帳號:guest(3.144.237.77)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳柏宇
作者(外文):Chen, Po-Yu
論文名稱(中文):高介電常數結晶態鋯基介電層於金屬—絕緣體—金屬電容之研究
論文名稱(外文):Investigation of high-permittivity crystalline Zr-based dielectrics on metal-insulator-metal capacitor
指導教授(中文):巫勇賢
指導教授(外文):Wu, Yung-Hsien
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:9611516
出版年(民國):98
畢業學年度:97
語文別:中文
論文頁數:72
中文關鍵詞:高介電常數電容結晶
外文關鍵詞:high kcapacitorZrcrystalline
相關次數:
  • 推薦推薦:0
  • 點閱點閱:1265
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
金屬—絕緣體—金屬(metal-insulator-metal, MIM)電容在不同電壓操作範圍下均有穩定的電容值,故被廣泛運用在數位與射頻電路上。近年來,高介電常數材料被不斷的研究使MIM電容具有更大的電容密度及較小的漏電流密度。電容密度提昇能有效微縮晶片尺寸以及降低類比與射頻電路成本。在本論文我們分兩部分實驗討論不同介電層結構與添加其他元素進介電層氧化物討論其電容密度與漏電流密度等電學特性表現。
在實驗第一部份中我們利用原子層沈積技術(atomic layer deposition, ALD)成長四方晶(tetragonal)系的結晶相二氧化鋯(ZrO2),並搭配非結晶相氧化鋁(Al2O3) 作成ZrO2/Al2O3/ZrO2堆疊式(ZAZ)的MIM電容。使用結晶相ZrO2的MIM電容,電容密度高達21.54 fF/μm2,這是因為結晶使ZrO2的介電常數提升到38.7。同時,因為非結晶相的Al2O3具有大的能障抵擋結晶ZrO2帶來的大漏電流,ZAZ MIM電容的漏電流密度在+2 V時大約為2.11×10−6 A/cm2。此MIM電容的二次電壓係數(quadratic voltage coefficient of capacitance, α)為2443 ppm/V2,此值小於其它氧化物做介電層的MIM電容在相同電容密度時的二次電壓係數,這對MIM電容應用在數位與射頻電路時將更為有利。
此外,我們討論此種ZAZ堆疊式電容的漏電機制。Schottky emission為此結構主要的漏電流傳導方式。因此,為了將來能進一步降低漏電流密度與二次電壓係數,高功函數的金屬電極能提供更大的Schottky barrier作為未來研究整合的方向。
在實驗第二部份我們使用共濺鍍沈積ZrTiO4,我們藉由結晶使ZrTiO4介電層具有超高電容密度45 fF/μm2,但結晶也造成漏電流密度提高,使其不適合用作電路設計的元件。我們利用降低製程溫度使其結晶性下降得到較好的MIM電容特性表現。在以鎳(Ni)作上電極,下電極氮化鉭(TaN)作180秒氨電漿處理時,我們得到非晶相介電層的MIM電容其電容密度、漏電流密度、與α分別為31 fF/μm2、2.47×10-7 A/cm2、1890 ppm/V2。這個優異的表現使非晶相ZrTiO4非常適用在各種電路設計的元件上。
在這部份實驗中我們也同樣探討其漏電機制,並發現在低電場時除了Schottky emission外還有缺陷輔助穿遂機制(trap assisted tunneling)會影響漏電流密度。此一由缺陷引起的漏電流密度可藉由改變量測的電壓間隔(voltage step)與時間延遲(time delay)來降低其影響。
摘要.............................................................................................................................................I
誌謝...........................................................................................................................................III
總目錄......................................................................................................................................IV
表目錄......................................................................................................................................VI
圖目錄.....................................................................................................................................VII

第一章 緒論...............................................................................................................................1
1-1 背景介紹…………………………………………………………………….…1
1-2 MIM電容的結構與特性....................................................................................2
1-3 MIM電容的應用................................................................................................3
1-4 研究動機.............................................................................................................4
1-5 論文結構……………………………………………………………………….5
第二章 實驗流程…………………………………………………………………………….11
2-1 實驗規畫..........................................................................................................11
2-2 Al/ZAZ/TiN電容製程......................................................................................11
2-3 Metal/ZrTiO4/TaN電容製程............................................................................12
2-4 電容電性分析..................................................................................................13
第三章 以ZrO2/Al2O3/ZrO2堆疊式介電層作高密度MIM電容........................................18
3-1 介電層結晶性探討...........................................................................................18
3-2 堆疊式電容電性表現.......................................................................................19
第四章 以ZrTiO4作MIM電容介電層達到高電容密度與低漏電流密度...........................29
4-1 為何共濺鍍Zr與Ti形成ZrTiO4作MIM電容的介電層.............................29
4-2 ZrTiO4介電層物理特性分析...........................................................................30
4-3 結晶對Al/ZrTiO4/TaN電容的電性影響.........................................................31
4-4 使用高功函數上電極Ni改善非結晶相ZrTiO4 MIM電容特性......................32
4-5 對下電極作氨電漿處理對Ni/ZrTiO4/TaN MIM電容特性影響.....................38
第五章 結論………………………………………………………………………………….61
參考文獻……………………………………………………………………………………...63

表目錄
第一章
表1-1各種高介電常數材料的基本電性..........................................................................6
表1-2 2007 ITRS溝槽式動態隨機存取記憶體設計藍圖................................................7
表1-3 2007 ITRS堆疊式動態隨機存取記憶體設計藍圖................................................8
表1-4 2007 ITRS射頻電路上被動元件技術設計藍圖....................................................9

圖目錄
第一章
圖1各種不同堆疊結構的MIM電容(a)薄片式..............................................................10
圖1各種不同堆疊結構的MIM電容(b)三明治式..........................................................10
圖1各種不同堆疊結構的MIM電容(c)堆疊式..............................................................10
第二章
圖2-1 Al/ZAZ/TiN電容實驗流程與步驟.......................................................................14
圖2-2 Metal/ZrTiO4/TaN實驗流程與步驟......................................................................17
第三章
圖3-1 ZrO2的溫度壓力相圖............................................................................................22
圖3-2不同ZrO2的結晶結構圖.........................................................................................23
圖3-3試片ZAZ122的X光繞射光譜圖。圖中插入的小圖為四方晶ZrO2在不同氨電漿處理的濕蝕刻速率........................................................................................24
圖3-4不同厚度MIM電容在量測頻率500 kHz下電容密度對電壓特性圖................24
圖3-5 MIM電容(Al/ZrO2/Al2O3/ZrO2/TiN)的能帶圖....................................................25
圖3-6為MIM電容(ZAZ122)在25 ℃下所量測到漏電流密度對量測電壓的特性圖,圖中插入的小圖為ln(J)-E1/2關係圖....................................................................26
圖3-7 MIM電容在25 ℃下△C/C0對外加偏壓的關係圖(a)不同厚度的MIM電容(b)改變量測頻率△C/C0對外加偏壓的關係............................................................27
圖3-8各種介電層二次電容係數對電容密度特性圖....................................................28
第四章
圖4-1各種高介電常數材料相對矽的能帶圖................................................................41
圖4-2各種介電層氧化物其能隙寬與介電質的關係圖................................................41
圖4-3結晶與非結晶相ZrTiO4 X光繞射分析圖............................................................42
圖4-4不同結晶相ZrTiO4 XPS分析(a)Zr 3d殼電子束縛能圖......................................43
圖4-4不同結晶相ZrTiO4 XPS分析(b)Ti 2p殼電子束縛能圖......................................43
圖4-4不同結晶相ZrTiO4 XPS分析(c)O 1s殼電子束縛能圖.......................................44
圖4-5不同結晶相ZrTiO4其電容密度對電壓特性圖....................................................45
圖4-6不同結晶相ZrTiO4漏電流密度對電壓特性........................................................45圖4-7不同結晶相ZrTiO4 △C/C0對電壓特性..............................................................46
圖4-8不同上電極MIM電容密度與電壓的關係圖.......................................................46
圖4-9不同上電極MIM電容△C/C0對電壓的關係圖...................................................47圖4-10不同上電極MIM電容在25 ℃漏電流密度對電壓的關係圖..........................48
圖4-11不同上電極MIM電容在125 ℃漏電流密度對電壓的關係圖.........................48
圖4-12對不同上金屬上作Schottky emission逼近的趨勢圖(a)125 ℃........................49
圖4-12對不同上金屬上作Schottky emission逼近的趨勢圖(b)25 ℃.........................49
圖4-13三種漏電機制對漏電流密度的影響程度(a)27 ℃量測....................................50
圖4-13三種漏電機制對漏電流密度的影響程度(b)127 ℃量測..................................50
圖4-14 Keithley 4200半導體參數分析儀量測模型.......................................................51
圖4-15 MIM電容在不同掃描電壓比下漏電流密度與電壓關係圖(a)Al電極............52
圖4-15 MIM電容在不同掃描電壓比下漏電流密度與電壓關係圖(b)Ni電極............52
圖4-16在VS=0.1 V,TD=0.6 s對不同上電極MIM電容作Schottky emission逼近的趨勢圖....................................................................................................................53
圖4-17在高電場下VS=0.1 V,TD=0.6 s不同上金屬MIM電容漏電機制情形(a)Al上電極....................................................................................................................54
圖4-17在高電場下VS=0.1 V,TD=0.6 s不同上金屬MIM電容漏電機制情形(b)Ni上電極....................................................................................................................54
圖4-18不同電極MIM電容I-V遲滯圖(a)Al電極..........................................................55
圖4-18不同電極MIM電容I-V遲滯圖(b)Ni電極.........................................................55
圖4-19不同上電極MIM電容在不同掃描比下I-V遲滯圖(a)Al電極..........................56
圖4-19不同上電極MIM電容在不同掃描比下I-V遲滯圖(b)Ni電極.........................56
圖4-20不同下電極氨電漿處理時間的Ni電極MIM電容其(a)電容密度對電壓的關係圖........................................................................................................................57
圖4-20不同下電極氨電漿處理時間的Ni電極MIM電容其(b)漏電流密度對電壓的關係圖....................................................................................................................57
圖4-21 (a)高溫125 ℃Ni電極MIM電容其漏電流密度對電壓的關係圖.................58
圖4-21 (b)電漿處理時間對漏電流密度與電容密度關係圖.........................................58
圖4-22 Schottky emission逼近趨勢圖(a)電子由上電極注入........................................59
圖4-22 Schottky emission逼近趨勢圖(b)電子由下電極注入.......................................59
圖4-23對電子由下電極注入時Frenkel-Poole emission的逼近趨勢圖........................60
圖4-24不同氨電漿處理時間△C/C0對電壓的關係圖..................................................60
第一章
[1.1] "International technology roadmap for semiconductors, " ITRS, 2007 edition.
[1.2] M. Yoshida, T. Kumauchi, K. Kawakita, N. Ohashi, H. Enomoto, T. Umezawa, N. Yamamoto, I. Asano, and Y. Tadaki, "Low temperature metal-based cell integration technology for gigabit and embedded DRAMs, " IEEE IEDM Tech. Dig., 2007, pp. 41-44.
[1.3] K. Stein, J. Kocis, G. Hueckel, E. Eld, T. Bartush, R. Groves, N. Greco, D. Harame, and T. Tewksbury, " High reliability metal insulator metal capacitors for silicon germanium analog applications, " IEEE Bipolar/BiCMOS Circuits and Technology Meeting, pp.191-194, 1997.
[1.4] T. Yoshitomi, Y3 Ebuchi, H. Kimijima, T. Ohguro, E. Morifuji, H. S. Momose , K. Kasai, K. Ishimaru, F. Matsuoka, Y. Katsumata, M. Kinugawa and H. Iwa, "High performance MIM capacitor for RF BiCMOS/CMOS LSls," IEEE Bipolar/BiCMOS Circuits and Technology Meeting, pp.133-136, 1999.
[1.5] A. K. Roy, C. Hu, M. Racanelli, C. A. Compton, P. Kempf, G. Jolly, P. N. Sherman, J. Zheng, Z. Zhang and A. Yin, " High density metal insulator metal capacitors using PECVD nitride for mixed signal and RF circuits, " IEEE Interconnect Technology International Conference, pp. 245-247, 1999.
[1.6] J. A. Babcock, S. G. Balster, A. Pinto, C. Dirnecker, P. Steinmann, R. Jumpertz, and B. E. Kareh, "Analog characteristics of metal–insulator–metal capacitors Using PECVD nitride dielectrics, " IEEE Electron Device let., vol. 22, no. 5, May 2001.
[1.7] H.S.P. Wong, "Beyond the conventional transistor, " IBM J . Res. Develop., vol. 46, no. 2/3, pp. 133-168, 2002.
[1.8] S. Kim, B. Cho, M. Li, S. Ding, C. Zhu, M. Yu, B. Narayanan, A. Chin, and D. Kwong, "Improvement of voltage linearity in high-κ MIM capacitors using HfO2-SiO2 stacked dielectric," IEEE Electron Device Letters, vol. 25, pp. 538-540, 2004.
[1.9] X. Yu, C. Zhu, H. Hu, A. Chin, M. Li, B. Cho, D. Kwong, P. Foo, and M. Yu, "A high-density MIM capacitor (13 fF/μm 2) using ALD HfO2 dielectrics," IEEE Electron Device Letters, vol. 24, pp. 63-65, 2003.
[1.10] H. Hu, C. Zhu, Y. Lu, M. Li, B. Cho, and W. Choi, "A high performance MIM capacitor using HfO2 dielectrics," IEEE Electron Device Letters, vol. 23, pp. 514-516, 2002.
[1.11] T. Ishikawa, D. Kodama, Y. Matsui, M. Hiratani, T. Furusawa, and D. Hisamoto, "High-capacitance Cu/Ta 2O5/Cu MIM tructure for SoC applications featuring a single-mask add-on process," IEEE IEDM Tech. Dig., 2002, pp. 940-942.
[1.12] S. Kim, B. Cho, M. Yu, M. Li, Y. Xiong, C. Zhu, A. Chin, and D. Kwong, "High capacitance density (> 17 fF/μm2) Nb2O5 - based MIM capacitors for future RF IC applications," in VLSI Symp. Tech. Dig., 2005, pp. 56–57.
[1.13] D. Brassard, D. Sarkar, M. El Khakani, and L. Ouellet, "Compositional effect on the dielectric properties of high-k titanium silicate thin films deposited by means of a cosputtering process," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 24, p. 600, 2006.
[1.14] K. Chiang, C. Huang, A. Chin, W. Chen, S. McAlister, H. Chiu, J. Chen, and C. Chi, "High-k Ir/TiTaO/TaN capacitors suitable for analog IC applications," IEEE Electron Device Letters, vol. 26, pp. 504-506, 2005.
[1.15] C. Cheng, H. Pan, H. Yang, C. Hsiao, C. Chou, S. McAlister, and A. Chin, "Improved high-temperature leakage in high-density MIM capacitors by using a TiLaO dielectric and an Ir electrode," IEEE Electron Device Letters, vol. 28, pp. 1095-1097, 2007.
[1.16] V. Mikhelashvili, G. Eisenstein, and A. Lahav, "High capacitance density metal-insulator-metal structure based on AlO–HfTiO nanolaminate stacks," Applied Physics Letters, vol. 90, p. 013506, 2007.
[1.17] C. Huang, K. Chiang, H. Kao, A. Chin, and W. Chen, "RFIC TaN/SrTiO3/TaN MIM capacitors with 35fF/μm2 capacitance density," IEEE Microwave and Wireless Components Letters, vol. 16, pp. 493-495, 2006.
[1.18] K. Chiang, C. Huang, G. Chen, W. Chen, H. Kao, Y. Wu, A. Chin, and S. McAlister, "High-performance SrTiO3MIM capacitors for analog applications," IEEE Transactions on Electron Devices, vol. 53, p. 2312, 2006.
[1.19] M. Lukosius, C. Wenger, S. Pasko, H. Mussig, B. Seitzinger, and C. Lohe, "Atomic vapor deposition of titanium nitride as metal electrodes for gate-last CMOS and MIM devices," Chemical Vapor Deposition, vol. 14, 2008.
[1.20] C. Kang, H. Cho, Y. Kim, R. Choi, K. Onishi, A. Shahriar, and J. Lee, "Characterization of resistivity and work function of sputtered-TaN film for gate electrode applications," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 21, p. 2026, 2003.
[1.21] C. Perkins, B. Triplett, P. McIntyre, K. Saraswat, S. Haukka, and M. Tuominen, "Electrical and materials properties of ZrO2 gate dielectrics grown by atomic layer chemical vapor deposition," Applied Physics Letters, vol. 78, p. 2357, 2001.
[1.22] B.Razavi, RF Microelectronics, Pretice Hall, 1998. ISBN 0-13-887571-5.
[1.23] M. Armacost, A. Augustin, P. Felsner, Y. Feng, G. Friese, J. Heidenreich, G. Hueckel, O. Prigge, and K. Stein, "A high reliability metal insulator metal capacitor for 0.18 μm copper technology," IEEE IEDM Tech Dig., pp. 157-160, 2000.
[1.24] R. Van Dover, R. Fleming, L. Schneemeyer, G. Alers, D. Werder, L. Technol, and M. Hill, "Advanced dielectrics for gate oxide, DRAM and rf capacitors," IEEE IEDM Tech Dig., pp. 823-826, 1998.
[1.25] R. Aparicio and A. Hajimiri, "Capacity limits and matching properties of integrated capacitors," IEEE Journal of Solid-State Circuits, vol. 37, pp. 384-393, 2002. 
第二章
[2.1] S. Bang, S. Lee, S. Jeon, S. Kwon, W. Jeong, S. Kim, and H. Jeon, "Physical and electrical properties of hafnium–zirconium–oxide films grown by atomic layer deposition," Journal of the Electrochemical Society, vol. 155, p. H633, 2008.
[2.2] P. Bouvier, E. Djurado, G. Lucazeau, and T. Le Bihan, "High-pressure structural evolution of undoped tetragonal nanocrystalline zirconia," Physical Review B, vol. 62, pp. 8731-8737, 2000.
[2.3] Y. Zhou, N. Kojima, and K. Sasaki, "Growth and dielectric properties of tetragonal ZrO2 films by limited reaction sputtering," Journal of Physics D: Applied Physics, vol. 41, p. 175414, 2008.
[2.4] S. Sayan, D. Chandler-Horowitz, N. Nguyen, and J. Ehrstein, "High sensitivity attenuated total reflection Fourier transform infrared spectroscopy study of ultrathin ZrO2 films: A study of phase change," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 26, p. 270, 2008.

第三章
[3.1] X. Zhao and D. Vanderbilt, "Phonons and lattice dielectric properties of zirconia," Physical Review B, vol. 65, 07105, 2002.
[3.2] D. Vanderbilt, X. Zhao, and D. Ceresoli, "Structural and dielectric properties of crystalline and amorphous ZrO2," Thin Solid Films, vol. 486, pp. 125-128, 2005.
[3.3] H. Cho, Y. Kim, D. Park, E. Lee, C. Park, J. Jang, K. Lee, H. Kim, Y. Ki, and I. Han, "New TIT capacitor with ZrO2/Al2O3/ZrO2 dielectrics for 60nm and below DRAMs," Solid State Electronics, vol. 51, pp. 1529-1533, 2007.
[3.4] J. Robertson, "Band offsets of wide-band-gap oxides and implications for future electronic devices," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 18, p. 1785, 2000.
[3.5] M. Leskela and M. Ritala, "Atomic layer deposition (ALD): from precursors to thin film structures," Thin Solid Films, vol. 409, pp. 138-146, 2002
[3.6] G. Pabst, L. Martin, Y. Chu, and R. Ramesh, "Leakage mechanisms in BiFeO thin films," Applied Physics Letters, vol. 90, p. 072902, 2007.
[3.7] C. Chaneliere, J. Autran, R. Devine, and B. Balland, "Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications," Materials Science & Engineering R, vol. 22, pp. 269-322, 1998.
[3.8] L. I. Maissei and R.Glang, Handbook of thin film technology, McGraw-Hill, ch. 14, pp. 25.
[3.9] J. Babcock, S. Balster, A. Pinto, C. Dirnecker, P. Steinmann, R. Jumpertz, and B. El-Kareh, "Analog characteristics of metal-insulator-metal capacitors using PECVD nitride dielectrics," IEEE Electron Device Letters, vol. 22, pp. 230-232, 2001.
[3.10] H. Hu, C. Zhu, Y. Lu, M. Li, B. Cho, and W. Choi, "A high performance MIM capacitor using HfO 2 dielectrics," IEEE Electron Device Letters, vol. 23, pp. 514-516, 2002.
[3.11] H. Hu, C. Zhu, Y. Lu, Y. Wu, T. Liew, M. Li, B. Cho, W. Choi, and N. Yakovlev, "Physical and electrical characterization of HfO metal–insulator–metal capacitors for Si analog circuit applications," Journal of Applied Physics, vol. 94, p. 551, 2003.
[3.12] P. Gonon and C. Vall e, "Modeling of nonlinearities in the capacitance-voltage characteristics of high-k metal-insulator-metal capacitors," Applied Physics Letters, vol. 90, p. 142906, 2007.
[3.13] J. Macdonald, "Theory of ac space-charge polarization effects in photoconductors, semiconductors, and electrolytes," Physical Review, vol. 92, pp. 4-17, 1953.
[3.14] J. Beaumont and P. Jacobs, "Polarization in potassium chloride crystals," J. Phys. Chem. Solids, vol. 28, 1967.
[3.15] S. Mitoff and R. Charles, "Electrode polarization of ionic conductors," Journal of Applied Physics, vol. 43, p. 927, 1972.
[3.16] C. Zhu, H. Hu, X. Yu, S. Kim, A. Chin, M. Li, B. Cho, and D. Kwong, "Voltage and temperature dependence of capacitance of high-k HfO2 MIM capacitors: a unified understanding and prediction," Dig. - Int. Electron Devices Meet. pp. 36.5, 2003. 
第四章
[4.1] M. Hiratani, M. Kadoshima, T. Hirano, Y. Shimamoto, Y. Matsui, T. Nabatame, K. Torii, and S. Kimura, "Ultra-thin titanium oxide film with a rutile-type structure," Applied Surface Science, vol. 207, pp. 13-19, 2003.
[4.2] Y. Lee, K. Chan, and M. Brady, "Plasma enhanced chemical vapor deposition of TiO2 in microwave-radio frequency hybrid plasma reactor," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 13, p. 596, 1995.
[4.3] J. Yan, D. C.Glimer, S. A. Campbell, W. L. Gladfelter, and P. G. Schmid, “Structural and electrical characterization of TiO2 grown from titanium tetrakis-isopropoxide (TTIP) and TTIP/H2O ambient,” J. Vac. Sci. Technol. B, Vol. 14, Issue 3, pp. 1706-1711, 1996
[4.4] R. Asahi, Y. Taga, W. Mannstadt, and A. Freeman, "Electronic and optical properties of anatase TiO2," Physical Review B, vol. 61, pp. 7459-7465, 2000.
[4.5] P. Alexandrov, J. Koprinarova, and D. Todorov, "Dielectric properties of TiO2-films reactively sputtered from Ti in an RF magnetron," Vacuum, vol. 47, pp. 1333-1336, 1996.
[4.6] J. Robertson, "Band offsets of wide-band-gap oxides and implications for future electronic devices," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 18, p. 1785, 2000.
[4.7] H. Wong and S. Philip, "Beyond the conventional transistor," IBM Journal of Research and Development, vol. 46, pp. 133-168, 2002.
[4.8] E. Ramakrishnan, K. Cornett, G. Shapiro, and W. Howng, "Dielectric properties of radio frequency magnetron sputter deposited zirconium titanate based thin films," Journal of The Electrochemical Society, vol. 145, p. 358, 1998.
[4.9] Q. Fang, J. Zhang, Z. Wang, J. Wu, B. O'Sullivan, P. Hurley, T. Leedham, H. Davies, M. Audier, and C. Jimenez, "Investigation of TiO2-doped HfO2 thin films deposited by photo-CVD," Thin Solid Films, vol. 428, pp. 263-268, 2003.
[4.10] A. Paskaleva, A. Bauer, M. Lemberger, and S. Z rcher, "Different current conduction mechanisms through thin high-k HfTiSiO films due to the varying Hf to Ti ratio," Journal of Applied Physics, vol. 95, p. 5583, 2004.
[4.11] K. Honda, A. Sakai, M. Sakashita, H. Ikeda, S. Zaima, and Y. Yasuda, "Pulsed laser deposition and analysis for structural and electrical properties of HfO2-TiO2 composite films," Jpn. J. Appl. Phys., Part 1, vol. 43, pp. 1571-1576, 2004.
[4.12] F. Chen, X. Bin, C. Hella, X. Shi, W. Gladfelter, and S. Campbell, "A study of mixtures of HfO2 and TiO2 as high-k gate dielectrics," Microelectronic Engineering, vol. 72, pp. 263-266, 2004.
[4.13] M. Li, Z. Zhang, S. Campbell, W. Gladfelter, M. Agustin, D. Klenov, and S. Stemmer, "Electrical and material characterizations of high-permittivity HfTiO gate insulators," Journal of Applied Physics, vol. 98, p. 054506, 2005.
[4.14] J. L. G. Fierro and L. Gonzalez Tejuca, “Non-stoichiometric surface behaviour of LaMO3 oxides as evidenced by XPS ”, Applied Surface Science Vol. 27, Issue 4, January-February 1987, Pages 453-457
[4.15] E. Lombardo, K. Tanaka, and I. Toyoshima, "XPS characterization of reduced LaCoO. sub. 3 perovskite," Journal of Catalysis, vol. 80, pp. 340-349, 1983.
[4.16] M. A. Peña, J. M. D. Tascón, J. L. G. Fierro and L. González Tejuca,” A study of NO and CO interactions with LaMnO3 “, Journal of Colloid and Interface Science
Vol. 119, Issue 1, September 1987, Pages 100-107
[4.17] Y. Kim, J. Oh, T. Kim, and B. Park, "Influence of the microstructures on the dielectric properties of ZrTiO4 thin films at microwave-frequency range," Jpn. J. Appl. Phys., Part 1, vol. 40, pp. 4599-4603, 2001.
[4.18] P. Victor and S. Krupanidhi, "Impact of microstructure on electrical characteristics of laser ablation grown ZrTiO4 thin films on Si substrate," Journal of Physics D, Applied Physics, vol. 38, pp. 41-50, 2005.
[4.19] T. Remmel, R. Ramprasad, and J. Walls, "Leakage behavior and reliability assessment of tantalum oxide dielectric MIM capacitors," 41st Annual International Reliability Physics Symposium, Dallas, Texas, pp. 277-281.
[4.20] R. Ramprasad, "Phenomenological theory to model leakage currents in metal-insulator-metal capacitor systems," phys. stat. sol., vol. 239, pp. 59-70, 2003.
[4.21] N. Pervez, P. Hansen, T. Taylor, J. Speck, and R. York, "Observation of long transients in the electrical characterization of thin film BST capacitors," Integrated Ferroelectrics, vol. 53, pp. 503-511, 2003.
(此全文未開放授權)
電子全文
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *