濃度梯度可以達到大幅差異的系統,最後流至四個生物反應器,產生對數分佈濃度的藥物,並觀察肝臟細胞活性反應。以上所有功能皆以簡單的製程整合於一晶片上。
With the development of Micro-Electro-Mechanical Systems (MEMS) industry, the Lab-on-a-chip technology becomes a popular field in recent days. Because the scale of micro-device matches with cellular molecule, the interdisciplinary combinations of biological and engineering fields have been attracting a significant attention in the past few decades. The establishment of artificial liver is a trend in tissue engineering. However, it is so hard and slow to arrive the final goal --replace the damaged tissue of human. For this reason, there is a new approach to use engineered tissue to study human tissue physiology and pathophysiology in vitro. In vitro studies could control the environmental factors in experiments to observe the molecular processes between cell to cell. In this thesis, rebuilding hepatic lobule and observing the reactions of liver cells under various environments are the main targets. This research presents a Lab-on-a-chip device to achieve the cell-patterning function. Based on the polarity difference within cells caused by applying suitable frequency of the input voltage, we could use the dielectrophoresis (DEP) to manipulate cells and form the pattern of the hepatic lobule. After the cell-patterning is finished, stable and continuous logarithmically-varying concentrations of drug is generated via designing the flow resistance of micro channels. Then, different concentrations of drug with culture media are injected into four bioreactors. Finally, we could observe the effect for liver cells under different concentrations of drug by using this Lab-on-a-chip device.
1. Introduction - 1 -
1.1 Background and Motivation - 1 -
1.2 Survey of Literature - 3 -
1.2.1 Steady state gradient generators in cell culture systems - 3 -
1.2.2 Cell Micropatterning - 8 -
1.2.3 Hepatic Tissue Engineering - 13 -
2. Device Development - 16 -
2.1 Domain Knowledge - 16 -
2.1.1 Dielectrophoresis - 16 -
2.1.3 Mass Transport on Microscale - 21 -
2.2Design Concept - 23 -
2.2.1Design of Microchannel - 23 -
2.2.2 Simulation of Microchannel - 25 -
2.2.3 Design and Simulation of Lobule-Mimetic-Stellate Electrode – Manipulation of Cells - 26 -
3. Micro Fabrication Process - 29 -
3.1 Process Flow - 29 -
3.2 Process Result - 30 -
4. Experimental Results - 31 -
4.1 Experimental Setup - 31 -
4.1.1 Instrument Setup - 31 -
4.1.2 Cell Culture - 33 -
4.1.3 Cell Preparation for DEP Manipulation - 33 -
4.1.4 Surface Treatment for Cell Adhesion Enhancement - 34 -
4.2 Experiment Results - 34 -
4.2.1 The Parameter Setup for DEP Operation - 34 -
4.2.2 DEP Manipulation of heterogeneous cells - 35 -
4.2.2.1 On-chip Cell-patterning Demonstration of HMEC-1 Cells - 35 -
4.2.2.2 On-chip Cell-patterning Demonstration of HepG2 Cells - 36 -
4.2.3 Gradient Experiment - 37 -
4.2.3.1 Preliminary Test - 37 -
4.2.3.2 The Parameter Setup and Material Preparation for Drug Test - 40 -
4.2.3.3 The Result of HepG2 Activity Test - 44 -
5. Discussion and Future Work - 46 -
References - 48 -
Griffith, L.G. and G. Naughton, “Tissue engineering--current challenges and expanding opportunities,” Science. 295(5557), pp. 1009-14, 2002.
Griffith, L.G. and M.A. Swartz, “Capturing complex 3D tissue physiology in vitro,” Nat Rev Mol Cell Biol. 7(3), pp. 211-24, 2006.
Nahmias, Y., F. Berthiaume, and M.L. Yarmush, “Integration of technologies for hepatic tissue engineering,” Adv Biochem Eng Biotechnol. 103, pp. 309-29, 2007.
R. C. Anderson, G. J. Bogdan, A. Puski, and X. Su, “Genetic analysis systems: Improvements and methods,” In Proc. Solid-State Sens. Actuator Workshop, Hilton Head, SC, 7–10, 1998.
C. Bisson, J. Campbell, R. Cheadle, M. Chomiak, J. Lee, C. Miller, C. Milley, P. Pialis, S. Shaw,W. Weiss, and C. Widrig, “A microanalytical device for the assessment of coagulation parameters in whole blood,” In Proc. Solid-State Sens. Actuator Workshop, Hilton Head, SC, 1–6, 1998.
N. Chiem, C. Colyer, and J. D. Harrison, “Microfluidic systems for clinical diagnostics,” In Proc. Int. Solid-State Sens. Actuators Conf., Chicago, IL, 183–186, 1997.
C. T. Ho, R. Z. Lin, H. Y. Chang, and C. H. Liu, “In-vitro Rapid Centimeter-scale Reconstruction of Lobule-Mimetic Liver Tissue Employing Dielectrophoresis based Cell Patterning,” in Digest Tech. Papers Transducers‘07 Conference, vol. 1, pp. 351-354, 2007.
G. M. Walker, et al., “Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator,” Lab Chip, 5(6), 611–618, 2005.
G. M. Walker, M. S. Ozers and D. J. Beebe, “Cell infection within a microfluidic device using virus gradients,” Sens. Actuators B: Chem., 98(2–3), 347–355, 2004.
N. L. Jeon, et al., “Generation of solution and surface gradients using microfluidic systems,” Langmuir, 16(22), 8311–8316, 2000.
A. E. Kamholz, et al., “Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor,” Anal. Chem., 71(23), 5340–5347, 1999.
M. A. Holden, et al., “Generating fixed concentration arrays in a microfluidic device,” Sens. Actuators B: Chem., 92(1–2), 199–207, 2003.
A. Hatch, et al., “A rapid diffusion immunoassay in a T-sensor,” Nat. Biotechnol., 19(5), 461–465, 2001.
K. Macounova, C. R. Cabrera and P. Yager, “Concentration and separation of proteins in microfluidic channels on the basis of transverse IEF,” Anal. Chem., 73(7), 1627–1633, 2001.
E. A. Schilling, A. E. Kamholz and P. Yager, “Cell lysis and protein extraction in a microfluidic device with detection by a fluorogenic enzyme assay,” Anal. Chem., 74(8), 1798–1804, 2002.
H. B. Mao, P. S. Cremer and M. D. Manson, “A sensitive, versatile microfluidic assay for bacterial chemotaxis,” Proc. Natl. Acad. Sci. U. S. A., 100(9), 5449–5454, 2003.
G. M. Walker, M. S. Ozers and D. J. Beebe, “Cell infection within a microfluidic device using virus gradients,” Sens. Actuators B: Chem., 98(2–3), 347–355, 2004.
N. L. Jeon, et al., “Generation of solution and surface gradients using microfluidic systems,” Langmuir, 16(22), 8311–8316, 2000.
N. Li Jeon, et al., “Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device,” Nat. Biotechnol., 20(8), 826–830, 2002.
B. G. Chung, et al., “Human neural stem cell growth and differentiation in a gradient-generating microfluidic device,” Lab Chip, 5(4), 401–406, 2005.
W. Saadi, et al., “A parallel-gradient microfluidic chamber for quantitative analysis of breast cancer cell chemotaxis,” Biomed. Microdev., 8(2), 109–118, 2006.
R. C. Gunawan, et al., “Cell migration and polarity on microfabricated gradients of extracellular matrix proteins,” Langmuir, 22(9), 4250–4258, 2006.
S. K. W. Dertinger, et al., “Gradients of substrate-bound laminin orient axonal specification of neurons,” Proc. Natl. Acad. Sci. U. S. A., 99(20), 12542–12547, 2002.
R. C. Gunawan, et al., “Regiospecific control of protein expression in cells cultured on two-component counter gradients of extracellular matrix proteins,” Langmuir, 21(7), 3061–3068, 2005.
F. Lin, et al., “Neutrophil migration in opposing chemoattractant gradients using microfluidic chemotaxis devices,” Ann. Biomed. Eng., 33(4), 475–482, 2005.
D. W. Huntmacher, “Scaffold design and fabrication technologies for engineering tissues-state of the art and future perspectives,” Journal of Biomaterials Science, Polymer Edition, 12(1), pp.107 – 124, 2001.
V. L. Tsang and S. N. Bhatia, “Three-dimensional tissue fabrication,” Advanced Drug Delivery Reviews, 56, pp.1635 – 1647, 2004.
S. Bhatia, M. Yarmusch and M. Toner, “Controlling cell interactions by micropatterning in co-cultures:hepotocytes and 3T3 fibroblasts,” J. Biomed. Mater. Res., 34, pp.189 – 199, 1997.
K. Headly, C. Thomas, A. Rezania, J.Kim, P. McKeown, B. Lom and P. Hockberger, “Kinetics of bone cell organization and mineralization on materials with patterned surface chemistry,” Biometerials, 17, pp.195 - 208, 1996.
M. Mrksich, L. E. Dike, J. Tein, D. E. Ingber and G. M. Whitesides, “Microcontact Printing on Pattern the Attachment on Mammalian Cells to Self-Assembled Monolayers of Alkanethiolates on Transparent Films of Gold and Silver,” Exp. Cell. Res., 235, pp.305 – 313, 1997.
S. Zhang, L. Yan, M. Altman, M. Lassle, H. Nugent, F. Frankel, D. A. Lauffenburger, G. M. Whitesides and A. Rich, “Biological surface engineering: a simple system for cell pattern formation,” Biomaterials, 20, pp.1213 – 1220, 1999.
D. T. Chiu, N. L. Jeon, S. Huang, R. S. Kane, C. J. Wargo, I. S. Choi, D. E. Ingber, and G.. M. Whitesides, “Patterned deposition of cells and protein onto surfaces by three-dimensional microfluidic systems,” Proc. Natl. Acad. Sci. U.S.A., 97(6), pp.2408 – 2413, 2000.
S. Takayama, E. Ostuni, P. LeDuc, K. Naruse, D. E. Ingber and G. M. Whitesides, “Laminar flow: Subcellular positioning of small molecules,” Nature, 411, pp.1016, 2001.
Y. Nahmias, R. E. Schwartz, C. M. Verfaillie, and D. J. Odde, “Laser-guided direct writing for three-dimensional tissue engineering,” Biotechnology and Bioengineering, 92(2), pp.129 – 136, 2005.
T. Matsue, N. Matsumoto and I. Uchida, “Rapid micropatterning of liver cells by repulsive dielectrophoretic force,” Electrochimica Acta, 42, pp.3251 – 3256, 1997.
M. Frenea, S. P. Faure, B. L. Pioufle, P. Coquet and H. Fujita, “Positoining living cells on a high-density electrode array by negtive dielectrophoresis,” Materials Science and Engineering C, 23, pp.597 - 603. (2003)
Z. Yu, G. Xiang, L. Pan, L. Huang, Z. Yu, W. Xing and J. Cheng, “Negative dielectrophoretic force assisted construction of ordered neuronal networks on cell positioning bioelectronic chips,” Biomedical Microdevices, 6(4), pp.311 – 324, 2004.
D. S. Gray, J. L. Tan, J. Voldman and C. S. Chen, “Dileectrophoretic registration of living cells to a microelectrode array, Biosensors and Bioelectronics,” 19, pp.771 – 780, 2004.
D. R. Albrecht, V. L. Tsang, R. L. Sah and S. N. Bhatia, “Photo- and electropatterning of hydrogel-encapsulated living cell array,” Lobchip, 5, pp.111-118., 2005.
Nahmias, Y., Schwartz, R.E., Verfaillie, C.M. & Odde, D.J. “Laser-Guided Direct Writing for Three-Dimensional Tissue Engineering.,” Biotechnol Bioeng. 92, 129-136, 2005.
Taub, R. “Liver regeneration: from myth to mechanism.,” Nature Reviews Molecular Cell Biology 5, 836-847, 2004.
Langer, R. & Vacanti, J. P., Tissue engineering. Science 1993, 260, 920–926.
Fuchs, J. R., Nasseri, B. A. & Vacanti, J. P., “Tissue engineering: a 21st century solution to surgical reconstruction,” Ann. Thorac. Surg., 72, 577-591, 2001.
Tsiaoussis, J., Newsome, P.N., Nelson, L.J., Hayes, P.C. & Plevris, J.N. “Which Hepatocyte Will it be ? Hepatocyte choice for bioartifical liver support systems.,” Liver Tansplantation 7, 2-10, 2001.
Falconnet, D., Csucs, G., Michelle, H. & Textor, M., “Surface engineering approaches to micropattern surfaces for cell-based assays,” Biomaterials, 27, 3044-3063, 2006.
Bhadriraju, K. & Chen, C. S., “Engineering cellular microenvironments to improve cell-based drug testing,” Drug Discovery Today, 7, 11, 612-620, 2002.
Andersson, H. & van den Berg, A., “Microfabrication and microfluidics for tissue engineering: state of the art and future opportunities.,” Lab Chip, 4, 98–103, 2004.
Ali, K., Langer, R., Borenstein & Vacanti, J. P., “Microscale technologies for tissue engineering and biology,” Proc. Natl. Acad. Sci, 103, 2480-2487, 2006.
Foy, B. D., Rotem, A., Toner, M, Tompkins, R. G. & Yarmush, M. L., “A device to measure the oxygen uptake rate of attached cells: importance in bioartificial organ design.,” Cell Transplant. 3, 515-527, 1994.
Griffith, L. G. & Naughton, G., “Tissue Engineering- Current changes and expanding opportunities.,” Science 295, 1009-1016, 2002.
Nedredal, G. I. et al., “Liver sinusoidal endothelial cells represents an important blood clearance system in pigs.,” Comp Hepatol. 2, 1, 2003.
Dou M., de Sousa G., Lacarelle B., Placidi M., la Porte P., Domingo M., Lafont H. and Rahmani R. “Thawed human hepatocytes in primary culture.,” Cryobiology 29: 454–469, 1992.
Runge D., Runge D.M., Jager D., Lubecki K.A., Beer Stolz D., Karathanasis S., Kietzmann T., Strom S.C., Jungermann K., Fleig W.E. and Michalopoulos G.K. “Serum-free, long-term cultures of human hepatocytes: maintenance of cell morphology, transcription factors, and liver-specific functions.,” Biochem. Biophys. Res. Commun. 269, 46–53, 2000.
Tsiaoussis J., Newsome P.N., Nelson L.J., Hayes P.C. and Plevris J.N. “Which hepatocyte will it be? Hepatocyte choice for bioartificial liver support systems.,” Liver Transpl. 7, 2–10, 2001.
Sielaff T.D., Hu M.Y., Rao S., Groehler K., Olson D., Mann H.J., Remmel R.P., Shatford R.A., Amiot B. and Hu W.S. et al. “A technique for porcine hepatocyte harvest and description of differentiated metabolic functions in static culture.,” Transplantation 59, 1459–1463, 1995.
te Velde A.A., Ladiges N.C., Flendrig L.M. and Chamuleau R.A. “Functional activity of isolated pig hepatocytes attached to different extracellular matrix substrates. Implication for application of pig hepatocytes in a bioartificial liver.,” J. Hepatol. 23, 184–192, 1995.
Gregory P.G., Connolly C.K., Toner M. and Sullivan S.J. “In vitro characterization of porcine hepatocyte function.,” Cell Transplant. 9, 1–10, 2000.
De Bartolo L. and Bader A. “Review of a flat membrane bioreactor as a bioartificial liver.,” Ann. Transplant. 6, 40–46, 2001.
Werner A., Duvar S., Muthing J., Buntemeyer H., Kahmann U., Lunsdorf H. and Lehmann J. “Cultivation and characterization of a new immortalized human hepatocyte cell line, HepZ, for use in an artificial liver support system.,” Ann. NY Acad. Sci. 875, 364–368, 1999.
Cascio S.M. “Novel strategies for immortalization of human hepatocytes.,” Artif. Organs 25, 529–538, 2001.
Wilkening S., Stahl F. and Bader A. “Comparison of primary human hepatocytes and hepatoma cell line HepG2 with regard to their biotransformation properties,” Drug Metab. Dispos. 31, 1035–1042, 2003.
Louha M., Poussin K., Ganne N., Zylberberg H., Nalpas B., Nicolet J., Capron F., Soubrane O., Vons C., Pol S., Beaugrand M, Berthelot P., Franco D., Trinchet J.C., Brechot C. and Paterlini P. “Spontaneous and iatrogenic spreading of liver-derived cells into peripheral blood of patients with primary liver cancer,” Hepatology 26, 998–1005, 1997.
N. Cameron, C. Darve, C. Freyman, and L. Sun, “Manipulation of Microbeads and Nanoparticles by Dielectrophoresis,” ME 395 March 16, 2004.
Jone, T. B., “Electromechanics of particles,” Cambridge University Press, 1995
Hughes, M. P., “Nanoelectromechanics in Engineering and Biology,” CRC Press, 2003
Matsue, T., Matsumoto, N., and Uchida, I. “Rapid micropatterning of living cells by repulsive dielectrophoretic force,” Electrochimica Acta 1997, 42(20), 3251-3256.
Gascoyne, P. R., and Vykoukal, J. “Particle separation by dielectrophoresis,” Electrophoresis 2002, 23(13), 1973-83.
Voldman, J., Gray, M. L., Toner, M., and Schmidt, M. A. “A microfabrication-based dynamic array cytometer,” Anal Chem 2002, 74(16), 3984-90.
Matsue, T., Matsumoto, N., and Uchida, I. “Rapid micropatterning of living cells by repulsive dielectrophoretic force,” Electrochimica Acta, 42(20), 3251-3256, 1997.
Okey A.B., Roberts E.A., Harper P.A. and Denison M.S., “Induction of drug-metabolizing enzyme: mechanisms and consequences,” Clin. Biochem, 19, 132–141, 1986.
Taku Matsushita, Kohji Nakano, Yasufumi Nishikura, Kenta Higuchi, Akifumi Kiyota and Ryuichi Ueoka, “Spheroid formation and functional restoration of human fetal hepatocytes on poly-L-amino acid-coated dishes after serial proliferation,” Cytotechnology, 42, 57–66, 2003.
Jin Jun Chen, Guo Sheng Chen, Nigel J. Bunce, “Inhibition of CYP 1A2–Dependent MROD Activity in Rat Liver Microsomes: An Explanation of the Hepatic Sequestration of a Limited Subset of Halogenated Aromatic Hydrocarbons,” Wiley Periodicals, Inc. Environ Toxicol, 18, 115–119, 2003.
Lubet R.A., Nims R.W., Mayer R.T., Cameron J.W. and Schechtman L.M., “Measurement of cytochrome P-450 dependent dealkylation of alkoxyphenoxazones in hepatic S9s and hepatocyte homogenates: effects of dicumarol,” Mutat. Res, 142, 127–131, 1985.
Cretton E.M. and Sommadossi J.P., “Modulation of 3’-Azido-3’-deoxythymidine catabolism by probenecid and acetaminophen in freshly isolated rat hepatocytes,” Biochem. Pharmacol, 42, 1475–1480, 1991.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *