帳號:guest(3.143.17.128)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳弘麒
作者(外文):Wu, Hung-chi
論文名稱(中文):一維矽、鍺材料之製作及其場發射性能
論文名稱(外文):One-dimensional Silicon and Germanium Materials: Fabrications and Their Electron Field Emission Properties
指導教授(中文):李紫原
裘性天
指導教授(外文):Lee, Chi-young
Chiu, Hsin-tien
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:9531524
出版年(民國):100
畢業學年度:99
語文別:英文
論文頁數:91
中文關鍵詞:一維電子場發射無電極電鍍沉積化學氣相沉積
外文關鍵詞:one-dimensionsilicongermaniumelectron field emissionelectroless metal depositionchemical vapor deposition
相關次數:
  • 推薦推薦:0
  • 點閱點閱:69
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
One-dimensional (1D) structures are regarded as ideal electric field emission (EFE) sources owing to their high aspect ratio. In previous studies, the strong screening effect of the crowded silicon wall-like arrays that are formed by EMD (electroless□metal□deposition) degrades the performance of EFE. In this thesis, free standing and vertically aligned silicon rice-straw like array emitters were fabricated by modified-EMD, using HF□H2O2 as an etching solution to reduce the emitter density and to make the emitter end of the formed silicon rice-straw arrays shaper than those formed by conventional EMD. These silicon rice-straw array emitters can be turned on at 4.7 V/μm, yielding a field enhancement factor b of 1406 and an EFE current density of 139□μA/cm2 in an applied field of 12.8 V/μm.
For a long-term modified etching, highly porous, individually separated, and vertically aligned rough silicon rods (r-SiRs) were formed. r-SiRs, to be a silicon-based template, were decorated with two kinds of field emitters (carbon nanotubes, CNTs, and zinc oxide nanowires, ZnO NWs) to form a heterojunction nano/microstructure and have better EFE properties than emitters grown on flat silicon substrates. For CNT/r-SiRs has a turn-on field of 2.3 V/um, a β value of 1384, and a current density of 3.7 mA/cm2 at applied field of 5.1 V/um; and for ZnO NWs/r□SiRs has a turn-on field of 2.9 V/um, a β value of 1311, and a current density of 900 uA/cm2 at applied field 8.6 V/□m.
Furthermore, 1D germanium (Ge) nanostructures were synthesized by reduction of GeO2 in H2 atmosphere at various temperatures. Entangled and straight Ge nanowires with oxide shell were grown at high temperatures. Ge nanowires with various amounts of nodules were obtained at low temperature. Ge nanowires without nodules exhibited remarkable field emission properties with turn-on field of 4.6 V/μm, field enhancement factor of 1242. and a current density of 910 uA/cm2 at applied field 10.9 V/um.
由於一維材料擁有極高的深寬比,因此被視為是場發射體中理想的材料來源。在過去的研究中指出,藉由「無電極金屬沉積法」所製造出來的一維矽陣列,由於該陣列的排列分佈過於擁擠,進而影響到其場發射特性的表現,因此在本論文中,我們使用了含有氫氟酸及過氧化氫的酒精溶液當作蝕刻溶液來改變前述過於密集排列的一維矽陣列結構。經由再一次的蝕刻後,矽陣列的形貌由初始相交連結的牆狀轉變成各自獨立存在的稻草堆形貌。擁有稻草堆外貌的一維矽陣列其場發射量測出來的起始電壓約為 4.7 V/μm,且在外加電場 12.8 V/μm 時,可以得到場加強因子1406和電流密度139 μA/cm2,此一結果顯示其場發射效能優於初始的牆狀矽陣列。
若將初始的牆狀矽陣列長時間置於前述蝕刻液中,則會得到崎嶇外表的一維矽柱陣列。利用此崎嶇外表的矽柱彼此間擁有較大間距的特點,期望能減少場發射應用中常見的「遮蔽效應」。故,以此矽柱陣列為基板,將奈米碳管及氧化鋅奈米線分別成長於矽柱上。經由量測結果顯示,藉由矽柱陣列為基板所形成的場發射體其性能表現優於場發射體成長於平坦矽基板上的場發射表現。成長於矽柱陣列上的奈米碳管,其起始電場為2.3 V/um,場加強因子為1384,且可以在外加電場5.1 V/um時得到 3.7 mA/cm2的電流密度;而成長於矽柱陣列上的氧化鋅奈米線,其起始電場為2.9 V/um,場加強因子為1311,且可以在外加電場8.6 V/um時得到 900 uA/cm2的電流密度。
另外,我們合成「鍺」的一維奈米材料。藉由二氧化鍺在氫氣的高溫環境下進行還原反應,而在低溫的地方可以得到不同性貌的一維鍺奈米結構。在低溫區較高溫度的區域可以得到長度較短且帶有較厚氧化層的奈米線,其形貌有二種:糾纏彎曲以及筆直;而在低溫區較低溫度的地方則可以得到長度較長且氧化層較薄的奈米線,另外,此區域所得到的奈米線根據成長溫度的不同而會有不同數量的結狀物成長於側。經由場發射量測所顯示出來的結果表示:在低溫區所形成無側向成長結狀物的鍺奈米線擁有較佳的場發射性能,其起始電場約為 4.6 V/um、場增強因子為1242,且可以在外加電場10.9 V/um時得到 910 uA/cm2的電流密度。
Contents

Contents............................................................................................................................I
Abstract...........................................................................................................................V
Acknowledgments.........................................................................................................IX
List of Tables...................................................................................................................X
List of Figures...............................................................................................................XI

Chapter 1 Introduction
1.1 The transformation of display technology………………………………………….……………….1
1.2 Field emission display (FED) .……………………………………………………………..………2
1.3 Advantages of FED.…………………………………………………………………………….…..2
1.3.1 Brightness.…………………………………………………………………………………..3
1.3.2 Lightness…………………………………………………………………………………….3
1.3.3 Response time……………………………………………………………………………….3
1.4 Introduction to electron field emission theory……………………………………………………3
1.4.1 Electron field emission from metals………………………………………………………4
1.4.2 Electron field emission from semiconductors……………………………………………5
1.4.3 Field enhancement factor…………………..…………………………...……….…………..5
1.4.4 Screening effect………………………………………………………………………….…6
1.5 Materials for field emission arrays…………..…………….………………………………………..7
1.5.1 Introduction to nanomaterials………………………………………………………………7
1.5.2 Spindt□type field emitter………...…..…………………………………...…………………8
1.5.3 Silicon (Si)-based field emitter…….………………………………….……………………9
1.5.4 Low□work□function or negative□electron□affinity field emitter…………….……………..9
1.5.5 Carbon□nanotube (CNT) field emitter……………………………………………………10
1.5.6 Germanium field emitter……………………………………………………………...…11
1.5.7 Zinc oxide (ZnO) field emitter……………………………………………………………11
1.6 Growth mechanism of one-dimensional (1D) nanostructures………………...……………..12
1.6.1 Electroless□metal□deposition (EMD) method…………………………………..………13
1.6.2 Vapor□liquid□solid (VLS) growth mechanism……...………………….…………………14
1.6.3 Vapor□solid (VS) growth mechanism………………………………………………….…16
1.6.4 Oxide□assisted growth (OAG) mechanism……..…………………………………………16
1.7 References and notes…………………….………………...………………………..…….………18

Chapter 2 Materials, Experimental Sections and Analysis Instruments
2.1 Materials……………………………………………………………….…….……………………35
2.2 Experimental sections………………………………….………………………………………….36
2.2.1 Fabrication of silicon structure arrays………………………...……………..…………….36
2.2.2 Synthesis of carbon nanotubes (CNTs) ..……………..…………………………..……….37
2.2.3 Synthesis of zinc oxide nanowires (ZnO NWs) ……………..………………………...….37
2.2.4 Synthesis of germanium nanostructures (GeNSs) ……………......................................….37
2.3 Analysis instruments……………………………...……………………………………………….38
2.3.1 Micro-Raman spectroscopy…………………………………………………….………….38
2.3.2 X-ray diffraction (XRD) …………………………………………………………...…….38
2.3.3 Scanning electron microscopy (SEM) ……………………………………………...…….39
2.3.4 Transmission electron microscopy (TEM) ……………………………………….……….39
2.3.5 Energy dispersive spectroscopy (EDS) ……………………………………………….….40
2.3.6 Focus ion beam (FIB) …………………………………………………………………….40
2.4 Electrical transport and electron field emission (EFE) measurements………………………….41
2.4.1 Electrical transport measurement………………………………………………….…..….41
2.4.2 Electron field emission (EFE) measurement…………………………………..…………41

Chapter 3 Silicon Rice-Straw Array Emitters and Their Superior Electron Field Emission
3.1 Introduction………………………………………………………………………………………..43
3.2 Results and discussion………………………………………………………………………….…44
3.2.1 Characterization of silicon arrays……………………………………….…………………44
3.2.2 EFE properties of silicon arrays………………………...…………………………………45
3.2.3 Simulation of factors to affect EFE………………………………………………………..46
3.3 Conclusion………………………………………………………………………………………...47
3.4 References and notes………………………………………………………………………..…….48

Chapter 4 One-dimensional Germanium Nanostructures – Formation and Their Electron Field Emission Properties
4.1 Introduction………………………………………………………………………………………..57
4.2 Results and discussion…………………………………….………………………………………58
4.2.1 Characterization of GeNSs………….……………………..………………………………58
4.2.2 Growth mechanism of GeNSs….………………………….………………………………59
4.2.3 EFE and electrical transport measurements of GeNSs….…………………….…………61
4.3 Conclusion………………………………………..……..…………………………………….…..61
4.4 References…………………………………………………..……………………………………..63


Chapter 5 Electron Field Emission Properties of Nanomaterials on Rough Silicon Rods
5.1 Introduction………………………………………………………………………………………..74
5.2 Results and discussion…………………………………………………………………………….75
5.2.1 Characterization of r-SiRs…………………………………………….…………………...75
5.2.2 CNTs grown on r-SiRs……………………………………………………….……………75
5.2.3 ZnO NWs grown on r-SiRs………………………………………….……….……………77
5.3 Conclusion…………………………………………………………………...……………………78
5.4 References and notes……………………………………………………………………………..80

Chapter 6 Conclusion
Conclusion.………………………………..…………………………………………………………..88

List of Publications………………...……………………………………………………………..91
(1-1) Science and Technology Policy Research and Information Center Web. http://cdnet.stpi.org.tw/techroom.htm (accessed 2010).
(1-2) Talin, A. A.; Dean, K. A.; Jaskie, J. E. Solid State Electron. 2001, 45, 963.
(1-3) DisplaySearch Web. http://www.displaysearch.com (accessed 2009).
(1-4) Zhu, W. In Vaccem Microelectronics, Wiley & Sons: New York, 2001.
(1-5) Fowler, R. H.; Nordheim, L. Proc. R. Soc. London, Ser. A 1928, 119, 173.
(1-6) Saito, Y.; Uemura, S. Carbon 2000, 38, 169.
(1-7) Itoh, S.; Tanaka, M. P. IEEE 2002, 90, 514.
(1-8) Werner, K. IEEE Spectrum1997, 34, 40.
(1-9) FED TV| Field Emission Display Reviews Web. http://www.fed-tv-reviews.com (accessed 2008).
(1-10) Temple, D. Mat. Sci. Eng. R. 1999, 24, 185.
(1-11) Sze, S. M. In Physics of Semiconductor Devices, Wiley & Sons: New York, 1981.
(1-12) Brodie, I.; Schwoebel, P. R. P. IEEE 1994, 82, 1006.
(1-13) Gomer, R. In Field Emission and Field Ionization, American Institute of Physics: New York, 1993.
(1-14) Stratton, R. Proc. Phys. Soc. London Sect. B 1955, 68, 746.
(1-15) Baskin, L. M.; Lvov, O. I.; Fursey, G. N. Phys. Status Solidi B 1971, 47, 49.
(1-16) Cade, N. A.; Johnston, R.; Miller, A. J.; Patel, C. J. Vac. Sci. Technol. B 1995, 13, 549.
(1-17) Meyer, R.; Ghis, A.; Ramband, P.; Muller, F. Technical Digest of the 1th Int. Vacuum Microelectronics Conf., Williamsburg, VA, 1988.
(1-18) H.F. Gray, G.J. Campisi, R.F. Greene, Technical Digest of Int. Electron Devices Meeting-86, 1986.
(1-19) Kanemaru, S.; Hirano, T.; Tanoue, H.; Itoh, J. J. Vac. Sci. Technol. B 1996, 14, 1885.
(1-20) Jensen, K. L.; Ganguly, A. K. J. Vac. Sci. Technol. B 1993, 11, 371.
(1-21) Jensen, K. L.; Ganguly, A. K. J. Vac. Sci. Technol. B 1994, 12, 770.
(1-22) Jensen, K. L.; Ganguly, A. K. J. Vac. Sci. Technol. B 1995, 13, 516.
(1-23) Charbonnier, F. Appl. Surf. Sci. 1996, 94-5, 26.
(1-24) Lee, Y. H.; Choi, C. H.; Jang, Y. T.; Kim, E. K.; Ju, B. K.; Min, N. K.; Ahn, J. H. Appl. Phys. Lett. 2002, 81, 745.
(1-25) Nilsson, L.; Groening, O.; Emmenegger, C.; Kuettel, O.; Schaller, E.; Schlapbach, L.; Kind, H.; Bonard, J. M.; Kern, K. Appl. Phys. Lett. 2000, 76, 2071.
(1-26) Smith, R. C.; Silva, S. R. P. Appl. Phys. Lett. 2009, 94, 133104.
(1-27) Kastner, M. A. Phys. Today 1993, 46, 24.
(1-28) Brus, L. Appl. Phys. A-Mater. 1991, 53, 465.
(1-29) Lewis, L. N. Chem. Rev. 1993, 93, 2693.
(1-30) Freer, R. In Nanoceramics, Institnte of Materials: London, 1993.
(1-31) Awschalom, D. D.; Divincenzo, D. P. Phys. Today 1995, 48, 43.
(1-32) Awschalom, D. D.; Divincenzo, D. P.; Smyth, J. F. Science 1992, 258, 414.
(1-33) Yang, P. D.; Yan, R. X.; Fardy, M. Nano Lett. 2010, 10, 1529.
(1-34) Chen, L. J. J. Mater. Chem. 2007, 17, 4639.
(1-35) Spindt, C. A. J. Appl. Phys. 1968, 39, 3504.
(1-36) Spindt, C. A.; Holland, C. E.; Rosengreen, A.; Brodie, I. IEEE T. Electron Dev. 1991, 38, 2355.
(1-37) Spindt, C. A.; Brodie, I.; Humphrey, L.; Westerberg, E. R. J. Appl. Phys. 1976, 47, 5248.
(1-38) Ghis, A.; Meyer, R.; Rambaud, P.; Levy, F.; Leroux, T. IEEE T. Electron Dev. 1991, 38, 2320.
(1-39) Busta, H. H. J. Micromech. Microeng. 1992, 2, 43.
(1-40) Srivastava, S. K.; Vankar, V. D.; Kumar, V.; Singh, V. N. Nanoscale Res. Lett. 2008, 3, 205.
(1-41) Ding, M.; Kim, H.; Akinwande, A. I. IEEE Electr. Device L. 2000, 21, 66.
(1-42) Itoh, J.; Tohma, Y.; Morikawa, K.; Kanemaru, S.; Shimizu, K. J. Vac. Sci. Technol. B 1995, 13, 1968.
(1-43) Auciello, O.; Tucek, J. C.; Krauss, A. R.; Gruen, D. M.; Moldovan, N.; Mancini, D. C. J. Vac. Sci. Technol. B 2001, 19, 877.
(1-44) Mayer, A.; Chung, M. S.; Kumar, N.; Weiss, B. L.; Miskovsky, N. M.; Cutler, P. H. J. Vac. Sci. Technol. B 2007, 25, 109.
(1-45) Kumar, N.; Schmidt, H. K.; Clark, M. H.; Ross, A.; Lin, B.; Fredin, L.; Baker, B.; Patterson, D.; Brookover, W.; Xie, C.; Hilbert, C.; Fink, R. L.; Potter, C. N.; Krishnan, A.; Eichman, D. SID 94 Digest, 1994.
(1-46) Baek, Y.; Song, Y.; Yong, K. Adv. Mater. 2006, 18, 3105.
(1-47) Yan, X. B.; Tay, B. K.; Miele, P. Carbon 2008, 46, 753.
(1-48) Liu, Y. M.; Fan, S. S. Solid State Commun. 2005, 133, 131.
(1-49) Iijima, S. Nature 1991, 354, 56.
(1-50) Kwon, Y. K.; Lee, Y. H.; Kim, S. G.; Jund, P. Phys. Rev. Lett. 1997, 79, 2065.
(1-51) Heer, W. A.; Chatelain, A.; Ugarte, D. Science 1995, 270, 1179.
(1-52) Rao, A. M.; Jacques, D.; Haddon, R. C.; Zhu, W.; Bower, C.; Jin, S. Appl. Phys. Lett. 2000, 76, 3813.
(1-53) Lohndorf, M.; Moreland, J.; Kabos, P. Appl. Phys. Lett. 2000, 76, 1176.
(1-54) Givargizov, E. I.; Zhirnov, V. V.; Stepanova, A. N.; Rakova, E. V.; Kiselev, A. N.; Plekhanov, P. S. Appl. Surf. Sci. 1995, 87-8, 24.
(1-55) Zhu, L. B.; Xu, J. W.; Xiu, Y. H.; Sun, Y. Y.; Hess, D. W.; Wong, C. P. Carbon, 2006, 44, 253.
(1-56) Choi, W. B.; Chung, D. S.; Kang, J. H.; Kim, H. Y.; Jin, Y. W.; Han, I. T.; Lee, Y. H.; Jung, J. E.; Lee, N. S.; Park, G. S.; Kim, J. M. Appl. Phys. Lett. 1999, 75, 3129.
(1-57) Uemura, S.; Osawa, E., Eds. In Perspectives of Fullerene Nanotechnology, Springer: New York, 2002.
(1-58) LeRoy, B. J.; Lemay, S. G.; Kong, J.; Dekker, C. Nature 2004, 432, 371.
(1-59) Bachtold, A.; Hadley, P.; Nakanishi, T.; Dekker, C. Science 2001, 294, 1317.
(1-60) Rueckes, T.; Kim, K.; Joselevich, E.; Tseng, G. Y.; Cheung, C. L.; Lieber, C. M. Science 2000, 289, 94.
(1-61) Cui, Y.; Lieber, C. M. Science 2001, 291, 851.
(1-62) Ahn, Y.; Dunning, J.; Park, J. Nano Lett. 2005, 5, 1367.
(1-63) Hayden, O.; Agarwal, R.; Lieber, C. M. Nat. Mater. 2006, 5, 352.
(1-64) Stern, E.; Klemic, J. F.; Routenberg, D. A.; Wyrembak, P. N.; Turner-Evans, D. B.; Hamilton, A. D.; LaVan, D. A.; Fahmy, T. M.; Reed, M. A. Nature 2007, 445, 519.
(1-65) Andzane, J.; Petkov, N.; Livshits, A. I.; Boland, J. J.; Holmes, J. D.; Erts, D. Nano Lett. 2009, 9, 1824.
(1-66) Ahn, Y. H.; Park, J. Appl. Phys. Lett. 2007, 91, 162102.
(1-67) Li, L.; Fang, X. S.; Chew, H. G.; Zheng, F.; Liew, T. H.; Xu, X. J.; Zhang, Y. X.; Pan, S. S.; Li, G. H.; Zhang, L. D. Adv. Funct. Mater. 2008, 18, 1080.
(1-68) Chan, C. K.; Zhang, X. F.; Cui, Y. Nano Lett. 2008, 8, 307.
(1-69) Tu, R.; Zhang, L.; Nishi, Y.; Dai, H. J. Nano Lett. 2007, 7, 1561.
(1-70) Prasankumar, R. P.; Choi, S.; Trugman, S. A.; Picraux, S. T.; Taylor, A. J. Nano Lett. 2008, 8, 1619.
(1-71) Zhang, Z.; Meng, G. W.; Xu, Q. L.; Hu, Y. M.; Wu, Q.; Hu, Z. J. Phys. Chem. C 2010, 114, 189.
(1-72) Chang, M. T.; Chou, L. J.; Chueh, Y. L.; Lee, Y. C.; Hsieh, C. H.; Chen, C. D.; Lan, Y. W.; Chen, L. J. Small 2007, 3, 658.
(1-73) Hsieh, C. T.; Chen, J. M.; Lin, H. H.; Shih, H. C. Appl. Phys. Lett. 2003, 83, 3383.
(1-74) Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Q.; Wu, Y. Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. D. Science 2001, 292, 1897.
(1-75) Tseng, Y. K.; Huang, C. J.; Cheng, H. M.; Lin, I. N.; Liu, K. S.; Chen, I. C. Adv. Funct. Mater. 2003, 13, 811.
(1-76) Zhao, Q.; Gao, J. Y.; Zhu, R.; Cai, T. C.; Wang, S.; Song, X. F.; Liao, Z. M.; Chen, X. H.; Yu, D. P. Nanotechnology 2010, 21, 095701.
(1-77) Siegel, R. W.; Hu, E.; Roco, M. C. In Nanostructure Science and Technology- A Worldwide Study, U.S. National Science and Technology Council: Washington, DC, 1999.
(1-78) Balzani, V.; Credi, A.; Venturi, M. Chem-Eur. J. 2002, 8, 5524.
(1-79) Peng, K. Q.; Hu, J. J.; Yan, Y. J.; Wu, Y.; Fang, H.; Xu, Y.; Lee, S. T.; Zhu, J. Adv. Funct. Mater. 2006, 16, 387.
(1-80) Peng, K. Q.; Yan, Y. J.; Gao, S. P.; Zhu, J. Adv. Mater. 2002, 14, 1164.
(1-81) Peng, K. Q.; Yan, Y. J.; Gao, S. P.; Zhu, J. Adv. Funct. Mater. 2003, 13, 127.
(1-82) Peng, K. Q.; Wu, Y.; Fang, H.; Zhong, X. Y.; Xu, Y.; Zhu, J. Angew. Chem. Int. Ed. 2005, 44, 2737.
(1-83) Chen, C. Y.; Wu, C. S.; Chou, C. J.; Yen, T. J. Adv. Mater. 2008, 20, 3811.
(1-84) Chen, H. A.; Wang, H.; Zhang, X. H.; Lee, C. S.; Lee, S. T. Nano Lett. 2010, 10, 864.
(1-85) Wagner, R. S.; Ellis, W. C. Appl. Phys. Lett. 1964, 4, 89.
(1-86) Pan, Z. W.; Dai, S.; Rouleau, C. M.; Lowndes, D. H. Angew. Chem. Int. Ed. 2005, 44, 274.
(1-87) Xiang, Y.; Cao, L. Y.; Arbiol, J.; Brongersma, M. L.; Morral, A. F. I. Appl. Phys. Lett. 2009, 94, 163101.
(1-88) Xiang, Y.; Cao, L. Y.; Conesa-Boj, S.; Estrade, S.; Arbiol, J.; Peiro, F.; Heiss, M.; Zardo, I.; Morante, J. R.; Brongersma, M. L.; Morral, A. F. I. Nanotechnology 2009, 20, 245608.
(1-89) Wu, Y. Y.; Yan, H. Q.; Huang, M.; Messer, B.; Song, J. H.; Yang, P. D. Chem-Eur. J. 2002, 8, 1261.
(1-90) El Bouayadi, R.; Regula, G.; Pichaud, B.; Lancin, M.; Dubois, C.; Ntsoenzok, E. Phys. Status Solidi. B 2000, 222, 319.
(1-91) Ho, S. T.; Chen, K. C.; Chen, H. A.; Lin, H. Y.; Cheng, C. Y.; Lin, H. N. Chem. Mater. 2007, 19, 4083.
(1-92) Kim, B. S.; Koo, T. W.; Lee, J. H.; Kim, D. S.; Jung, Y. C.; Hwang, S. W.; Choi, B. L.; Lee, E. K.; Kim, J. M.; Whang, D. Nano Lett. 2009, 9, 864.
(1-93) Gu, Z. J.; Liu, F.; Howe, J. Y.; Paranthaman, M. P.; Pan, Z. W. Cryst. Growth Des. 2009, 9, 35.
(1-94) Orlandi, M. O.; Leite, E. R.; Aguiar, R.; Bettini, J.; Longo, E. J. Phys. Chem. B 2006, 110, 6621.
(1-95) Yang, Y. H.; Wang, C. X.; Wang, B.; Xu, N. S.; Yang, G. W. Chem. Phys. Lett. 2005, 403, 248.
(1-96) Johnson, M. C.; Lee, C. J.; Bourret-Courchesne, E. D.; Konsek, S. L.; Aloni, S.; Han, W. Q.; Zettl, A. Appl. Phys. Lett. 2004, 85, 5670.
(1-97) Lee, K. H.; Lee, S. W.; Vanfleet, R. R.; Sigmund, W. Chem. Phys. Lett. 2003, 376, 498.
(1-98) Wang, N.; Tang, Y. H.; Zhang, Y. F.; Lee, C. S.; Lee, S. T. Phys. Rev. B 1998, 58, 16024.
(1-99) Peng, H. Y.; Pan, Z. W.; Xu, L.; Fan, X. H.; Wang, N.; Lee, C. S.; Lee, S. T. Adv. Mater. 2001, 13, 317.
(1-100) Zhang, R. Q.; Lifshitz, Y.; Lee, S. T. Adv. Mater. 2003, 15, 635.
(3-1) (a) Yang, P. D.; Yan, R. X.; Fardy, M. Nano Lett. 2010, 10, 1529. (b) Chen, L. J. J. Mater. Chem. 2007, 17, 4639.
(3-2) (a) DeHeer, W. A.; Chatelain, A.; Ugarte, D. Science 1995, 270, 1179. (b) Huang, G. S.; Wu, X. L.; Cheng, Y. C.; Li, X. F.; Luo, S. H.; Feng, T.; Chu, P. K. Nanotechnology, 2006, 17, 5573. (c) Li, L.; Fang, X. S.; Chew, H. G.; Zheng, F.; Liew, T. H.; Xu, X. J.; Zhang, Y. X.; Pan, S. S.; Li, G. H.; Zhang, L. D. Adv. Funct. Mater. 2008, 18, 1080.
(3-3) (a) Zhang, Z.; Meng, G. W.; Xu, Q. L.; Hu, Y. M.; Wu, Q.; Hu, Z. J. Phys. Chem. C 2010, 114, 189. (b) Chang, M. T.; Chou, L. J.; Chueh, Y. L.; Lee, Y. C.; Hsieh, C. H.; Chen, C. D.; Lan, Y. W.; Chen, L. J. Small 2007, 3, 658. (c) Hsieh, C. T.; Chen, J. M.; Lin, H. H.; Shih, H. C. Appl. Phys. Lett. 2003, 83, 3383.
(3-4) (a) Lin, H. K.; Tzeng, Y. F.; Wang, C. H.; Tai, N. H.; Lin, I. N.; Lee, C. Y.; Chiu, H. T. Chem. Mater. 2008, 20, 2429. (b) Tsai, C. I.; Yeh, P. H.; Wang, C. Y.; Wu, H. W.; Chen, U. S.; Lu, M. Y.; Wu, W. W.; Chen, L. J.; Wang, Z. L. Cryst. Growth Des. 2009, 9, 4514. (c) Lee, C. Y.; Lu, M. P.; Liao, K. F.; Lee, W. F.; Huang, C. T.; Chen, S. Y.; Chen, L. J. J. Phys. Chem. C 2009, 113, 2286.
(3-5) Jensen, K. L.; Abrams, R. H.; Parker, R. K. J. Vac. Sci. Technol. B 1998, 16, 749.
(3-6) Spindt, C.A.; Holland, C. E.; Brodie, I.; Mooney, J. B.; Westerberg, E. R. IEEE T. Electron Dev. 1989, 36, 225.
(3-7) Lin, M. C.; Huang, K. H.; Lu, P. S.; Lin, P. Y.; Jao, R. F. J. Vac. Sci. Technol. B 2005, 23, 849.
(3-8) Kojima, A.; Ohyi, H.; Koshida, N. J. Vac. Sci. Technol. B 2008, 26, 2064.
(3-9) Lee, K.; Holbert, K. E. J. Electrochem. Soc. 2004, 151, H81.
(3-10) Honjo, I.; Endo, Y.; Goto, S. J. Vac. Sci. Technol. B 1997, 15, 2741.
(3-11) Love, J. C.; Paul, K. E.; Whitesides, G. M. Adv. Mater. 2001, 13, 604.
(3-12) Kuan, C. Y.; Chou, J. M.; Leu, I. C.; Hon, M. H. Electrochem. Commun. 2007, 9, 2093.
(3-13) Seeger, K.; Palmer, R. E. Appl. Phys. Lett. 1999, 74, 1627.
(3-14) Lee, Y. D.; Lee, H. J.; Han, J. H.; Yoo, J. E.; Lee, Y. H.; Kirn, J. K.; Nahm, S.; Ju, B. K. J. Phys. Chem. B 2006, 110, 5310.
(3-15) Peng, K. Q.; Wu, Y.; Fang, H.; Zhong, X. Y.; Xu, Y.; Zhu, J. Angew. Chem. Int. Edit. 2005, 44, 2737.
(3-16) Tzeng, Y. F.; Wu, H. C.; Sheng, P. S.; Tai, N. H.; Chiu, H. T.; Lee, C. Y.; Lin, I. N. ACS Appl. Mater. Inter. 2010, 2, 331.
(3-17) Wu, H. C.; Tsai, T. Y.; Chu, F. H.; Tai, N. H.; Lin, H. N.; Chiu, H. T.; Lee, C. Y. J. Phys. Chem. C 2010, 114, 130.
(3-18) Chen, C. Y.; Wu, C. S.; Chou, C. J.; Yen, T. J. Adv. Mater. 2008, 20, 3811.
(3-19) Tzeng, Y. F.; Liu, K. H.; Lee, Y. C.; Lin, S. J.; Lin, I. N.; Lee, C. Y.; Chiu, H. T. Nanotechnology 2007, 18, 435703.
(3-20) Li, C.; Fang, G. J.; Sheng, S.; Chen, Z. Q.; Wang, J. B.; Ma, S.; Zhao, X. Z. Physica E 2005, 30, 169.
(3-21) Riccitelli, R.; Di, Carlo. A.; Fiori, A.; Orlanducci, S.; Terranova, M. L.; Santoni, A.; Fantoni, R.; Rufoloni, A.; Villacorta, F. J. J. Appl. Phys. 2007, 102, 054906.
(3-22) Huang, C. T.; Hsin, C. L.; Huang, K. W.; Lee, C. Y.; Yeh, P. H.; Chen, U. S.; Chen, L. J. Appl. Phys. Lett. 2007, 91, 093133.
(3-23) Xu, L.; Li, W.; Xu, J.; Zhou, J.; Wu, L. C.; Zhang, X. G.; Ma, Z. Y.; Chen, K. J. Appl. Surf. Sci. 2009, 255, 5414.
(3-24) Hsieh, H. Y.; Huang, S. H.; Liao, K. F.; Su, S. K.; Lai, C. H.; Chen, L. J. Nanotechnology 2007, 18, 505305.
(3-25) Li, W.; Zhou, J.; Zhang, X. G.; Xu, J.; Xu, L.; Zhao, W. M.; Sun, P.; Song, F. Q.; Wan, J. G.; Chen, K. J. Nanotechnology 2008, 19, 135308.
(3-26) Lee, S. W.; Wu, B. L.; Chang, H. T. J. Electrochem. Soc. 2010, 157, H174.
(3-27) She, J. C.; Deng, S. Z.; Xu, N. S.; Yao, R. H.; Chen, J. Appl. Phys. Lett. 2006, 88, 013112.
(3-28) Au, F. C. K.; Wong, K. W.; Tang, Y. H.; Zhang, Y. F.; Bello, I.; Lee, S. T. Appl. Phys. Lett. 1999, 75, 1700.
(3-29) Chueh, Y. L.; Chou, L. J.; Cheng, S. L.; He, J. H.; Wu, W. W.; Chen, L. J. Appl. Phys. Lett. 2005, 86, 133112.
(3-30) (a) Li, C.; Di, Y. S.; Lei, W.; Yin, Q.; Zhang, X. B.; Zhao, Z. W. J. Phys. Chem. C 2008, 112, 13447. (b) Spindt, C. A.; Brodie, I.; Hunphrey, L.; Westerberg, E. R. J. Appl. Phys. 1976, 47, 5248.
(3-31) Nilsson, L.; Groening, O.; Emmenegger, C.; Kuettel, O.; Schaller, E.; Schlapbach, L.; Kind, H.; Bonard, J. M.; Kern, K. Appl. Phys. Lett. 2000, 76, 2071.
(3-32) The free simulator is “Electric Field”, and it can be obtained at the website: http://www.physics-software.com/software.html.
(4-1) LeRoy, B. J.; Lemay, S. G.; Kong, J.; Dekker, C. Nature 2004, 432, 371.
(4-2) (a) Deheer, W. A.; Chatelain, A.; Ugarte, D. Science 1995, 270, 1179; (b) Rao, A. M.; Jacques, D.; Haddon, R. C.; Zhu, W.; Bower, C.; Jin, S. Appl. Phys. Lett. 2000, 76, 3813.
(4-3) Bachtold, A.; Hadley, P.; Nakanishi, T.; Dekker, C. Science 2001, 294, 1317.
(4-4) Rueckes, T.; Kim, K.; Joselevich, E.; Tseng, G. Y.; Cheung, C. L.; Lieber, C. M. Science 2000, 289, 94.
(4-5) Chueh, Y. L.; Chou, L. J.; Cheng, S. L.; He, J. H.; Wu, W. W.; Chen, L. J. Appl. Phys. Lett. 2005, 86, 133112.
(4-6) Cui, Y.; Lieber, C. M. Science 2001, 291, 851.
(4-7) Ahn, Y.; Dunning, J.; Park, J. Nano Lett. 2005, 5, 1367.
(4-8) Hayden, O.; Agarwal, R.; Lieber, C. M. Nat. Mater. 2006, 5, 352.
(4-9) Stern, E.; Klemic, J. F.; Routenberg, D. A.; Wyrembak, P. N.; Turner-Evans, D. B.; Hamilton, A. D.; LaVan, D. A.; Fahmy, T. M.; Reed, M. A. Nature 2007, 445, 519.
(4-10) Andzane, J.; Petkov, N.; Livshits, A. I.; Boland, J. J.; Holmes, J. D.; Erts, D. Nano Lett. 2009, 9, 1824.
(4-11) Ahn, Y. H.; Park, J. Appl. Phys. Lett. 2007, 91, 162102.
(4-12) Li, L.; Fang, X. S.; Chew, H. G.; Zheng, F.; Liew, T. H.; Xu, X. J.; Zhang, Y. X.; Pan, S. S.; Li, G. H.; Zhang, L. D. Adv. Funct. Mater. 2008, 18, 1080.
(4-13) Tu, R.; Zhang, L.; Nishi, Y.; Dai, H. J. Nano Lett. 2007, 7, 1561.
(4-14) Prasankumar, R. P.; Choi, S.; Trugman, S. A.; Picraux, S. T.; Taylor, A. J. Nano Lett. 2008, 8, 1619.
(4-15) Sze, S. M. Physics of Semiconductor Devices; Wiley: New York, 1981.
(4-16) Tseng, Y. K.; Huang, C. J.; Cheng, H. M.; Lin, I. N.; Liu, K. S.; Chen, I. C. Adv. Funct. Mater. 2003, 13, 811.
(4-17) Chang, M. T.; Chou, L. J.; Chueh, Y. L.; Lee, Y. C.; Hsieh, C. H.; Chen, C. D.; Lan, Y. W.; Chen, L. J. Small 2007, 3, 658.
(4-18) Mei, Y. F.; Li, Z. M.; Chu, R. M.; Tang, Z. K.; Siu, G. G.; Fu, R. K. Y.; Chu, P. K.; Wu, W. W.; Cheah, K. W. Appl. Phys. Lett. 2005, 86, 021111.
(4-19) Jin, C. B.; Yang, J. E.; Jo, M. H. Appl. Phys. Lett. 2006, 88, 193105.
(4-20) Mei, Y. F.; Siu, G. G.; Li, Z. M.; Fu, R. K. Y.; Tang, Z. K.; Chu, P. K. J. Cryst. Growth 2005, 285, 59.
(4-21) Morales, A. M.; Lieber, C. M. Science 1998, 279, 208.
(4-22) Sutter, E.; Ozturk, B.; Sutter, P. Nanotechnology 2008, 19, 435607.
(4-23) Kim, B. S.; Koo, T. W.; Lee, J. H.; Kim, D. S.; Jung, Y. C.; Hwang, S. W.; Choi, B. L.; Lee, E. K.; Kim, J. M.; Whang, D. Nano Lett. 2009, 9, 864.
(4-24) Lensch-Falk, J. L.; Hemesath, E. R.; Perea, D. E.; Lauhon, L. J. J. Mater. Chem. 2009, 19, 849.
(4-25) Chockla, A. M.; Korgel, B. A. J. Mater. Chem. 2009, 19, 996.
(4-26) Al-Salman, R.; Mallet, J.; Molinari, M.; Fricoteaux, P.; Martineau, F.; Troyon, M.; El Abedin, S. Z.; Endres, F. Phys. Chem. Chem. Phys. 2008, 10, 6233.
(4-27) (a) Peng, H. Y.; Pan, Z. W.; Xu, L.; Fan, X. H.; Wang, N.; Lee, C. S.; Lee, S. T. Adv. Mater. 2001, 13, 317. (b) Zhang, R. Q.; Lifshitz, Y.; Lee, S. T. Adv. Mater. 2003, 15, 635.
(4-28) El Bouayadi, R.; Regula, G.; Pichaud, B.; Lancin, M.; Dubois, C.; Ntsoenzok, E. Phys. Status Solidi. B 2000, 222, 319.
(4-29) Ho, S. T.; Chen, K. C.; Chen, H. A.; Lin, H. Y.; Cheng, C. Y.; Lin, H. N. Chem. Mater. 2007, 19, 4083.
(4-30) (a) Gu, Z. J.; Liu, F.; Howe, J. Y.; Paranthaman, M. P.; Pan, Z. W. Cryst. Growth Des. 2009, 9, 35. (b) Orlandi, M. O.; Leite, E. R.; Aguiar, R.; Bettini, J.; Longo, E. J. Phys. Chem. B 2006, 110, 6621. (c) Chen, Y. Q.; Cui, X. F.; Zhang, K.; Pan, D. Y.; Zhang, S. Y.; Wang, B.; Hou, J. G. Chem. Phys. Lett. 2003, 369, 16.
(4-31) Chen, X. L.; Li, J. Y.; Lan, Y. C.; Cao, Y. G. Mod. Phys. Lett. B 2001, 15, 27.
(4-32) Fowler, R. H.; Nordheim, L. Proc. R. Soc. London, Ser. A 1928, 119, 173.
(5-1) Heer, W. A.; Chatelain, A.; Ugarte, D. Science 1995, 270, 1179.
(5-2) Tseng, Y. K.; Huang, C. J.; Cheng, H. M.; Lin, I. N.; Liu, K. S.; Chen, I. C. Adv. Funct. Mater. 2003, 13, 811.
(5-3) Riccitelli, R.; Di Carlo, A.; Fiori, A.; Orlanducci, S.; Terranova, M. L.; Santoni, A.; Fantoni, R.; Rufoloni, A.; Villacorta, F. J. J. Appl. Phys. 2007, 102, 054906.
(5-4) Baek, Y.; Song, Y.; Yong, K. Adv. Mater. 2006, 18, 3105.
(5-5) Yan, X. B.; Tay, B. K.; Miele, P. Carbon 2008, 46, 753.
(5-6) Liu, Y. M.; Fan, S. S. Solid State Commun. 2005, 133, 131.
(5-7) Zhang, R. Q.; Lifshitz, Y.; Lee, S. T. Adv. Mater. 2003, 15, 635.
(5-8) Holmes, J. D.; Johnston, K. P.; Doty, R. C.; Korgel, B. A. Science 2000, 287, 1471.
(5-9) Pan, H.; Lim, S.; Poh, C.; Sun, H.; Wu, X.; Feng, Y.; Lin, J. Nanotechnology 2005, 16, 417.
(5-10) Morales, A. M.; Lieber, C. M. Science 1998, 279, 208.
(5-11) Bauer, J.; Fleischer, F.; Breitenstein, O.; Schubert, L.; Werner, P.; Gosele, U.; Zacharias, M. Appl. Phys. Lett. 2007, 90, 012105.
(5-12) Peng, K. Q.; Wu, Y.; Fang, H.; Zhong, X. Y.; Xu, Y.; Zhu, J. Angew. Chem., Int. Ed. 2005, 44, 2737.
(5-13) Tzeng, Y. F.; Lee, Y. C.; Lee, C. Y.; Lin, I. N.; Chiu, H. T. Appl. Phys. Lett. 2007, 91, 063117.
(5-14) Givargizov, E. I.; Zhirnov, V. V.; Stepanova, A. N.; Rakova, E. V.; Kiselev, A. N.; Plekhanov, P. S. Appl. Surf. Sci. 1995, 87-8, 24.
(5-15) Chiu, C. C.; Tsai, T. Y.; Tai, N. H.; Lee, C. Y. Surf. Coat. Technol. 2006, 200, 3215.
(5-16) Ho, S. T.; Chen, K. C.; Chen, H. A.; Lin, H. Y.; Cheng, C. Y.; Lin, H. N. Chem. Mater. 2007, 19, 4083.
(5-17) The density ratio of EMD□Si/r□SiRs estimated by the pixel of EMD□Si and r□SiRs top view images is approximately 1.67. (Figure 5.9 presents the detail of the estimation.).
(5-18) Eklund, P. C.; Holden, J. M.; Jishi, R. A. Carbon 1995, 33, 959.
(5-19) Lee, Y. T.; Park, J.; Choi, Y. S.; Ryu, H.; Lee, H. J. J. Phys. Chem. B 2002, 106, 7614.
(5-20) Fowler, R. H.; Nordheim, L. Proc. R. Soc. London, Ser. A 1928, 119, 173.
(5-21) Shen, G. Z.; Bando, Y.; Liu, B. D.; Golberg, D.; Lee, C. J. Adv. Funct. Mater. 2006, 16, 410.
(5-22) Dev, A.; Kar, S.; Chakrabarti, S.; Chaudhuri, S. Nanotechnology 2006, 17, 1533.
(5-23) Zhang, Z.; Yuan, H.; Zhou, J.; Liu, D.; Luo, S.; Miao, Y.; Gao, Y.; Wang, J.; Liu, L.; Song, L.; Xiang, Y.; Zhao, X.; Zhou, W.; Xie, S. J. Phys. Chem. B 2006, 110, 8566.
(5-24) Zhu, Y. W.; Zhang, H. Z.; Sun, X. C.; Feng, S. Q.; Xu, J.; Zhao, Q.; Xiang, B.; Wang, R. M.; Yu, D. P. Appl. Phys. Lett. 2003, 83, 144.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *