帳號:guest(18.223.237.221)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李名哲
作者(外文):Li,Ming-Che
論文名稱(中文):基於古典同位元檢查矩陣的量子穩定碼之進一步研究
論文名稱(外文):A Further Study on Quantum Stabilizer Codes Based on Classical Parity-Check Matrices
指導教授(中文):呂忠津
指導教授(外文):Lu,Chung-Chin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:9561525
出版年(民國):97
畢業學年度:97
語文別:中文英文
論文頁數:30
中文關鍵詞:量子錯誤更正碼量子穩定碼二次剩餘碼
外文關鍵詞:Quantum error-correcting codesQuantum stabilizer codesQuadratic-residue codes
相關次數:
  • 推薦推薦:0
  • 點閱點閱:171
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
近十年來,因量子電腦建構方法的提出,量子領域的研究開始蓬勃地發展,為了解決量子態會因環境的影響產生相消干(decoherence)的問題,以及在量子通訊上通道的影響,如何更正量子位元的錯誤,是量子錯誤更正碼研究的主要目標。其中量子穩定碼是最為廣泛研究的量子錯誤更正碼,因為量子穩定碼可藉由古典的同位元檢查矩陣來建構,並藉由錯誤徵狀來偵測並修正量子位元錯誤,和古典的線性碼有很多類似的性質。然而,量子穩定碼建構相關的檢查矩陣須滿足交換關係,使得量子穩定碼一直未能有較CSS建構法更簡單的建構方式。

在本篇論文裡,我們針對量子穩定碼的檢查矩陣建構法,提出如何簡單滿足交換關係的建構方式。首先,我們提出使用古典循環碼的建構法,藉由生成矩陣的一些變化,可以簡單地滿足交換關係,但是量子最小碼距,仍未有方法使其達到最大限度。其次,我們研究使用二元二次剩餘碼的特性來建構的兩種量子穩定碼-CSS建構法和量子二元二次剩餘碼,比較兩種建構法下其量子穩定碼的特性,包括適用碼長、最小碼距。藉由量子二元二次剩餘碼的啟發,[[n, 1]]量子穩定碼已被發現可藉由某些指引向量簡單地建構出來,我們針對指引向量,提出一個建構準則和相關的性質。接著我們將該種建構法延伸發展,提出[[n, k]]量子穩定碼的簡單建構方式,並指出該量子穩定碼最小碼距和指引向量之間的關係。但如何使得建構的量子穩定碼可以達到最小碼距的最大限距,則是未來可以思考及研究的方向。
In the study of quantum error-correcting codes, stabilizer codes is perhaps the most
important ones and can be constructed by classical self-orthogonal codes. In this thesis,
our aim is to pursue a further study of the structure of quantum stabilizer codes based
on syndrome assignment by classical parity check matrices. We proposed a construction
by using two cyclic codes. We also found the normalizer of quantum quadratic-residue
codes, which helps nd the minimum distance. Finally, a construction of [[n; k]] quantum
stabilizer codes with k > 1 was proposed.
第一章 簡介
第二章 量子穩定碼的建構
第三章 基於二元二次剩餘碼的量子穩定碼建構
第四章 二元二次剩餘碼啟發的量子穩定碼建構
第五章 結論
附 錄  英文論文本

Contents
1 Introduction 1
2 Construction of Quantum Stabilizer Codes 3
2.1 Stabilizer Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Binary Representation of Stabilizer Groups . . . . . . . . . . . . . . . . . 4
2.3 Construction of Quantum Stabilizer Codes . . . . . . . . . . . . . . . . . 6
2.3.1 Error Syndromes . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.2 Syndrome Assignment by a Binary Parity-Check Matrix . . . . . 7
2.3.3 Some Construction of Check Matrices . . . . . . . . . . . . . . . . 8
3 Construction of Quantum Stabilizer Codes by Binary Quadratic-Residue
Codes 11
3.1 Quantum Circulant Codes . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Quadratic-Residue Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 CSS Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Quantum Quadratic-Residue Codes . . . . . . . . . . . . . . . . . . . . . 14
3.5 Comparison About Quantum Minimum Distance . . . . . . . . . . . . . 16
4 Construction of Quantum Codes Inspired by Binary Quadratic-Residue
Codes 18
4.1 A Construction for Quantum Codes with k = 1 . . . . . . . . . . . . . . 18
4.2 A Construction for Quantum Codes with k = 2 . . . . . . . . . . . . . . 21
4.3 A General Construction for Quantum Codes . . . . . . . . . . . . . . . . 25
5 Conclusion 28
[1] W. K. Wootters and W. H. Zurek, "A single quantum cannot be cloned," Nature,
vol. 299, no. 5886, pp. 802-803, 1982.
[2] P. W. Shor, "Scheme for reducing decoherence in quantum computer memory,"
Phys. Rev. A, vol. 52, p. 2493, 1995.
[3] A. M. Steane, "Error correcting codes in quantum theory," Phys. Rev. Lett., vol. 77,
no. 5, pp. 793-797, 1996.
[4] A. R. Calderbank and P. W. Shor, "Good quantum error-correcting codes exist,"
Phys. Rev. A, vol. 54, no. 2, pp. 1098-1106, 1996.
[5] A. M. Steane, "Simple quantum error correcting codes," Phys. Rev. Lett., vol. 77,
pp. 793-797, 1996.
[6] A. Steane, "Multiple particle interference and quantum error correction," Proc.
Roy. Soc. Lond. A, vol. 452, pp. 2551-2576, 1996.
[7] A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane, "Quantum error
correction and orthogonal geometry," Phys. Rev. Lett., vol. 78, no. 3, pp. 405-408,
1997.
[8] D. Gottesman, "Class of quantum error-correcting codes saturating the quantum
hamming bound," Phys. Rev. A, vol. 54, no. 3, pp. 1862-1868, 1996.
[9] D. Gottesman, "Stabilizer codes and quantum error correction," Ph.D. dissertation, Califor-
nia Institute of Technology, Pasadena, CA, 1997.
[10] C. H. Bennett, D. DiVincenzo, J. A. Smolin, and W. K. Wootters, "Mixed state
entanglement an quantum error correction," Phys. Rev. A, vol. 54, pp. 3824-3851,
1996.
[11] A. Ekert and C. Macchiavello, "Error correction in quantum communication," Phys.
Rev. Lett., vol. 77, pp. 2585-2588, 1996.
[12] E. Knill and R. La
amme, "Theory of quantum error-correcting codes," Phys. Rev.
A, vol. 55, pp. 900-911, 1997.
[13] C.-Y. Lai and C.-C. Lu, "A construction of quantum stabilizer codes based on
syndrome assignment by classical parity-check matrices," arXiv:0712.0103v1[quant-
ph].
[14] A. R. Calderbank, E. Rains, P. W. Shor, and N. J. A. Sloane, "Quantum error
correction via codes over GF(4)," IEEE Trans. Inform. Theory, vol. 44, no. 4, pp.
1369-1387, 1998.
[15] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes.
Amdterdam, The Netherlands: North-Holland, 1977.
[16] A. M. Steane, "Enlargement of calderbank shor steane quantum codes," IEEE
Trans. Inform. Theory, vol. 45, no. 7, pp. 2492-2495, 1999.
[17] T.-K. Truong, Y. Chang, and C.-D. Lee, "The weight distributions of some binary
quadratic residue codes," IEEE Trans. Inform. Theory, vol. 51, no. 5, pp. 1776-
1782, 2005.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *