帳號:guest(3.147.79.45)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳景揚
作者(外文):Wu, Chin-Yang
論文名稱(中文):應用於微流體晶片之可撓性薄膜致動器
論文名稱(外文):A PDMS thin membrane actuator for micro-fluidics application
指導教授(中文):劉承賢
指導教授(外文):Liu, Cheng-Hsien
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:9533528
出版年(民國):98
畢業學年度:97
語文別:中文
論文頁數:50
中文關鍵詞:微機電微流體薄膜形變致動器生物細胞團
外文關鍵詞:MEMSmicrofluidicsmembrane-deformationactuatorspheroid
相關次數:
  • 推薦推薦:0
  • 點閱點閱:169
  • 評分評分:*****
  • 下載下載:3
  • 收藏收藏:0
在實驗室晶片的發展上,細胞的操控是一個重要的議題,如何對細胞進行準確地引導、定位悠關生物實驗的成敗。而使用的技術更是關鍵,不良的技術容易導致細胞受損而使得其原本具有的功能喪失,甚至死亡。目前在已有的技術中,常被應用的是微流體電動力學(electrodynamics)中的介電泳、電滲流、光鑷夾(Optical Tweezers)、磁力操控、微型鑷夾…等並搭配微流道的設計與微流道元件的使用,如微幫浦、微型閥…等來達成目標。然而,這些操控技術各自存在著一些限制與缺點,例如所使用的溶液易造成細胞的傷害或過多的外界能量與接觸而造成細胞的缺損。
在參考了C.J.Kim教授團隊的微型籠設計與我們實驗室先前所發展的仿龍蝦觸鬚式的致動器的設計後,加入以薄膜形變使其上結構物能產生側向致動的想法,我們希望能發展一種能應用在各式操作流體,突破上述微流體電動力學的限制,以期能在真實的細胞培養液、血液等環境操控細胞。致動的動力來源來自針筒式幫浦,利用其穩定的操作與控制,能使我們的薄膜致動器具大位移,大出力優點。
本論文的研究中,完成了以簡易的模型預測可行性、以模擬軟體ANSYS對薄膜受壓力形變的模擬、實驗用晶片的設計、晶片製作的開發、晶片可靠度的測試、致動器特性的量測,與一個在微流道內對生物細胞團進行捕捉與釋放的實驗。
In the development of the lab chip, cell manipulation is always an important issue. How to guide or position cell accurately would determine whether the experiment result is good or not. Besides, the technique chosen is almost critical. The inappropriate technique would damage the cells easily, and result in either degradation of cell function, or even cell death. In the techniques developed nowadays, involved with microfluidic channel and microfluidic components, researchers often adopt electrodynamics method, either dielectrophoresis or electroosmosis, optical tweezers, magnetic manipulation, microgrippers to achieve the goal of cell manipulation. However, these techniques have inherent drawbacks. For example, the buffer needed in dieletrophoresis and electroosmosis is usually not suitable for cell viability. Also the power of optical tweezers might result in some damage on cell.
Based on the idea of microcage and the design of Lobster-sniffing inspired biomimic actuator developed by our lab, we introduce the idea of putting a small structure on a PDMS thin membrane with some offset to approach similar functions. While the PDMS thin membrane is actuated by the syringe pump, the small structure could provide a lateral actuation. Compared with the microfluidic electrodynamics, such an actuation method would have no constraint on the working fluid. The experiments show that it could function well in the cell culture solution, and even blood fluid. Also, benefited from the syringe pumps, such an actuation would provide large actuation rage and large force in the microchannel.
At this stage, an easy calculation for membrane deformation model, ANSYS simulation for membrane deformation, device design, chip development, and the measurement for the characteristics of the chip have been finished. Also, an experiment for the trap and release of spheroids in culture medium has been demonstrated preliminarily, showing the practice of our PDMS membrane actuator.
1 引言 - 1 -
1.1 背景與動機 - 1 -
1.2 文獻回顧 - 2 -
1.2.1 電動力學操控 - 2 -
1.2.2 機械可動結構操控 - 5 -
1.2.3 光學操控技術 - 6 -
1.2.4 仿生龍蝦觸鬚 - 6 -
1.2.5 蠕動式PDMS微幫浦 - 7 -
2 元件設計 - 8 -
2.1 元件基本原理 - 8 -
2.1.1 致動器原理 - 8 -
2.1.2 致動器簡易分析 - 9 -
2.1.3 實驗用晶片設計 - 10 -
2.2 簡易理論模型 - 11 -
2.2.1 薄膜形變模型化 - 11 -
2.2.2 求解簡易模型的形變曲線 - 13 -
2.2.3 簡易模型的討論 - 16 -
2.3 ANSYS數值模擬 - 18 -
3 晶片製程 - 22 -
3.1 製作流程 - 22 -
3.2 製程成果 - 24 -
3.3 製作過程的討論 - 26 -
4 晶片測試與實驗 - 28 -
4.1 實驗架設 - 28 -
4.2 晶片可靠度測試 - 29 -
4.2.1 晶片密封測試 - 29 -
4.2.2 薄膜連續致動 - 30 -
4.3 晶片特性量測 - 32 -
4.3.1 量取薄膜形變曲線 - 32 -
4.3.2 決定結構物與流道的偏移量 - 37 -
4.4 細胞球狀體的抓取 - 40 -
5 結語 - 49 -
5.1 總結 - 49 -
5.2 未來工作 - 49 -
[1] Long-Sheng Fan, Yu-Chong Tai, and Richard S. Muller, “IC-Processed Electrostatic Micro-motors,” Electron Devices Meeting, IEDM '88. Technical Digest.
[2] Helene Andersson, Albert van den Berg, “Microfluidic devices for cellomics: a review” Sensors and Actuators B 92, 315–325 (2003).
[3] C. Chang, C.-F. Chiang, C.-H. Liu,C.-H Liu, “A Lobster-Sniffing-Inspired Method for Micro-Objects Manipulation Using Electrostatic Micro-Actuators,”Journal of Micromechnanics and Microengineering, 15 812-21 (2005).
[4] Joel Voldman, Martha L. Gray, Mehmet Toner, and Martin A. Schmidt, “A Microfabrication-Based Dynamic Array cytometer,” Anal. Chem., 74 3984-3990 (2002)
[5] A. Ramos, A. Gonzalez, A. Castellanos, N. G. Green, and H. Morgan,Phys, “Pumping of liquids with ac voltages applied to asymmetric pairs of microelectrodes,” Rev. E 67, 056302 (2003).
[6] Hsin-Yu Wu and Cheng-Hsien Liu, “An electrokinetic micromixer for micro-fluidic bio-chip application,” Master Thesis, Department of PME, NTHU, 2003.
[7] C.-J. Kim, A. P. Pisano, R. S. Muller, “Polysilicon Microgripper,” Technical Digest, IEEE Solid-State Sensor and Actuator Workshop, pp.48-51, Hilton Head, SC, USA, June 4-7, 1990.
[8] C.-J Kim, A. P. Pisano, R. S. Muller, “Silicon-Processed Overhanging Microgripper,” Journal of Microelectromechanical Systems, 1, 31-6 (1992).
[9] Jerry Ok, Milton Chu, and C.-J Kim, “Pneumatically Driven Microcage For Micro-Objects in Biological Liquid,” Micro Electro Mechanical Systems, MEMS '99. Twelfth IEEE International Conference
[10] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and Steven Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Optics Letters Vol. 11, No. 5
[11] Cheng-Hsiang Liu, Chia-Fang Chiang, Chieh Chang, Cheng-Hsien Liu, “A lobster-sniffing inspired actuator for manipulation of micro-objects via controlling local fluid,” Sensors and Actuators A 130–131 545–552 (2006).
[12] http://www.saddleback.edu/faculty/janderson/lobster.jpg
[13] Ok Chan Jeong, Sin Wook Park, Sang Sik Yang, James Jungho Pak, “Fabrication of a peristaltic PDMS micropump,” Sensors and Actuators A, 123-124 453–458 (2005).
[14] Ok Chan Jeong, Satoshi Konishi, “Fabrication and drive test of pneumatic PDMS micro pump,” Sensors and Actuators A, 135 849–856 (2007).
[15] Mechnaics of Materials James M. Gere FIFTH EDITION SECTION 9.2
[16] Mechnaics of Materials James M. Gere FIFTH EDITION SECTION 5.2-5.5
[17] F M Sasoglu, A J Bohl and B E Layton, ”Design and microfabrication of a high-aspect-ratio PDMS microbeam array for parallel nanonewton force measurement and protein printing,” Journal of Micromechanics and Microengineering 17 623–632 (2007).
[18] D. Fuard, T. Tzvetkova-Chevolleau, S. Decossas, P. Tracqui, P. Schiavone, “Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility,” Microelectronic Engineering 85 1289–1293 (2008).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *