帳號:guest(3.144.38.24)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):方玉焜
作者(外文):Fang, Yu-Kun
論文名稱(中文):毛細泵吸環路之穩態模型理論建立
論文名稱(外文):Model Eestablishment for CPL in Steady State
指導教授(中文):林唯耕
指導教授(外文):Lin, Wei-Keng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:9611553
出版年(民國):98
畢業學年度:97
語文別:中文
論文頁數:70
中文關鍵詞:蒸發器毛細泵吸環路熱阻儲槽熱管散熱器
外文關鍵詞:capillary pumped loop (CPL)thermal resistancereservoirheat sinkheat pipe
相關次數:
  • 推薦推薦:0
  • 點閱點閱:161
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
電腦晶片目前的最大問題就是微處理器(CPU)與顯示卡(VGA)的散熱,熱量若不藉由散熱元件帶走,則內部線路會有燒壞或造成短路的現象。此外,隨著微處理器效能的發展,其體積越做越小,單位面積的發熱量卻節節高升,因此需要好的散熱元件幫助,勢必要有更良好的傳熱原件,最傳統的方法是使用各種製程的鰭片,搭配上各種形式且便宜的熱管,但受到熱管中毛細結構的影響、與空間幾何限制,熱管已慢慢不敷使用,轉而使用其他兩相傳熱裝置,如CPL與LHP。
本文主要目的,在提供一套理論模式並寫成軟體,能夠快速並準確的預測CPL的溫度,並且利用實驗驗證並修正參數與理論模式,進而幫助CPL的設計,在製造前可提供做為參考,改善傳統需要製造後才可得到CPL熱阻值與性能的缺點,模擬與實驗的蒸發部溫度的平均相對誤差值,為22.72%左右與19.82%。
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1.1研究背景 1
1.2文獻回顧 5
第二章 理論基礎 12
2.1 CPL的熱傳分析 13
2.1.a蒸發部 13
2.1.b蒸汽線與液體線 14
2.1.c冷凝部 18
2.2CPL的物理界限 20
2.2.a毛細界限(Capillary limit) 20
2.2.b音速界限(Sonic limit) 21
2.2.c沸騰界限(Boiling limit) 21
2.3 CPL中的壓降 22
2.3.a單相區壓降: 22
2.3.b兩相區壓降: 23
2.3.c毛細壓降 24
第三章 模擬流程與程式架構 25
3.1穩態模型的基本假設 25
3.2穩態模型計算流程 26
3.2.a.整體計算流程 26
3.2.b.蒸發部計算流程 28
3.3環路架構 32
3.4 熱力性值 35
3.5 程式表單配置 錯誤! 尚未定義書籤。
第四章 結果與討論 48
4.1模擬結果 48
4.2實驗結果 51
4.2.a No.79的實驗結果 53
4.2.b No.106的實驗結果 55
4.3比較及討論 57
4.3.a蒸發部誤差 57
4.3.b冷凝部出口誤差 61
4.3.c蒸發部入口誤差 63
第五章 結論 67
參考文獻 68
附錄 符號說明 70
1. F. J. Stenger, "Experimental Feasibility Study of Water-Filled Capillary-Pumped Heat Transfer Loop", NASA TM X-1310, Lewis Research Center, Cleveland, OH, Nov. 1966.
2. Y. F. Maidanik et al., “Heat Transfer Apparatus”, U.S. Patent, No.4515209, 1985
3. M. Nikitkin, B. Cullimore, “CPL and LHP Technologies: What are the Differences, What are the Similarities”, SAE Technical Paper 981587, 1998.
4. S. Launay, V. Sartre, J. Bonjour, “Parametric analysis of loop heat pipe operation: a literature review” International Journal of Thermal Sciences 46, pp.621-636, 2007
5. J. Ku, E. J. Kroliczek, “Capillary pumped loop GAS and Hitchhiker flight experiments”, 4th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, Boston, Maryland, AIAA-1986-1249, 1986
6. C. Conroy et al., “Multiple Flat Plate Evaporator Loop Heat Pipe Demonstration”, 1st International Energy Conversion Engineering Conference, Portsmouth, Virginia, AIAA-2003-6047, 2003
7. H. Nagano, J. Ku, “Capillary Limit of a Multiple-Evaporator and Multiple-Condenser Miniature Loop Heat Pipe”, Journal of Thermophysics and Heat Transfer 21, pp.694-701, 2007
8. AAVID Engineering Inc., “OASIS Heat Dissipation System Technical Data and Specifications”, 1993
9. 姚大中, “迴路式熱管穩態模型之建立與應用”, 國立台灣大學碩士論文, 2007
10. Z. Liu, W. Liu, “A New Type Capillary Pumped Loop: Analysis, Design and Experimental Investigation”, EcoLibriumTM, pp.20-28, October, 2005
11. H. W. Lin, W. K. Lin, “An Axial Heat Transfer Analytical Model for Capillary Pumped Loop Vapor Line Temperature Distributions”, Applied Thermal Engineering 27, pp.2086-2094, 2007
12. Peterson, A.B. Duncan, M.H. Weichold, “Experimental investigation of micro heat pipes fabricated in silicon wafers” G.P. Journal of Heat Transfer 115 (1993) 751–756.
13. J. Kirshberg, K. Yerkes, D. Liepmann, Micro-cooler for chip-level temperature control, in: SAE Aerospace Power Systems Conference, 1999, p. 341.
14. Chin-Tsan Wang a,*, Tzong-Shyng Leu b, Tsai-Ming Lai b “Micro capillary pumped loop system for a cooling high power device”, Experimental Thermal and Fluid Science 32 pp.1090–1095,2008
15. J. van Es, G. van Donk, A. Pauw, AMS02 Tracker thermal control system: loop lay-out & specification of loop components AMSTRNLR-TN-003 issue 01, 2004.
16. A.A.M. Delil, Development of a mechanically pumped two-phase CO2 loop for the AMS-2 tracker thermal control system. National Aerospace Laboratory NLR AMS TIM Meeting, Boston, January 23rd 2002.
17. Liu Jie a,, Pei Nian-qiangb, Guo Kai-hua , He Zhen-hui , Li Ting-xuen , Gu Jian-ming “Experimental investigation on startup of a novel two-phase cooling loop” Experimental Thermal and Fluid Science 32 (2008) 939–946.

18. Shah, M. M., “A General Correlation for Heat Transfer during Film Condensation inside Pipes,” International Journal of Heat and Mass Transfer, Vol. 22, pp.547-556, 1979.
19. Incropera, R. P., and DeWitt, D. P., “Fundamentals of Heat and Mass Transfer,” 4th Edition, John Wiley & Sons, 1996.
20. Wallis, G. B., “One-Dimension Two-Phase Flow,” McGraw-Hill, New York, 1969 Lockhart, R. W., and Martinelli, R. C., “Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes,” Chemical Engineering Progress, Vol. 45, No. 1, pp. 39-48, 1949.
(此全文未開放授權)
電子全文
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *