帳號:guest(18.221.187.207)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):孫志銘
作者(外文):Sun, Chih-Mimg
論文名稱(中文):CMOS-MEMS 雙面後製程平台之開發及其於微感測器之整合與應用
論文名稱(外文):Implementation and Development Double-side CMOS-MEMS Platform for Sensors Integration
指導教授(中文):方維倫
指導教授(外文):Fang, Weileun
學位類別:博士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:9535812
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:147
中文關鍵詞:微機電技術微感測器整合三軸加速度計電容式壓力計
相關次數:
  • 推薦推薦:0
  • 點閱點閱:119
  • 評分評分:*****
  • 下載下載:34
  • 收藏收藏:0
CMOS-MEMS使用標準化的半導體製程技術來製作微機電元件的微加工技術,能輕易地與感測、控制電路整合在同一晶片上,成為一個完整的微機電系統。目前,CMOS-MEMS後製程多半有其獨特性,造成單一後製程技術往往只能用來設計同一類型的元件,局限了在晶片上製造多種元件與達成系統整合的機會。因此本文將開發一CMOS-MEMS後製程平台,以實現整合不同形態的感測器於單一晶片上。
為了驗證此整合平台的可行性,本論文同時設計多種不同型態的感測元件,其中包含了三軸加速度計、電容式壓力計、和熱電阻白金溫度等,單一後製程流程即可整合不同型態的感測器於單一晶片上。元件製作採用台積電(TSMC)的CMOS 0.35□m 2P4M標準製程來製作CMOS晶片,然後搭配新型雙面後製程平台完成。除此之外,本文同時探討各個感測器的設計原理;(1)多軸加速度計的設計與整合,從三軸個別獨立設計之多質量塊加速度計,慢慢演化至單質量塊三軸慣性感測器,(2)電容式壓力計設計,(3)熱電阻式溫度計以及(4)多功能感測晶片整合於單晶片中。整體而言,本論文藉由了解最基本的元件設計、製作流程、以及量測元件個別的特性,來分析與驗證此製程的可行性,期望能提供一個良好的CMOS-MEMS後製程平台用於感測器之整合與應用。
目 錄
圖 目 錄
表 目 錄
英文摘要
中文摘要
第一章 前言
1-1研究動
1-2文獻回
1-2.1CMOS-MEMS 之製程分類
1-2.2微機電加速度計
1-2.3壓力感測計
1-2.4感測器製程整合與應用
1-3研究目標
第二章 CMOS-MEMS 雙面後製程平台
2-1CMOS-MEMS後製程流程
2-2後製程平台概念
第三章 電容式加速度計
3-1電容式加速度計感測原理
3-2加速度計之規格說明
3-3同平面加速度計
3-3.1同平面加速度計結構設計
3-3.2中空式加速度計訊號分析
3-3.3同平面加速度計量測結果
3-4出平面加速度計
3-4.1出平面加速度計結構設計
3-4.2出平面加速度計量測結果
第四章 三軸加速度計
4-1三軸加速度計
4-2三軸加速度計結構設計
4-2.1出平面加速度感測結構(Z-sensing unit)
4-2.2平面加速度感測結構(X-/Y-sensing unit)
4-2.3三軸加速度計性能分析
4-3多軸加速度計訊號耦合分析
4-3.1平面感測結構(X-/Y-)訊號耦合分析
4-3.2出平面感測結構(Z-)訊號耦合分析
4-3.3旋轉角加速度訊號耦合分析
4-4三軸加速度計量測結果
4-5三軸加速度最佳化分析
第五章 多功能感測器之整合
5-1電容式壓力感測器陣列
5-1.1電容式壓力計結構設計
5-1.2電容式壓力計陣列量測結果
5-2電熱阻式溫度感測器
5-2.1白金電熱阻式溫度感測器
5-2.2溫度感測器製程與量測結果
5-3多功能感測器之整合
5-3.1CMOS-MEMS多功能晶片整合與應用
5-3.2改良型整合製程平台
5-3.3多功能感測晶片量測與分析
第六章 結論與未來工作
參考文獻
[1] HP Company, http://www.hp.com
[2] Texas Instruments, http://www.ti.com
[3] Bosch Inc., http://www.bosch.com
[4] Freescale Semiconductor, Inc., http://www.freescale.com
[5] Analog Devices, Inc., http://www.analog.com
[6] MEMSIC Inc., http://www.memsic.com
[7] VTI Technologies, http://www.vti.fi/en
[8] Kionix Inc., http://www.kionix.com/
[9] Hitachi Metals America, Ltd., http://www.hitachimetals.com
[10] M. Parameswaran, R. Chung, M. Gaitan, R. B. Johnson, and M. Syrzycki, "Commercial CMOS Fabricated Integrated. Dynamic Thermal Scene Simulator," IEDM’91, Washington, DC, Dec. 8-11, 1991, pp.754-756.
[11] F. Rudolf, A. Jornod, J. Bergqvist, and H. Leuthold, “Precision accelerometers with μg resolution,” Sensors and Actuators A, 21-23, pp 297-302, 1990.
[12] E. Peeters, S. Vergote, B. Puers, and W. Sansen, “A highly symmetrical capacitive micro-accelerometer with single degree of freedom response,” Transducers’91, San Francisco, CA, June.24-28, 1991, pp. 97 -100.
[13] InvenSensi Inc., http://www.invensense.com
[14] H. Lakdawala and G. Fedder, “CMOS Micromachined Infrared Imager Pixel,” Transducers'01, Munich, Germany, June.10-14, 2001, pp. 1548-155.
[15] SiTime Corporation, http://www.sitime.com/
[16] Infineon Technologies AG, http://www.infineon.com/
[17] J.C. Lee, “Hacking the Nintendo Wii Remote,” IEEE Pervasive Computing, 7, pp. 39-45, 2008.
[18] R. Bashir, and A.E. Kabir, “Method of making surface micro-machined accelerometer using silicon-on-insulator technology”U.S.A patent No.5747353
[19] G.K. Fedder, S. Santhanam, M.L. Reed, S.C. Eagle, D.F. Guillou, M.S-C.Lu, and L.R. Carley, “Laminated high-aspect-ratio microstructure in a conventional CMOS process” Sensor and actuator A,57.pp.103-110,1996.
[20] Apple Inc., http://www.apple.com/ipodtouch/
[21] K. H. L. Chau, S. R. Lewis, Y. Zhao, R. T. Howe, S. F. Bart, and R. G. Marcheselli, “An integrated force-balanced capacitive accelerometer for low g application,”Sensors and Actuators A, 54, pp 472-476, 1996.
[22] T. Mineta, S. Kobayashi, Y. Watanabe, S. Kanauchi, I. Nakagawa, E. Wuganuma, and M. Esashi, “Three-axis capacitive accelerometer with uniform axial sensitivities,” Journal of Micromechanics and Microengineering, 6, pp 431-435, 1996.
[23] L. C. Spangler, and C. J. Kemp, “ISAAC: integrate silicon automotive accelerometer,” Sensors and Actuators A, 54, pp 523-529, 1996.
[24] G. Li, and A. A. Tseng, “Low Stress Packaging of a Micromachined Accelerometer,” IEEE Transactions on Electronics Packaging Manufacturing, 24, N0. 1, pp 18-25, 2001.
[25] E. Belloy, A. Sayah, and M. A. M. Gijs, “Micromachining of glass inertial sensors,” Journal of Microelectromechanical System, 11, No.1, pp 85-90, 2002.
[26] W. Weigold, K. Najafi, and S. W. Pang, “Design and fabrication of submicrometer, single crystal Si accelerometer,” Journal of Microelectromechanical Systems, 10, No. 4, pp 518-614, 2001.
[27] H. Seidel, U. Fritsch, R. Gottinger, J. Schalk, J. Walter, and K. Ambaum, “A Piezoresistive Silicon Accelerometer With Monolithically Integrated CMOS-circuitry,” The 8th International Conference on Solid-State Sensors and Actuators, 1995 and Eurosensors IX, Transducers '95, Stockholm, Sweden, June 25- 29,1995, pp. 597-600.
[28] L. M. Roylance and J. B. Angell, “A batch-fabricated silicon accelerometer,” IEEE Transactions on Electronic Devices,26, pp.1911-1917, 1979.
[29] A. Partridge, J. K. Reynolds, B. W. Chui, E. M. Chow, A. M. Fitzgerald, L.Zhang, N.I. Maluf, and T. W. Kenny, “A high-performance planar piezoresistive accelerometer,” Journal of Microelectromechanical Systems, 9, pp 58-66, 2000.
[30] D. L. DeVoe, and A. P. Pisano, ”A fully surface-micromachined piezoelectric accelerometer,” International Conference on Solid State Sensors and Actuators, Transducers '97, Chicago, Illinois , June. 16-19, 1997, pp. 1205-1208.
[31] B. Puers and W. Sansen, “A new uniaxial accelerometer in silicon based on the piezojunction effect,” IEEE Transactions on Electronic Devices, 35, pp.764-770, 1988.
[32] P. Scheeper, J. O. Gullov, and M. Kofoed, “A piezoelectric triaxial accelerometer,” Journal of Micromechanics and Microengineering, 6, pp 131-133, 1996.
[33] U. A Dauderstadt, P. M. Sarro, and S. Middelhoek, ”Temperature dependence and drift of a thermal accelerometer,” International Conference on Solid State Sensors and Actuators, Transducers '97, Chicago, Illinois , June. 16-19, 1997, pp. 1209-1212.
[34] C. H. Liu, and T. W. Kenny, ”A high-precision, wide-bandwidth micromachined tunneling accelerometer,” Journal of Microelectromechanical System, 10, Issue: 3, pp. 425 –433, 2001.
[35] C. H. Liu, A. M. Barzilai, J. K. Reynolds, A. Partridge, T. W. Kenny, J. D. Grade, and H. K. Rockstad, “Characterization of a high-sensitivity micromachined tunneling accelerometer with micro-g resolution,” Journal of Microelectromechanical Systems, 7, pp 235-244, 1998.
[36] M. Aikele, K. Bauer, W. Ficker, F. Neubauer, U. Prechtel, J. Schalk, and H. Seidel, “Resonant accelerometer with self-test,” Sensors and Actuators A, 92 , pp. 161-167, 2001.
[37] H. Luo, G. K. Fedder, and L. R. Carley, “A 1 mG lateral CMOS-MEMS accelerometer,” IEEE MEMS’00, Miyazaki, Japan, Jan. 23-27, 2000, pp. 502-507.
[38] H. Xie, and G. K. Fedder, “A CMOS z-axis capacitive accelerometer with comb-finger sensing,” IEEE MEMS’00, Miyazaki, Japan, Jan. 23-27, 2000, pp. 496-501.
[39] G. Zhang, H. Xie, L. E. de Rosset, and G. K. Fedder, “A lateral capacitive CMOS accelerometer with structural curl compensation,” IEEE MEMS’99, Orlando, FL, Jan. 17-21, 1999, pp. 606-611.
[40] J. Wu, G. K. Fedder, and L.R. Carley, “A low-noise low-offset chopper-stabilized capacitive-readout amplifier for CMOS-MEMS accelerometers”, Digest of IEEE International Solid-State Circuits Conference, Volume: 1, 2002, pp. 428-478.
[41] J.M. Tsai, and G.K. Fedder, “Mechanical Noise-Limited CMOS-MEMS Accelerometers,” IEEE MEMS’05, Miami Beach, FL, Jan.30-Feb. 3, 2005, pp. 630-633.
[42] C. Hierold, A. Hildebrandt, U. Naher, T. Scheiter, B. Mensching, M. Steger, and R. Tielert, “A pure CMOS surface micromachined integrated accelerometer,” IEEE MEMS’96, San Diego, CA, Jan. 26-29, 1996, pp. 174-179.
[43] I. Y. Park, C. W. Lee, H. S. Jang, Y. S. Oh, and B. J. Ha, “Capacitive sensing type surface micromachined silicon accelerometer with a stiffness tuning capability,” IEEE MEMS’98, Heidelberg. Germany, Jan. 26-29, 1998, pp. 637-642.
[44] E. J. J. Kruglick, B. A. Warneke, and K. S. J. Pister, “CMOS 3-axis accelerometers with integrated amplifier,” IEEE MEMS’98, Heidelberg. Germany, Jan. 26-29, 1998, pp. 631-636.
[45] Y. Yee, M. Park, S. H. Lee, S. Lee, K. Chun,, Y. K. Kim, and D. I. D. Cho, “MAMOS-a novel displacement sensitive transducer for fully digital integrated ac accelerometer,” IEEE MEMS’98, Heidelberg. Germany, Jan. 26-29, 1998, pp. 345 –350.
[46] H. Takao, H. Fukumoto, and M. Ishida, “Fabrication of a three-axis accelerometer integrated with commercial 0.8 /spl mu/m-CMOS circuits,” IEEE MEMS’00, Miyazaki, Japan, Jan. 23-27, 2000, pp. 781-786.
[47] H. Xie, L. Erdmann, X. Zhu, K. J. Gabriel, and G. K. Fedder, ” Post-CMOS processing for high-aspect-ratio integrated silicon microstructures,” Journal of Microelectromechanical Systems, 11 Issue: 2, pp. 93-101, 2002.
[48] R. Bogue, “ MEMS sensors: past, present and future,” Sensor Review, 27 Issue: 1, pp.7 – 13 ,2007.
[49] A.C.M.Gieles, ” Submmiature Silicon Pressure Transducers”, Digest IEEE ISSCC , Philadelphia , PA , USA.108(1969).
[50] S. K. Clark, and K. D. Wise, ” Pressure sensitivity in anisotropically etched thin-diaphragm pressure sensors,” IEEE Transactions on Electron Devices, 26 ,pp.1887-1896,1979.
[51] W. P. Eaton, and J. H. Smith, ” Micromachined pressure sensor; review and recent developments,” Smart Master, Struct. 6, pp.530-539,1997.
[52] H.-H. Wang, C.-W. Hsu, W.-H. Liao, L.-J. Yang, and C.-L. Dai, ” Micro Pressure Sensors of 50□m Size Fabricated By A Standard CMOS Foundry and A Novel Post Process,” IEEE MEMS 06, Turky, Istanbul, Jan. 22-26 ,2006, pp578~581.
[53] D. A. Gee, K. E Peterson, and G. T. A. Lovacs, “ MEMS in the Medical Industry,” Sensor ExpoProceeding, Spring, 161 ,1996.
[54] L. Parameswaran, C. Hsu, and M.A. Schmidt, “A merged MEMS-CMOS process using silicon wafer bonding,” IEDM 1995, Washington DC, USA, Dec.10-13, 1995, pp. 613-616.
[55] A.D. Dehennis, and K.D. Wise, “A Wireless Microsystem for the Remote Sensing of Pressure, Temperature, and Relative Humidity,” Journal of Microelectromechanical System, 14, No.1, 2005, pp.12-22.
[56] G. K. Fedder, “CMOS-Based sensors.” IEEE Sensors 2005, Orange County, CA, Oct.30-Nov.3, 2005, pp. 125-128.
[57] A. Selvakumar, “A multifunctional silicon micromachining technology for high performance microsensors and microactuators,” Ph.D. dissertation, Univ. of Michigan, Ann Arbor, 1997.
[58] A. Selvakumar, F. Ayazi, and K. Najafi, “A high sensitivity z-axis torsional silicon accelerometer,” in Tech. Dig. IEEE Int. Electron Device Meeting, San Francisco, CA, Dec. 8-11, 1996, pp. 765-768.
[59] O. Paul, and H. Baltes, “ Novel fully CMOS-compatible vaccuum sensor,” Sensors and Actuators A, 46/47, no.1-3, 1995, pp. 143-146.
[60] C. Wang, M.-H. Tsai, C.-M. Sun, and W. Fang, “A Novel CMOS Out-of-Plane Accelerometer with Fully-differential Gap-closing Capacitance Sensing Electrodes,” J. Micromech. Microeng , 17, 2007, pp. 1275-1280.
[61] M.A. Lemkin, M.A. Ortiz, N. Wongkomet, B.E. Boser, and J.H. Smith, “A 3-axis surface micromachined ΣΔ accelerometer,” ISSCC’97, San Francisco, CA, Feb 6-8 1997, pp.202–203.
[62] H. Xie, G.K. Fedder, Z. Pan, and W. Frey, “Design and Fabrication of An Integrated CMOS-MEMS 3-Axis Accelerometer,” MSM’03, San Francisco, CA, Feb 23-27, 2003, pp 292-295
[63] M.-H. Tsai, C.-M. Sun, C. Wang, J. Lu, and W. Fang, “A Monolithic 3D Fully-differential CMOS Accelerometer,” IEEE NEMS 2008, Sanya, China, 6-9 Jan, 2008, pp.1067-1170.
[64] H. Takao, H. Fukumoto, and M. Ishida, “A CMOS Integrated Three-Axis Accelerometer Fabricated With Commercial Submicrometer CMOS Technology and Bulk-Micromachining,” IEEE Transactions on Electron Devices, 48, No.9, pp. 1961-1968, 2001.
[65] H. Qu, D. Fang, and H. Xie, “A Monolithic CMOS-MEMS 3-Axis Accelerometer With a Low-Noise, Low-Power Dual-Chopper Amplifier,” IEEE Sensors J., 8, pp.1511-1518, 2008.
[66] K. Kwon, and S. Park, “A bulk-micromachined three-axis accelerometer using silicon direct bonding technology and polysilicon layer,” Sensors and Actuators A, 66, pp. 250-255, 1998.
[67] Xuan Bao Hao Crop. , http://www.davidlu.net/spinonglass.htm
[68] 顏重光,” 汽車胎壓監視系統的設計方案,”電子工程專輯, March, 2005.
[69] Freescale Semiconductor, “ Tire Pressure Monitoring System Face sheet,” 2009, Rev.11
[70] Freescale semiconductor, “TPMS WHITE PAPER: Freescale Single-Package Tire Pressure Monitoring System (TPMS),” 2007, Rev 0.
[71] S.J. Sherman, “Monolithic Accelerometer” U.S.A Patent No. 5345824S .Analog Devices, Inc. Sep.13, 1994.
[72] L.R. Carley, M.L. Reed, and G.K. Fedder “Microelectromechanical structure and process of making same” U.S.A Patent No. 5717631 .Carnegie Mellon University. Feb.10, 1998.
[73] H. Luo, G. Zhang, L.R. Carley, and G.K Fedder, “A Post-CMOS Micromachined Lateral Accelerometer,” Journal of Microelectromechanical System, 11, 2002, pp.188-195.
[74] H. Lakdawala, and G.K. Fedder, “Temperature stabilization of CMOS capacitive accelerometer,” Journal of Microelectromechanical System, 13, 2004, pp.559-566.
[75] K. Klaus, K. Norbert, K. Holger, and M. Wilfried, “Capacitive pressure sensor with monolithically integrated CMOS readout circuit for high temperature applications,” Sensors and Actuators A, 97-98, 2002, pp. 83-87.
[76] E. Socher, O. Degani, and Y. Nemirovsky, “Optimal design and noise considerations of CMOS compatible IR thermoelectric sensors,” Sensors and Actuators A, 71, 1998, pp. 107-115.
[77] H. Luo, X. Zhu, H. Lakdawala, R. Carley, and G. Fedder, “A copper CMOS-MEMS Z-axis gyroscope,” MEMS '02, Las Vegas, NV, January 20-24, 2002, pp. 631 – 634.
[78] H. Xie, and G. Fedder, “Fabrication, characterization, and analysis of a DRIE CMOS-MEMS gyroscope,” IEEE Sensors Journal, 3, pp. 622-631.
[79] M. Graf, R. Jurischka, D. Barrettino, and A. Hierlemann, “3D nonlinear modeling of microhotplates in CMOS technology for use as metal-oxide-based gas sensors,” J. Micromech. Microeng, 15, 2005, pp. 190-200.
[80] O. Degani, D. Seter, E. Socher, S. Kaldor, and Y. Nemirovsky, “Micromachined accelerometer with modulated integrative differential optical sensing,” Electronics Letters, 34, 1998, pp. 654 – 655
[81] National Sandia Lab, www.sandia.gov.
[82] G.K. Fedder, S. Santhanam, M.L. Reed, S.C. Eagle, D.F. Guillou, M.S-C. Lu, and L.R. Carley, “Laminated High-Aspect-Ratio Microstructures in a Conventional CMOS Process,” Sensors and Actuators A, 57, no.2, 1997, pp. 103-110.
[83] C.-L. Dai, F.-Y. Xiao, Y.-Z. Juang and C-F Chiu, “An approach to fabricating microstructures that incorporate circuits using a post-CMOS process,” J. Micromech. Microeng, 15, no.1, 2005, pp.98-103.
[84] M. Y. Afridi, J. S. Suehle, M. E. Zaghloul, D.W. Berning, A. R. Hefiner, R.E. Cavicchi, S. Semancik, C. B. Montgomery, and C.J. Taylor, “A monolithic CMOS microhotplate-based gas sensor system,”IEEE Sensor Journal, 2, No.6,2002,pp.644-655
[85] J. Neumann, and K. Gabriel, “CMOS-MEMS Membrane for Audio-Frequency Acoustic Actuation,” Sensors and Actuators A, 95, Issue 2-3, 2002, pp. 175-182.
[86] Infineon Technologies, www.infineon.com.
[87] C. Hagleitner, D.Lange, A. Hierlemann, O. Brand, and H. Baltes.“ CMOS Single-Chip Gas Detection System Comprising Capacitive, Calorimetric and Mass-Sensitive Microsensors, ”IEEE Journal of Solid-State Circuits, 37, No.12. 2002, pp.1867-1878.
[88] P. Dong, X. Li, H. Yang, H. Bao, W. Zhou, S. Li, and S. Feng, “High-Performance Monolithic Triaxial Piezoresistive Shock Accelerometers,” Sensors and Actuatirs A, 141, pp. 339-346, 2008.
[89] J. Chae, H. Kulah, and K. Najafi, “A Monolithic Three-Axis Micro-g Micromachined Silicon Capacitive Accelerometer,” Journal of Microelectromechanical System, 14, pp. 235-241, 2005.
[90] Analog Device Inc., “ADXL 335- Small, Low Power, 3-Axis ±3 g Accelerometer,” July, 2009, Rev. A.
[91] M.A. Lemkin, B.E. Boser, D. Auslander, and J.H. Smith, “A 3-Axis Balanced Accelerometer Using a Single Proof-Mass,” Transducer’97, Chicago, IL, 16-19 June, 1997, pp.1185-1188.
[92] C.-M. Sun, C.-W. Wang, and W. Fang, “On the Sensitivity Improvement of CMOS Capacitive Accelerometer,” Sensors and Actuators A, 141, pp 347-352, 2008.
[93] H. Qu, and H. Xie,“ Process development for CMOS-MEMS sensors with robust electrically isolated bulk silicon microstructures,” J. Micromech. Microeng. 16, no. 5, pp. 1153-1161, 2007.
[94] P. J. Gilgunn, and G.K. Fedder,“ Flip-chip Integrated SOI-CMOS-MEMS fabrication technology, ” in Solid-State Sensors, Actuators and Microsystems Workshop Hilton Head Island, South Carolina, June 1-5, 2008, pp. 10-13
[95] S. E. Alper, Y. Temiz, and T.Akin,“ A Compact Angular Rate Sensor System Using a Fully Decoupled Silicon-on-Glass MEMS Gyroscope, ” Journal of Microelectromechanical Systems,17, no. 6, 2008.
[96] A. Wung, R.V. Park, K.J. Rebello and G.K. Fedder, “Tri-axial high-g CMOS-MEMS capacitive accelerometer array”, IEEE MEMS’08, Tuason, AZ, Jan 13-17, 2008, pp. 876 – 879.
[97] M. W. Judy, H. R. Samuels, “Inertial Sensor,” Patent No.: 7363816 B2, Apr. 29, 2008.
[98] A. C. McNeil, G. Li, D. N. Koury, Jr., “Single proof mass, 3axis MEMS Transducer,” Patent No.: 6845670 B2, Aug. 30, 2005.
[99] Y. Watanabe, T. Mitsui, T. Mineta, Y. Matsu, and K. Okada, “SOI micromachined 5-axis motion sensor using resonant electrostatic drive and non-resonant capacitive detection mode,” Sensors and Actuators A, 130-131, pp 116-123, 2006.
[100] 國科會精密儀器發展中心,”微機電系統技術與應用”國科會精密儀器發展中心, 2003.
[101] 胡馨華, “新型<111>單晶矽微加速度計之設計製造與測試,” 清華大學博士論文,2003.
[102] 梁凱智,“CMOS製程整合電熱致動與壓阻感測之元件開發,”清華大學碩士論文,2004.
[103] 王傳蔚, “新型單石化CMOS MEMS 3軸加速計之開發,” 清華大學博士論文,2008.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *