帳號:guest(18.222.149.152)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳威宇
作者(外文):Chen, Wei-Yu
論文名稱(中文):建立開管式固相萃取晶片搭配感應耦合電漿質譜儀之連線分析系統進行高鹽基質微透析樣品中微量元素之分析研究
論文名稱(外文):Development of Chip-Based Open Channel Solid Phase Extraction Coupled to ICP-MS for On-Line Determination of Trace Elements in Microdialysates
指導教授(中文):孫毓璋
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:9612522
出版年(民國):98
畢業學年度:97
語文別:中文
論文頁數:101
中文關鍵詞:感應耦合電漿質譜儀固相萃取晶片
外文關鍵詞:ICP-MSChip
相關次數:
  • 推薦推薦:0
  • 點閱點閱:360
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著生物醫學快速發展的時代,目前已有許多文獻證實微量元素在生物體中確實扮演著極為重要的角色,當生物體內金屬離子濃度有些許變化時,即可能會引發不同的疾病;然而,大多傳統的分析方法,僅能提供整體混合樣品(Bulk)的分析結果,無法了解微量元素在生物體內特定區域之即時、動態的分佈濃度資訊,這對於從事生醫研究人員或是現代的分析化學家而言,均是亟須突破的技術瓶頸。探究造成此技術瓶頸的原因,主要係源於分析物濃度過低和樣品基質過於複雜,及自生物體取得之樣品體積通常均極少(5~10 μl)有關。有鑒於此,本研究的目的係將固相萃取概念導入流控晶片技術中(Fluidics),藉此開發出一套高靈敏、低汙染、操作簡單且可用於量樣品的分析方法。
一般而言,在進行連續進行動態監測活體動物體內特定器官中微量元素時,有效地分離透析液中的鹽類基質與控制汙染的發生,是突破在小量樣品中分析微量元素的關鍵技術。為達上述分析的目的,本研究已成功地針對(1)樣品體積受限,(2) 低分析空白值,(3)分析速度快,及(4)有效濃縮分離待分析元素等需求,建立了一套Microdialysis-Chip-Based Open-Channel SPE-ICP-MS連線分析系統。
根據各項最佳化操作條件參數,在分離過程中,本研究係將樣品的pH值調控在pH值為9,當樣品流經活化處理過之PMMA晶片時,即可藉由流道壁上之羧酸根(Carboxylate,COO-)與待分析之微量元素間的作用,達到濃縮分離的目的;在流洗過程中,本研究係利用0.5%(v/v)HNO3將吸附於流道壁上的分析物流洗下來後,再導入ICP-MS中進行測定。整個實驗流程係透過自動化控制系統進行操控,每次分析流程可控制於7分鐘內完成。本研究所建立之Chip-Based Open-Channel SPE-ICP-MS搭配微透析取樣技術(Microdiallysis sampling)使用時,在每次取樣體積為10 μl(每次測定時間為12分30秒)的條件下,確實可同時進行多種微量元素的測定,據此可知,本研究所開發Microdialysis-Chip-Based Open-Channel SPE-ICP-MS連線分析系統,確實具有長時間在急性、慢性、麻醉或清醒動物的取樣模式下,進行活體動物體內微量元素連續(Continuous)、即時(Real time)之動態監測的潛力。
Abstract
Nowadays, inductively coupled plasma mass spectrometry (ICP-MS) has become one of the most powerful trace elemental analytical techniques with high sensitivity as well as wide linear dynamic range and simultaneous multielement detection capability. However, the insufficient tolerance to the dissolved salts and polyatomic interferences always makes it difficult to directly analyze the high-salt content samples. Consequently, incorporating an efficient on-line pretreatment technique with ICP-MS is considered as an indispensable alternative to preconcentrate desired analytes and to minimize the adverse effects resulted from the concomitant matrices. To date, among the available on-line sample pretreatment methods, solid phase extraction (SPE) is particularly useful as a result of its simplicity and efficiency. For purpose of simplifying the analytical procedure and minimizing the volume of chemicals, in this study, a functionalized PMMA fluidic-chip as a solid phase extraction adsorbent was developed to couple with ICP-MS measurement.
Recently, Lab-on-valve mesofluidic analytical system (LOV-MFAS) is a potential tool for the analysis of the real-world micro-samples. Based on literatures, the miniaturized SPE devices indeed provide the rapid response time and analytical capability because of its high surface-to-volume ratio and the short diffusion distance. Accordingly, we attempt to exploit a proper and effective SPE material namely functionalized poly(methyl methacrylate) (f-PMMA) for the extraction of trace metal ions, and to develop a mesofluidic SPE chip to eliminate the possible salt-interference resulting from sample matrices prior to ICP-MS measurement.
In this study, a simple CO2-laser engraving technique was employed to machine PMMA substrates instead of lithographic techniques and to attain low per-unit manufacturing cost and rapid prototyping. According to our experiment, a hyphenated system of on-line Chip-Based Open-Channel SPE coupled to ICP-MS was successfully constructed for the determination of trace elements in samples of limited volume (5~10 μL). With optimized procedure, the analytical performance of proposed hyphenated system was examined for determining the concentrations of trace elements in standard reference materials (SRM 2670 and 1643e). Presently, we have connected microdialysis (MD) sampling and Chip-Based Open-Channel SPE-ICP-MS together to determine trace elements in the microdialysate samples. For purpose of establishing a physiopathological-related animal model of trace elements, the practicability of this hyphenated system was evaluated in vitro by monitoring the step change in the concentrations of analyte ions in an external microdialysis medium.
目錄
中文摘要.....................................................................................................I
英文摘要.................................................................................................III
目錄...........................................................................................................V
圖目錄......................................................................................................IX
表目錄....................................................................................................XII
第一章 前言..............................................................................................1
1.1 現代生物醫學對微量元素分析的需求................................1
1.2 生物無機分析技術的特性及挑戰........................................2
1.3 微量金屬線上前濃縮與測定儀器技術的發展....................5
1.4 流控晶片(fluidics)簡介.........................................................9
1.5 流控晶片元件材料與製作方法...........................................10
1.5.1 玻璃材質....................................................................12
1.5.2 高分子材質................................................................14
1.6 流控晶片中的萃取技術.......................................................18
1.7 研究目的...............................................................................22
第一章 參考文獻....................................................................................24

第二章 儀器分析及原理........................................................................27
2.1 開管式流道固相萃取晶片基質分離與前濃縮之原理......27
2.2 微透析取樣法(Microdialysis Sampling)............................28
2.3 感應耦合電漿質譜儀(ICP-MS).........................................31
2.4 衰減式全反射傅立葉紅外光譜儀 (ATR-FTIR)...............45
2.5 二氧化碳雷射(CO2-Laser)加工原理.................................46
第二章 參考文獻....................................................................................48

第三章 實驗部份....................................................................................49
3.1高鹽基質樣品連線分析系統(Chip-Based Open-Channel SPE-ICP-MS)...........................................................................................49
3.1.1 儀器裝置....................................................................49
3.1.2實驗環境及用水..........................................................51
3.1.3 實驗試劑....................................................................51
3.1.4 容器清洗....................................................................52
3.1.5 模擬樣品之配製........................................................53
3.2 微透析取樣裝置之活化、使用及保存..............................53
3.3 開管式流道固相萃取晶片(Chip-Based Open-Channel SPE).........................................................................................................54
3.3.1開管式流道固相萃取晶片設計..................................54
3.3.2 利用二氧化碳雷射製作開管式流道........................57
3.3.3 介觀流控流控晶片壓合..............................................58
3.3.4開管式流道固相萃取晶片的活化、清洗與保存..............................................................................................................58
3.4 流道基質分離與前濃縮條件探討......................................59
3.5 Chip-Based Open-Channel SPE-ICP-MS連線系統之建立............................................................................................................. 61
3.6 Chip-Based Open-Channel SPE-ICP-MS連線系統之分析效能評估......................................................................................................62
3.7 Microdialysis-Chip-Based Open-Channel SPE-ICP-MS之連續動態監測評估......................................................................................63
3.8 利用ATR-FTIR推測微量元素中金屬陽離子吸附在f-PMMA結構上之機制...........................................................................66
3.8.1 ATR-FTIR樣品之實驗流程.........................................66
3.8.2 ATR-FTIR測定.............................................................67第三章 參考文獻....................................................................................68


第四章 結果與討論................................................................................69
4.1 開管式流道f-PMMA晶片吸附金屬陽離子機制之探討..69
4.2 自製開管式流控晶片作為固相萃取裝置之可行性測試...73
4.3 開管式流控固相萃取晶片之吸附條件最佳化探討...........74
4.3.1調態試劑濃度對萃取效率的影響................................74
4.3.2樣品pH值對萃取效率的影響.....................................76
4.3.3萃取流速對萃取效率的影響........................................79
4.3.4鹽類基質對萃取效率的影響........................................81
4.4 Chip-Based Open-Channel SPE-ICP-MS連線系統之分析效能評估......................................................................................................83
4.5 利用Microdialysis-Chip-Based Open-Channel SPE-ICP-MS連線分析系統進行模擬樣品之連續動態監測評估..............................88第四章 參考文獻....................................................................................90

第五章 結論............................................................................................92

第六章 未來展望....................................................................................95
第一章 參考文獻
1. Minami, A.; Takeda, A.; Yamaide, R. and Oku, N. Brain Research 2002, 936, 91.
2. Haraguchi,H J. Anal. At. Spectrom. 2004, 19, 5.
3. Lyon, T.D. and Fell, G.S. J. Anal. At. Spectrom. 1988, 3, 265.
4. Thompson, R.B.; Peterson, D.; Mahoney, W.; Cramer, M.; Maliwal, B.P.; Suh, S.W.; Frederickson, C.; Fierke, C. and Herman, P. J. Neuroscience Methods 2002, 118, 63.
5. Vig, K.; Megharaj, M.; Sethunathan, N. and Naidu, R. Advances In Environmental Research 2003, 8, 121.
6. Fang, Z. Flow Injection Separation and Preconcentration 1993.
7. Wang, J.H.; Hansen, E.H. Trac-Trends in Anal. Chem. 2003, 22, 225.
8. Boyle, E.A.; Edmond, J.M. Analytica Chimica Acta 1977, 91, 189.
9. Brugmann, L.; Danielsson, L.G.; Magnusson, B. and Westerlund, S. Marine Chemistry 1983, 13, 327.
10. Minczewski, J. and Chwastowska, J. R. Dybczynski 1982.
11. 吳松勳 國立清華大學原子科學研究所碩士論文,2002.
12. Fang, Z.; Xu, S.; Dong, L. and Li, W. Talanta 1994, 41, 2165.
13. Fang, Z.; Sperling, M. and Welz, B. J. Anal. At. Spectrom. 1991, 6, 301.
14. 林琦峪 國立清華大學原子科學研究所碩士論文,2003.
15. 陸怡雯 國立清華大學原子科學研究所碩士論文,2004.
16. Alonso, E.V.; Garcia, A.; Pavon, J.M.C. Talanta 2001, 55, 219.
17. Burguera, J.L.; Burguera, M. Spectrochimica Acta B 2001, 56, 1801.
18. Benkhedda, K.; Infante, H.G.; Ivanova, E.; Adams, F. Fresenius Anal. Chem. 2000, 368, 288.
19. Yan, X.P.; Hendry, M.J.; Kerrich, R. Anal. Chem. 2000, 72, 1879.
20. Yan, X.P.; Kerrich, R.; Hendry, M.J. Anal. Chem. 1998, 70, 4736.
21. Chen, H.H.; Beauchemin, D. Canadian J. of Anal. Sci. and Spectro. 2000, 45, 84.
22. Chen, H.H.; Beauchemin, D. J. Anal. At. Spectrom. 2001, 16, 1356.
23. Wang, J. Anal. Bioanal. Chem. 2005, 381, 809.
24. Manz, A., Graber, N. and Widmer, H. M. Sens Actuator B 1990, B1, 244.
25. Harrison, D.J.; Vandenberg, A. Micro Total Analysis System 1999, 1998.
26. Kim, D.S.; Lee, S.H.; Ahn, C.H.; Lee, J.Y.; Kwon, H. Lab chip 2006, 794.
27. Kutter, J. P.; Jacobson, S. C. and Ramsey, J. M. J. Microcolumn Separations 2000, 12, 93.
28. Oleschuk, R. D., Shultz-Lockyear, L. L., Ning, Y. and Harrison, D. J. Anal. Chem. 2000, 72, 585.
29. Yu, C.; Davey, M. H.; Svec, F. and Frchet, J. M. J. Anal. Chem. 2001, 73, 5088.
30. 陳忠斌,生物晶片技術,化學工業出版社, 2005, pp199.
31. Fan, Z. H. and Harrison, D. J. Anal. Chem. 1994, 66, 177.
32. Martynova, L.; Locascio, L. E.; Gaitan, M.; Kramer, G. W.; Christensen , R. G. and MacCrehan, W. A. Anal. Chem. 1997, 69, 4783.
33. McCormick, R.M.; Nelson, R. J.; Alonso-Amigo, M. G.; Benvegnu, D. J. and Hooper, H. H. Anal. Chem. 1997, 69, 2626.
34. McCormick, R.M.; Nelson, R. J.; Alonso-Amigo, M. G.; Benvegnu, D. J. and Hooper, H. H. Anal. Chem. 1997, 69, 2626.
35. Klank, H.;Kutter, J. P. and Geschke, O. Lab Chip 2002, 2, 242.
36. Yuan, D. and Das, S. J. Appl. Phys. 2007, 101, 024901.
37. Solomons, T.W. and Fryhle C. B. Organic Chemistry, John Wiley & Sons, Inc., UK, 2003.

第二章 參考文獻
1. Strathmann, T. J. and Myneni, S. C. B. Geochimica et Cosmochimica Acta 2004, 68, 3441.
2. Urlaub, R.;Posset, U. and Thull, R. Journal of Non-Crystalline Solids 2000, 265, 276.
3. Halliwell, B., and Gutteridage, J.M.C. Biochem.J. 1984, 219, 1.
4. Jarvis, K. E.;Gray, A.L., and Houk, R.S. Handbook of inductively coupled plasma mass spectrometry. Blackie, Glasgow, 1992.
5. Taylor, E. H. Inductively coupled plasma mass spectrometry. Wiley-VCH, New York, 2001.
6. Todoli, J. L. and Mermet, J. M. Trac-Trends in Analytical Chemistry 2005, 24, 107.
7. Guo, X.; Sturgeon, R. E.; Mester, Z. and Gardner, G. J. Analytical Chemistry 2004, 76, 2401.
8. www.perkinelmer.com
9. 劉海北,科學發展 2005, 386, pp.14.
10. Klank, H.;Kutter, J.P. and Geschke, O. Lab Chip 2002, 2, 242.
11. Yuan, D. and Das, S. J. Appl. Phys. 2007, 101, 024901.

第三章 參考文獻
1. Su, K. C.; Li, T. W. and Sun, Y. C. Anal. Chem. 2008, 80, 6959.
2. Tokeshi, M.; Minagawa, T.; Uchiyama, K.; Hibara, A.; Sato, K.; Hisamoto, H. and Kitamori, T. Anal. Chem. 2002, 74, 1565.
3. 林炳承、秦建華,科學出版社,2006, pp.74.
4. Bai, X. X.; Lee, H. J.; Rossier, J. S.; Reymond, F.; Schafer, H.; Wossner, M. and Girault, H. H. Lab Chip 2002, 2, 45.
5. Klank, H. and Kutter, J.P.; Geschke, O. Lab Chip 2002, 2, 242.
6. Pai, S. C.; Chen, T. C. and Wong, T. F. Anal. Chem. 1990, 62, 774.


第四章 參考文獻
1. Strathmann, T. J. and Myneni, S. C. B. Geochim. Cosmochim. Acta 2004, 68, 3441.
2. Urlaub, R.;Posset, U. and Thull, R. Journal of Non-Crystalline Solids 2000, 265, 276.
3. Palacios, E. G.; Juarez-Lopez, G. and, Monhemius, A.J. Hydrometallurgy 2004, 72, 139.
4. Lee, P. L.;Sun, Y. C. and Ling, Y. C. J. Anal. At. Spectrom. 2009, 24, 320.
5. Tannenbaum R.; Hakanson C.; Zeno A. and Tirrell M. Langmuir 2002, 18, 5592-5599.
6. Bashir, W. and Paull, B. J. Chromatogr. A 2002, 942, 73–82.
7. Stafiej, A. and Pyrzynska, K. Separation and Purification Technology 2007, 58, 49.
8. Su, K. C.; Li, T. W. and Sun, Y. C. Anal. Chem. 2008, 80, 6959.
9. Samczyn´ski, Z. Solvent Extraction and Ion Exchange 2006, 24, 781.
10. Sun, Y. C.;Lu, Y. W. and Chung, Y. T. J. Anal. At. Spectrom. 2007, 22, 77.
11. 林晏鈴 國立清華大學生醫工程與環境科學系研究所碩士論文, 2008
12. Sun, Y. C. and Ho, M. C. J. Anal. At. Spectrom. 2004, 19, 1504.
13. Watson, C. J.;Venton, B. J. and Kennedy, R. T. Anal. Chem. 2006, 78, 1391.


第六章 參考文獻
1. Lyon, T.D.; Fell, G.S. J. Anal. At. Spectrom. 1988, 3, 265.
2. Vig, K.; Megharaj, M.; Sethunathan, N.; Naidu, R. Advances In Environmental Research 2003, 8, 121.
3. Cojan, I.; Renard, M.; Emmanuel, L. Palaeogeography Palaeoclimatology Palaeoecology 2003, 191, 111.
4. Haraguchi,H J. Anal. At. Spectrom. 2004, 19, 5.
(此全文未開放授權)
電子全文
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 發展多層微流體裝置進行食品指標成分之定量分析
2. 開發披覆式晶片型光觸媒輔助還原裝置串連高效能液相層析與感應耦合電漿質譜儀進行環境水樣中無機硒物種之分析研究
3. 建立高通量固相萃取晶片搭配感應耦合電漿質譜儀之連線分析系統進行微量元素之分析研究
4. 利用Neutralizer-(micro-column)-ICP-MS連線系統測定高濃度酸中超微量雜質元素之分析研究
5. 利用批次及離體模式進行online HPLC-UV/nano-TiO2/HCOOH PCRD-ICP-MS系統在自然水樣及尿液中連線測定硒物種之研究
6. 磁性奈米粒子及其複合材料之製備應用與氧化鋅奈米粒子細胞毒性之研究
7. 建立HPLC-UV/nano-TiO2-ICP-MS連線系統進行尿液中汞物種之分析研究
8. 開發PVC beads packed micro-column ICP-MS連線系統進行高鹽基質樣品中微量元素的分析研究
9. 晶片型固相萃取技術開發及其在微量元素分析上的應用
10. 活體動物體內量子點及鎘離子動態變化連線分析系統的開發與應用
11. 建立線上HPLC-Photocatalyst-Assisted Digestion and Vaporization Device (PADVD)-ICP-MS連線系統進行人體尿液中硒物種之分析研究
12. 開發Microdialysis-Desalter-ICP-MS連線分析系統進行活體動物肝臟中量子點穩定性及鎘元素拮抗作用之分析研究
13. 利用奈米金粒子訊號放大及磁性粒子分離技術進行核酸序列及汞離子之分析研究
14. Development of online HPLC-PMMA Chip-based Photo-Catalyst Reduction Device (PC2RD)-ICP-MS hyphenated system for determination of selenium species in nature water
15. Development of Microdialysis-In-tube SPE-ICP-MS System for the determination of trace elements in brain of anesthetized rat
 
* *