帳號:guest(18.225.56.194)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝欣媛
作者(外文):Hsieh, Hsin-Yuan
論文名稱(中文):動態光學顯微分析兩階段氫氦離子佈植於矽所引發之表面發泡現象
論文名稱(外文):Dynamic Optical Microscopy Observations for the Surface Blistering Developed by Co-Implanted Hydrogen and Helium Ions in Silicon
指導教授(中文):梁正宏
指導教授(外文):Liang, Jenq-Horng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:9611524
出版年(民國):98
畢業學年度:97
語文別:中文
論文頁數:76
中文關鍵詞:離子劈裂氫氦離子佈植表面發泡發泡破裂絕緣體上矽
相關次數:
  • 推薦推薦:0
  • 點閱點閱:55
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
本論文研究係探討在離子劈裂技術中,以先進的兩階段氫氦離子佈植來取代傳統的單階段氫離子佈植,並利用精進的動態光學顯微分析技術,觀察其佈植於矽(100)靶材,並隨著後續熱退火處理製程,所引發的表面發泡與發泡破裂現象,藉以瞭解氫與氦離子在其中所扮演的角色,並提供以離子劈裂技術來製作絕緣體上矽結構中,如何選定離子佈植條件的重要參考。本論文研究所使用的特性量測分析儀器包括:拉曼光譜儀、二次離子質譜儀、穿透式電子顯微鏡、以及原子力顯微鏡。研究結果顯示:氫氦離子佈植的先後順序以及通量分配百分比,因其影響輻射損傷的多寡以及輻射損傷的分布情形,是為引發矽靶材表面發泡與發泡破裂的重要因素。在不同順序的氫氦離子佈植中,以氦先佈植(即 He++H+)的佈植條件,是為製作絕緣體上矽結構的較佳製程。並且在總佈植通量相同的條件之下,使用較多的氫離子佈植通量,對於製作絕緣體上矽具有實質的助益。以 He++H+ 佈植試片實際製作絕緣體上矽結構時更發現,入射氦離子對於幫助佈植試片製成絕緣體上矽的效益,並不如幫助形成發泡破裂般的等效,換言之,入射的氦離子雖然能有效地幫助矽靶材引發表面發泡與發泡破裂,然而對於幫助成功製成絕緣體上矽材料的效果卻相當有限。即使如此,兩階段氫氦離子佈植卻明顯地降低成功製成絕緣體上矽結構所需的氫離子通量的臨界值。
摘要 i
誌謝 ii
表目錄 v
圖目錄 vi
第一章 前言 1
第二章 文獻回顧 4
2.1 絕緣體上矽材料的發展歷史 4
2.2 以絕緣體上矽材料製作元件的優勢 4
2.3 以離子劈裂製程技術製作絕緣體上矽材料 6
2.4 氫與氦離子兩階段佈植取代單階段氫離子佈植 7
第三章 實驗原理與方法 12
3.1 理論模擬 12
3.2 離子佈植 12
3.3 特性量測 13
3.3.1 動態光學顯微分析 13
3.3.2 拉曼光譜系統 14
3.3.3 二次離子質譜儀 16
3.3.4 穿透式電子顯微鏡 18
3.3.5 原子力顯微鏡 20
3.4 利用兩階段氫與氦離子佈植製作絕緣體上矽 20
3.4.1 晶片接合 20
3.4.2 劈裂退火 21
第四章 結果與討論 35
4.1 SRIM蒙地卡羅電腦模擬程式 35
4.2 動態光學顯微分析 35
4.2.1 He+(先)+H+(後)佈植試片 35
4.2.1.1 表面發泡現象 35
4.2.1.2 發泡破裂現象 36
4.2.1.3 時間-溫度-變化曲線 37
4.2.1.4 表面發泡與發泡破裂平均直徑 38
4.2.2 H+(先)+He+(後)佈植試片 38
4.2.3 不同佈植順序的影響 39
4.2.4 佈植通量百分比的影響 40
4.3 拉曼光譜量測分析 41
4.3.1 一階散射峰光譜 41
4.4 二次離子質譜儀分析 43
4.4.1 矽靶材元素縱深分佈分析 43
4.5 橫截面穿透式電子顯微鏡 44
4.5.1 佈植後的試片 44
4.5.2 退火後的試片 45
4.6 利用兩階段氫與氦離子佈植製作絕緣體上矽 46
第五章 結論與未來研究規劃 71
5.1 特性分析 71
5.2 不同佈植順序的影響 71
5.3 佈植通量百分比的影響 71
5.4 氫氦離子佈植對於製作絕緣體上矽結構的影響 72
5.5 建議 72
參考文獻. 73
[1] 吳志宏、劉丙寅、賴文郎、張嘉福、葉性銓,「SOI 晶圓之發展現況與應用」,機械工業雜誌,257 期,93頁。
[2] D. Kahng, “A Historical Perspective on the Development of MOS Transistors and Related Devices,” IEEE Trans. Electron. Device 23 (1976) 655.
[3] A. Plö□l, G. Krauter, “Silicon-on-Insulator: Materials Aspects and Applications,” Soloid-State Electron. 44 (2000) 775.
[4] 施敏,半導體元件物理與製作技術,第二版,交大出版社,新竹,中華民國九十一年。
[5] M. Bruel, “Silicon on Insulator Material Technology,” Electron. Lett. 31 (1995) 1201.
[6] T. Höchbauer, A. Misra, R. Verda, M. Nastasi, J.W. Mayer, Y. Zheng, S.S. Lau, “Hydrogen-Implantation Induced Silicon Surface Layer Exfoliation,” Phil. Mag. B 80 (2000) 1921.
[7] L.J. Huang, Q.Y. Tong, Y.L. Chao, T.H. Lee, “Onset of Blistering in Hydrogen-Implanted Silicon,” Appl. Phys. Lett. 74 (1999) 982.
[8] X. Duo, W. Liu, S. Xing, M. Zhang, X. Fu, C. Lin, P. Hu, S.X. Wang, L.M. Wang, “Defect and Strain in Hydrogen and Helium Coimplanted Single-Crystal Silicon,” J. Phys. D: Appl. Phys. 34 (2001) 5.
[9] J. Grisolia, G.B. Assayag, A. Claverie, B. Aspar, C. Lagahe, L. Laanab, “A Transmission Electron Microscopy Quantitative Study of the Growth Kinetics of H Platelets in Si,” Appl. Phys. Lett. 76 (2000) 852.
[10] A. Agarwal, T.E. Haynes, V.C. Venezia, O.W. Holland, D.J. Eaglesham, “Efficient Production of Silicon-on-Insulator Films by Co-Implantation of He+ with H+,” Appl. Phys. Lett. 72 (1998) 1086.
[11] M.K. Weldon, M. Collot, Y.J. Chabal, V.C. Venezia, A. Agarwal, T.E. Haynes, D.J. Eaglesham, S.B. Christman, E.E. Chaban, “Mechanism of Silicon Exfoliation Induced by Hydrogen/Helium Co-Implantation,” Appl. Phys. Lett. 73 (1998) 3721.
[12] C.L. Blanchard, N. Sousbie, S. Sartori, H. Moriceau, A. Sousbie, B. Aspar, P. Nguyen, B. Blondeau, “Hydrogen and Helium Implantation to Achieve Layer Transfer,” Proceedings on the Semiconductor Wafer Bonding VII: Science, Technology, and Application, Paris, France, PV 2003-19 (2003) 346.
[13] P. Nguyen, I. Cayrefourcq, B. Blondeau, N. Sousbie, C. L. Blanchard, S. Sartori, A.M. Cartier, “Systematic Study of the Splitting Kinetic of H/He Co-implanted Substrate,” Proceedings of the 2003 IEEE International SOI Conference, Newport Beach, CA, 29 (2003) 132.
[14] J.P. Colinge, Silicon-on-Insulator Technology: Materials to VLSI, 3rd ed., Kluwer Academic Publishers, Boston (2004).
[15] W. Shockley, “The Path to the Conception of the Junction Transistor,” IEEE Trans. Electron. Devices 23 (1976) 597.
[16] H.J. Woo, H.W. Choi, J.K. Kim, G.D. Kim, W. Hong, W.B. Choi, Y.H. Baec, “Thick Si-on-Insulator Wafers Formation by Ion-Cut Process,” Nucl. Instr. and Meth. B 241 (2005) 531.
[17] K. Izumi, M. Doken, H. Ariyoshi, “C.M.O.S. Devices Fabricated on Buried SiO2 Layers Formed by Oxygen Implantation into Silicon,” Electron. Lett. 14 (1978) 593.
[18] J.F. Ziegler, J.P. Biersack, U. Littmask, The Stopping and Range of Ions in Solids (Stopping and Range of Ions in Matter), Pergamon Press (1985) 202.
[19] 王孟亮,「拉曼小傳」,科學月刊,167 期,中華民國七十二年,958 頁。
[20] Z.C. Feng, A.A. Allerman, P.A. Barnes, S. Perkowitz, “Raman Scattering of InGaAs/lnP Grown by Uniform Radial Flow Epitaxy,” Appl. Phys. Lett. 60 (1992) 1848.
[21] J.P. Estrera, P.D. Stevens, R. Glosser, W.M. Duncan, Y.C. Kao, Y.H. Liu, E.A. Beam, “Phonon Mode Study of Near-Lattice-Matched InxGa1-xAs Using Micro-Raman Spectroscopy,” Appl. Phys. Lett. 61 (1992) 1927.
[22] G. Lucovsky, M.H. Brodsky, M.F. Chen, R.J. Chicotka, A.T. Ward, “Long Wavelength Optical Phonons in Ga1-xInxP,” Phys. Rev. B 4 (1971) 1945.
[23] K.J. Yano, T. Katoda, “Raman Spectra and Electric Resistance of Thermally Treated In/GaAs Structures,” J. Appl. Phys. 70 (1991) 7036.
[24] D.P. Bour, J.R. Shealy, A. Ksendzov, F. Pollak, “Optical Investigation of Organometallic Vapor Phase Epitaxially Grown AlxGa1-xP,” J. Appl. Phys. 64 (1988) 6456.
[25] 蘇青森,儀器學,五南圖書出版股份有限公司,中華民國九十一年,76頁。
[26] G.E. Jellison, Jr., F.A. Modine, “Optical Functions of Silicon at Elevated Temperatures” J. Appl. Phys. 76 (1994) 3758.
[27] A. Benninghoven, F.G. Rudenauer, H.W. Werner, Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends, John Wiley & Sons (1987) 950.
[28] 陳力俊、張立、梁鉅銘、林文台、楊哲人、鄭晃忠,材料電子顯微鏡學,科儀叢書3,國家科學委員會精密儀器發展中心,中華民國八十三年。
[29] Q.Y. Tong, K. Gutjahr, S. Hopfe, U. Gösele, T.H. Lee, “Layer Splitting Process in Hydrogen-Implanted Si, Ge, SiC, and Diamond Substrates” Appl. Phys. Lett. 70 (1997) 1390.
[30] T.H. Lee, Q.Y. Tong, Y.L. Chao, L.J. Huang, U. Gösele, Electrochem. Soc. Proc. 97-23 (1997) 27.
[31] 吳政衛,「兩階段不同順序氫與氦離子佈植於矽(100)晶圓引發缺陷之動態演化與研究」,國立清華大學工程與系統科學所,碩士論文,中華民國九十七年。
[32] K.P. Jain, A.K. Shukla, R. Ashokan, S.C. Abbi, M. Balkanski, “Raman Scattering From Ion-Implanted Silicon” Phys. Rev. B 32 (1985) 6688.
[33] A. Othonos, C. Christofides, B.S. Joumana, M. Bisson, “Raman Spectroscopy and Spreading Resistance Analysis of Phosphorus Implanted and Annealed Silicon” J. Appl. Phys. 75 (1994) 8032.
[34] Y. Zheng, S.S. Lau, T. Höchbauer, A. Misra, R. Verda, X.M. He, M. Nastasi, J.W. Mayer, “Orientation Dependence of Blistering in H-Implanted Si” J. Appl. Phys. 89 (2001) 2972.
[35] M. Bruel, The History, Physics, and Applications of the Smart-Cut (R) Process, 23, Materials Research Society Bulletin, United States (1998) 35.
[36] C. Qian, B. Terreault, “Blistering of Silicon Crystals by Low keV Hydrogen and Helium Ions” J. Appl. Phys. 90 (2001) 5152.
(此全文限內部瀏覽)
封面
目錄
電子全文
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *