帳號:guest(18.217.2.199)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蕭伊倫
作者(外文):Hsiao, I-Lun
論文名稱(中文):奈米氧化鋅微粒在不同環境介質之分散性與其物化特性對人類肺泡上皮癌細胞之影響
論文名稱(外文):The Study of Nano-ZnO: Particle Dispersion from Air to Aqueous Surroundings and its Physicochemical Characteristics Effect on Human Lung Carcinoma Epithelial Cells
指導教授(中文):黃鈺軫
指導教授(外文):Huang, Yuh-Jeen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:9612526
出版年(民國):98
畢業學年度:97
語文別:英文
論文頁數:153
中文關鍵詞:奈米氧化鋅人類肺泡上皮癌細胞核殼體
外文關鍵詞:nano-ZnOA549 cellcore-shell nanoparticles
相關次數:
  • 推薦推薦:0
  • 點閱點閱:156
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
奈米科技快速的發展使得各種奈米材料商品已經充斥在生活中,而這些奈米級材料對人類及環境可能造成的危害也越來越受重視。
本研究首先利用低壓式電子衝擊器與雷射奈米粒徑分析儀探討奈米氧化鋅粒子在大氣與水體環境中的分布及凝聚特性,並比較不同方式之超音波處理對於水體中奈米粒子分散性的影響。其後也針對不同pH值、離子強度、界面活性劑之存在等條件測試奈米氧化鋅的聚集特性。進而探討奈米氧化鋅於更複雜的生物培養液中的懸浮與沉澱特性,將結果利用於找出適合的暴露環境以評估奈米氧化鋅之細胞毒性。另一方面,本研究也藉由自製奈米微粒探討奈米氧化鋅的物化特性 (大小、表面積、形狀、表面結構) 對於細胞毒性的影響,最後則藉由在奈米氧化鋅上被覆二氧化鈦來探討其被覆厚度與被覆物晶型對於細胞毒性的影響。
結果發現當奈米粒子自空氣進入水體中後會形成嚴重的凝聚現象,而經由不同方式的超音波處理後,發現以探針式的處理分散效果最好,經處理過的粒徑分布與由電子式低壓衝擊氣所偵測之氣動粒徑範圍非常相近。而水體的離子強度、酸鹼度和界面活性劑的添加對於奈米氧化鋅的凝聚特性產生相當大的影響,其原因則歸咎於粒子表面電雙層厚度之變化。然而當奈米氧化鋅進入生物培養液(DMEM)後,即使經過超音波處理其水動粒徑仍高達900 nm,且高濃度的奈米氧化鋅懸浮液由於粒子間接觸頻率高,導致奈米粒子的凝聚與沉澱速率皆增加。如在生物培養液中加入不同濃度(0.5-10%) 的胎牛血清,則能有效改善其分散性;且在實際的MTT及IL-8細胞毒性測試中也發現以不含胎牛血清的培養液暴露奈米氧化鋅粒子最能在較短時間呈現其毒理效應。本研究使用沉澱法及醇熱法製備不同大小的桿狀與球形奈米氧化鋅,也藉由添加油酸使微粒表面呈現疏水性。進行毒性試驗後發現粒徑較小的奈米氧化鋅無論在桿狀或球形的毒性都較高,而桿狀奈米氧化鋅的毒性在相似的粒徑下又比球形奈米氧化鋅之毒性強。比較經油酸處理前後之奈米氧化鋅毒性,由於處理後奈米氧化鋅之疏水特性導致其毒性減弱,但由IL-8的測定顯示此材料本身可誘發出比未經油酸處理之奈米氧化鋅更多的趨炎物質。研究也發現,雖然奈米微粒的表面積大小影響其毒性,但並非最主要因素。
在奈米殼核體的研究結果部分,經由分析鑑定後,證實製備時間與二氧化鈦的被覆厚度有關,且發現被覆之二氧化鈦之形態為非晶形。將此非晶形純二氧化鈦與商業化二氧化鈦( Degussa P25與ST-21) 之毒性比較後發現非晶形二氧化鈦具有較顯著之細胞毒性。由此可知奈米粒子之晶型和其細胞毒性也有相當程度的關係。雖然二氧化鈦仍然具有細胞毒性,其殼層厚度對於奈米氧化鋅毒性的減弱具有一定的貢獻,其主因則推測是二氧化鈦殼層減緩鋅離子釋放的速率所造成。
綜合上述,本研究可觀察到在相同濃度的條件下,奈米微粒物化特性對細胞毒性影響效應大小如下:
物種 > 晶相 > 形狀 > 大小 > 表面積
The rapid development of nanotechnology makes various kinds of nano-commodities have been packed in our life, but these nano-materials which may cause hazards to human and environment also lead much attention.
In this study, the electrical low pressure impactor (ELPI) and Zetasizer were first used to discuss the different size distribution and agglomerate state of nano-ZnO in various sizes. Different sonication methods were compared for improving the dispersion of nanoparticles in water. Then, the agglomeration state of nanoparticles in various conditions water sysem such as pH value, ionic strength and existence of surfactant were discussed. Another study focused on the agglomeration and sedimentation of nanoparticles in a complicated DMEM cell culture medium. The results would be estimated suitable conditions for assessing the nano-ZnO cytotoxicity. In addition, self-prepared nano-ZnO which had different physicochemical properties (sizes, shapes and surface properties) were utilized to assess their correlation with toxicological responses. Finally, TiO2-coated ZnO was prepared to investigate the shell thickness effect and phase effect on the cytotoxicity.
The results showed that when nano-ZnO transported from air to the water, the particles aggregated seriously. After comparing different sonication methods, the probe sonication got excellent dispersion result. The pH value, ionic strength and the surfactant existence of water contributed significant effect on the hydrodynamic size of nanoparticles, which was attributed to the variety of double electric layer on the particles surface. As particles dispersed to DMEM medium, the hydrodynamic size of particles increased to 900 nm even the suspension was sonicated. If serum was added into the medium, the suspension became stable. In MTT and IL-8 experiments, it could find that particles appeared more toxicity in serum-free medium.
Nanorod and nanosphere ZnO were successfully produced by precipitation and solvothermal methods, the hydrophobic surface property of nano-ZnO was also prepared by adding oleic acid. Smaller particles had more toxicity than the large one could be found in either rod and sphere particles. Furthermore, under similar particle size the rod shapes ZnO were more toxic than sphere shapes. Hydrophobic ZnO particles in water system caused serious agglomeration and lower toxicity, while the more amount of potential IL-8 release than the non-modified nanoparticles. Interestingly, the particle surface area didn’t show significant relations on its toxicity.
The ZnO-TiO2 core-shell structure was prepared and confirmed that increasing coating time increased shell thickness. The amorphous TiO2 shell was demonstrated by XRD, and this material exhibited more potential toxicity than other phases TiO2 nanoparticles (P25 and ST-21), which represented the phases of nanoparticles played more important role than their size effect. Though amorphous TiO2 still had toxicity, the thickness shell slightly decreased the toxicity of nano-ZnO. It might be attributed to the lower rate of releasing zinc ion or the partial uncovered ZnO.
In this study, under the same mass concentration dosage, the effects of different physicochemical properties of nanoparticles inducing the toxicological responses are prioritized as follows: species > phase > shape > size > surface area.
Abstract I
摘要 II
Contents III
List of Tables VII
List of Figures VIII
Chapter 1 Background and Introduction 1
1.1 Nanotoxicology-smaller is not always better 1
1.2 In vitro cytotoxicology 2
1.3 Objects of this study 2
1.4 References: 4
Chapter 2 Literature review 6
2.1 Nanotechnology 6
2.2 Nanomaterials 7
2.3 Nano-ZnO 8
2.3.1 Physico-chemical properties and its applications 8
2.3.1.1 Chemical properties 8
2.3.1.2 Crystal structure 9
2.3.1.3 Electronic properties 10
2.3.1.4 Applications 10
2.3.2 Exposure routes 12
2.3.3 Methods to synthesize nano-ZnO 13
2.4 Concept of nanoparticles cytotoxicity 14
2.4.1 Cytotoxicity assays 14
2.4.2Human lung carcinoma epithelial cell line 16
2.4.3 The role of physicochemical characteristic on biological response 18
2.4.3.1 Particle size 19
2.4.3.2 Dispersion factors 20
2.4.3.3 Surface area 22
2.4.3.4 Surface charge 23
2.4.3.5 Chemical composition 24
2.4.3.6 Shapes 25
2.4.3.7 Solubility 25
2.4.4 Possible mechanism by which nanomaterials interact with biological tissue 26
2.4.5 In vitro toxicity studies of Nano-ZnO 29
2.5 Concept of core-shell colloidal nanoparticles 30
2.5.1 Inorganic and composite coatings 31
2.5.2 In vitro toxicity of core-shell nanoparticles 32
2.6 References 33
Chapter 3 Experimental procedures 42
3.1 Chemicals and solutions 42
3.2 Nano-ZnO commercial nanopowder collection 44
3.2.1 ELPI 44
3.2.2 Collection system 45
3.2.3 Collected powder disperse from filter to water 46
3.3 Nano-ZnO nano powder disperse in water 46
3.3.1 Sonication methods study 47
3.3.2 Concentration study 47
3.3.3 Temperature study 47
3.3.4 pH and ionic strength study 47
3.3.5 Surfactant study 48
3.3.6 Relations between particles size and zeta potential 48
3.4 Nano-ZnO nano powder disperse in DMEM cell culture medium 48
3.4.1 Concentration study 48
3.4.2 Protein study (serum) 49
3.4.3 Various primary size of as-prepared nanorods ZnO study 49
3.5 Interference of nano-ZnO on cytotoxicity assay 50
3.5.1 Absorption effect 50
3.5.2 Adsorption effect (IL-8) 51
3.6 Preparation of different size, shape and surface structure nano-ZnO 51
3.6.1 Prepare various sizes ZnO nano-rod 51
3.6.2 Prepare various sizes ZnO nano-sphere 51
3.6.3 Prepare monodispersed sphere nano-ZnO 52
3.6.4 Preparation of TiO2-ZnO core-shell nanoparticles 52
3.6.5 Nomenclature and preparation conditions of self-prepared nano-ZnO 53
3.7 Nanoparticles characterization 54
3.7.1 TEM 54
3.7.2 XRD 55
3.7.3 Zetasizer 56
3.7.4 BET 57
3.7.5 UV-vis spectrophotometer 58
3.7.6 ICP-AES 59
3.7.7 Raman spectroscopy 59
3.7.8 XAS (XANES, EXAFS) (data see appendix II) 60
3.8 Cytotoxicity and inflammation studies of nano-ZnO particles on A549 cell lines 61
3.8.1 Cell culture 61
3.8.2 Preparation of stock solution 61
3.8.3 Sample treatment 62
3.8.4 Cell morphology 62
3.8.5 MTT assay 62
3.8.6 Trypan blue exclusion assay 63
3.8.7 Production of IL-8 63
3.8.8 Statistics 64
3.9 References 64
Chapter 4 Size distribution and agglomeration effect on nano-ZnO dispersion in air and aqueous solution 65
4.1 Size distribution difference between air and aqueous surroundings 66
4.2 The effect of different sonication methodologies in preparing dispersions 69
4.3 Dispersion state of nano-ZnO in different conditions of solutions 70
4.3.1 Concentration study 70
4.3.2 Temperature effect 72
4.3.3 Ionic strength and pH effect 73
4.3.4 Surfactant effect 79
4.3.5 Particle size effect on zeta potential 80
4.4 Summary 82
4.5 References 83
Chapter 5 Behaviors of size, agglomeration and sedimentation of nano-ZnO in cell culture medium and its toxicological studies 85
5.1 Agglomeration and sedimentation studies for ZnO nanoparticles in DMEM 85
5.1.1 Size distribution difference of nano-ZnO between water and DMEM medium 85
5.1.2 Concentration study 87
5.1.3 Protein study 89
5.1.4 Size study 92
5.2 Nano-ZnO toxicity studies under serum or serum-free medium 93
5.2.1Nano-ZnO particles properties 93
5.2.2 Cell morphology 94
5.2.3 MTT and IL-8 assay with or without serum exposure 96
5.3 Particles interference in toxicological studies 99
5.3.1 Particles absorption effect for MTT assay 99
5.3.2 Protein adsorption effect on IL-8 assay 100
5.4 Summary 102
5.5 References 103
Chapter 6 Physico-chemical characters of prepared nano-ZnO play an important role on the toxicity of human lung epithelial cells 105
6.1 Characterization of Nano-ZnO Samples 105
6.1.1 Nanorod ZnO particles 105
6.1.2 Nanosphere ZnO particles 110
6.1.3 Modified sphere ZnO nanoparticles 113
6.2 Cytotoxicity and inflammatory mediator results with A549 cell 115
6.2.1 Size factor 115
6.2.2 Shape factor 120
6.2.3 Surface area factor 122
6.2.4 Surface modification factor 123
6.3 Discuss the possible mechanism for ZnO toxicity in A549 cells 126
6.4 Summary 126
6.5 References 127
Chapter 7 In vitro toxicity of ZnO-TiO2 core-shell nanoparticles 129
7.1 Characterization of ZnO-TiO2 core-shell nanoparticles 129
7.1.1 XRD and TEM 129
7.1.2 IR and Raman 133
7.1.3 UV-vis 135
7.1.4 DLS (hydrodynamic size and zeta potential) and ICP-AES 137
7.2 Cytotoxicity of TiO2 shell: phase effect 138
7.2.1 Characterization of Nano-TiO2 Samples 138
7.2.2 Cytotoxicity and inflammatory mediator results with A549 139
7.3 Cytotoxicity of ZnO-TiO2 core-shell nanoparticles 141
7.3.1 Cytotoxicity of ZnO-TiO2 and comparative physical mixture particles 141
7.3.2 Shell effect 143
7.4 Summary 146
7.5 References 147
Chapter 8 Conclusions 149
Appendix 151
[1]Wolinsky, H. EMBO Reports. 7, 858–861. (2006).
[2]Long, T.C.; Saleh, N.; Tilton, R.D.; Lowry, G.V. and Veronesi, B. Environmental Science & Technololgy. 40, 4346-4352. (2006).
[3]Dreher, K.L. “Health and Environmental Impact of Nanotechnology: Toxicological Assessment of Manufactured Nanoparticles. Toxicological Sciences. 77, 3-5. (2004).
[4]Jeng, H.A. and Swanson, J. “Toxicity of metal oxide nanoparticles in mammalian cells”. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering. 41, 2699-2711. (2006).
[5]Warheit, D.B.; Sayes, C.M.; Reed, K.L.; Swain, K.A.” Health Effects Related to Nanoparticle Exposures: Environmental, Health and Safety Considerations for Aassessing Hazards and Risks” Phamacology & Therapeutics. 120, 35-42. (2008).
[6]Oberdorster, G.; Oberdorster, E.; Oberdorster, J. “Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles” Environmental Health Perspectives. 113,823-839. (2005).
[7]Casals, E.; Vazquez-Campos, S.; Bastus, N.G. and Puntes, V. “Distribution and Potential Toxicity of Engineered Inorganic Nanoparticles and cCarbon Nanostructures in Biological Systems”. Trends in Analytical Chemistry. 27, 672-683. (2008).
[8]Sayes, C.M.; Reed, K.L and Warheit, D.B.” Assessing Toxicity of Fine and Nanoparticles: Comparing In Vitro Measurements to In Vivo Pulmonary Toxicity Profiles” Toxicological Sciences. 97, 163-180. (2007).
[9]Monteiro-Riviere, N.A.; Inman,A.O. and Zhang, L.W.” Limitations and Relative Utility of Screening Assays to Assess Engineered Nanoparticle Toxicity in a Human Cell Line”. Toxicology and Applied Pharmacology. 234, 222-235. (2009).
[10]Murdock, R.C.; Braydich-Stolle, L.; Schrand, A.M. and Hussain, S.M.” Characterization of Nanomaterial Dispersion in Solution Prior to In Vitro Exposure Using Dynamic Light Scattering Technique”. Toxicological Sciences. 101, 239-253. (2008).
[11]Maynard, A.D. and Kuempel, E.D. ”Airborne Nanostructured Particles and Occupational Health”. Journal of Nanoparticle Research. 7, 587–614. (2005).
[12]Karakoti, A.S.; Hench, L.L. and Seal, S., “The Potential Toxicity of Nanomaterials - The Role of Surfaces”, JOM. 7, 77-82. (2006).
[13]Liz, K., “Nanoparticle Toxicity Under the Microscope” 26, January (2005) (www.nanotechweb.org).
[14]Taniguchi, N. “On the Basic Concept of ‘Nano-Technology’.” Proc. Intl. Conf. Prod. London, Part II, British Society of Precision Engineering. (1974).
[15]Osman, T.M.; Rardon, D.E.; Friedman, L.B. and Vega, L.F., “The Commercialization of Nanomaterials: Today and Tomorrow”, JOM. 58, 21-24. (2006).
[16]Maynard, A.D. “Nanotechnology: A Research Strategy for Addressing Risk Washington DC.” Woodrow Wilson International Center for Scholars. (2006).
[17]http://nano-taiwan.sinica.edu.tw/index.php?eng=T
[18]ASTM E 2456-06 “Terminology for Nanotechnology.”ASTM International. (2006).
[19]Buzea, C.; Pacheco, I. and Robbie, K. "Nanomaterials and Nanoparticles: Sources and Toxicity". Biointerphases. 2, MR17-MR71. (2007).
[20]Feng, S.Q.; Yu, D.P.; Zhang, H.Z.; Bai, Z.G.; Ding, Y.; Hang, Q.L.; Zou, Y.H. and Wang, J.J. ”Growth Mechanism and Quantum Confinement Effect of Silicon Nanowires”. Science in China Series A-Mathematics physics Astronomy. 42, 1316-1322. (1999).
[21]Nav Bharat Metallic Oxide Industries Pvt. Limited. “Applications of ZnO”, (http://www.navbharat.co.in/Clients.htm) Access date April 13, 2009.
[22]Yin, X.L.; Birkner, A.; Hänel, K.; Löber, T.; Köhler, U. and Wöll, C., “Adsorption of Atomic Hydrogen on ZnO (1010): A STM Study”, Physical Chemistry Chemical Physics. 8, 1477-1481. (2006).
[23]Wöll, C., “The Chemistry and Physics of Zinc Oxide Surfaces”, Progress in Surface Science. 82, 55-120. (2007).
[24]Wikipedia. “Zincoxide”, (http://en.wikipedia.org/wiki/Zinc_oxide#cite_note-12) Access date April 10, (2009).
[25]Özgür, Ü.; Alivov, Ya. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Doģan, S.; Avrutin, V.; Cho, S. J. and Morkoç, H., “A Comprehensive Review of ZnO Materials and Devices”, Journal of Applied Physics. 98, 041301. (2005).
[26]Nature pigments. “The Origin and History of Zinc Oxide Applied in Paints” (http://naturalpigments.com/detail.asp?PRODUCT_ID=475-31S) Access date April 10, (2009).
[27]Huang, G.G.; Wang, C.T.; Tang, H.T.; Huang, Y.S. and Yang, J., “ZnO nanoparticle-modified Infrared Internal Reflection Elements for Selective Detection of Volatile Organic Compounds”, Analytical Chemistry. 78, 2397-2404. (2006).
[28]Zaouk, D.; Zaatar, Y.; Asmar, R. and Jabbour, J., “Piezoelectric Zinc Oxide by Electrostatic Spray Pyrolysis”, Microelectronics Journal. 37, 1276-1279. (2006).
[29]Rensmo, H.; Keis, K.; Lindstrom, H.; Sodergren, S.; Solbrand, A.; Hagfeldt, A.; Lindquist, S.E.; Wang, L.N. and Muhammed, M., “High Light-to-energy Conversion Efficiencies for Solar Cells based on Nanostructured ZnO Electrodes”, Journal of Physical Chemistry B. 101, 2598-2601. (1997).
[30]Hara, K.; Horiguchi, T.; Kinoshita, T.; Sayama, K.; Sugihara, H. and Arakawa, H., “Highly Efficient Photon-to-electron Conversion Of Mercurochrome-sensitized Nanoporous ZnO Solar Cells”, Chemistry Letters. 4, 316-317. (2000).
[31]Dransfield, G.P., “Inorganic sunscreens”, Radiation Protection Dosimetry. 91, 271-273. (2000).
[32]Wang, R.H.; Xin, J.H. and Tao, X.M., “UV-Blocking Property of Dumbbell-shaped ZnO Crystallites on Cotton Fabrics”, Inorganic Chemistry. 44, 3926-3930. (2005).
[33]Tam, K.H.; Djurisic, A.B.; Chan, C.M.N.; Xi, Y.Y.; Tse, C.W.; Leung, Y.H.; Chan, W.K.; Leung, F.C.C. and Au, D.W.T., “Antibacterial Activity of ZnO Nanorods Prepared by a Hydrothermal Method”, Thin Solid Films. 516, 6167-6174. (2008).
[34]Wu, Y.L.; Lim, C.S.; Fu, S.; Tok, A.I.Y.; Lau, H.M. and Zeng, X.T., “Surface Modifications of ZnO Quantum Dots for Bio-imaging”, Nanotechnology. 18, 215604. (2007).
[35]Liu, Y.F.; Zhang, Y.B.; Wang, S.P.; Pope, C. and Chen, W., “Optical Behaviors of ZnO-porphyrin Conjugates and Their Potential Applications for Cancer Treatment”, Applied Physics Letters. 92, 143901. (2008).
[36]Hosono, E.; Fujihara, S. and Kimura, T., “Fabrication of Nanocrystalline ZnO Thick Films for Solar Cells”, Key Engineering Materials. 216, 69-72. (2002).
[37]Quintana, M.; Marinado, T.; Nonomura, K.; Boschloo, G. and Hagfeldt, A., “Organic Chromophore-sensitized ZnO Solar Cells: Electrolyte-dependent Dye Desorption and Band-edge Shifts”, Journal of Photochemistry and Photobiology A. 202, 159-163. (2009).
[38]Göpel, W., “Chemisorption and Charge Transfer at Ionic Semiconductor Surfaces: Implications in Designing Gas Sensors”, Progress in Surface Science. 20, 9-103. (1985).
[39]Yang, H.C.; Chang, F.W. and Roselin, L.S., “Hydrogen Production by Partial Oxidation of Methanol over Au/CuO/ZnO Catalysts”, Journal of Molecular Catalysis A. 276, 184-190. (2007).
[40]Wang, J.X. and Luo, L.T., “A Comparative Study of Partial Oxidation of Methanol over Zinc Oxide Supported Metallic Catalysts”, Catalysis Letters. 126, 325-332. (2008).
[41]Chen, C.C., “Degradation Pathways of Ethyl Violet by Photocatalytic Reaction with ZnO Dispersions”, Journal of Molecular Catalysis A. 264, 82-92. (2006).
[42]Yang, G.C.C and Chan, S.W., “Photocatalytic Reduction of Chromium(VI) in Aqueous Solution Using Dye-sensitized Nanoscale ZnO Under Visible Light Irradiation”, Journal of Nanoparticle Research. 11, 211-230. (2009).
[43]Yamamoto, O., “Influence of Particle Size on the Antibacterial Activity of Zinc Oxide”, International Journal of Inorganic Materials. 3, 643-646. (2001).
[44]Kumar, S.A. and Chen, S.M., “Nanostructured Zinc Oxide Particles in Chemically Modified Electrodes for Biosensor Applications”, Analytical Letters. 41, 141-158. (2008).
[45]Dryson, E.W. and Rogers, D.A., “Exposure to Fume in Typical New Zealand Welding Operations”, New Zealand Medical Journal., 104, 365-367. (1991).
[46]Donham, K.J., “Hazardous Agents in Agricultural Dusts and Methods of Evalution”. American Journal of Industrial Medicine. 10, 205-220. (1986).
[47]Flaherty, D.K.; Deck, F.H.; Cooper, J.; Bishop, K.; Winzenburger, P.A.; Smith, L.R. and Witmer, W.B., “Bacterial Endotoxin Isolated from a Water Spray Air Humidification System as a Putative Agent of Occupantion-Related Lung Disease”, Infection and Immunity. 43, 206-212. (1984).
[48]Huggins F.E.; Huffman G.P. and Robertson J.D., “Speciation of Elements in NIST Particulate Matter SRMs 1648 and 1650”, Journal of Hazardous Materials. 74, 1-23. (2000).
[49]Ma, X. ; Zhang, H.; Ji, Y.; Xu, J.; Yang, D., ” Sequential Occurrence of ZnO Nanopaticles, Nanorods, and Nanotips During Hydrothermal Process in a Dilute Aqueous Solution”, Materials Letters., 59, 3393-3397. (2005).
[50]Beckett, W.S.; Chalupa, D.F.; Pauly-Brown, A.; Speers, D.M.; Stewart, J.C.; Frampton, M.W.; Utell, M.J. Huang, L.S.; Cox, C.; Zareba, W. and Oberdorster, G., ” Comparing Inhaled Ultrafine versus Fine Zinc Oxide Particles in Healthy Adults - A Human Inhalation Study”, American Journal of Respiratory and Critical Care Medicine. 171, 1129-1135. (2005).
[51]Spanhel, L. and Anderson, M.A., “Semiconductor Clusters in the Sol-gel Process: Quantized Aggregation, Gelation, and Crystal Growth in Concentrated Zinc Oxide Colloids”, Journal of the American Chemical Society. 113, 2826-2833. (1991).
[52]Yuan, F.L.; Hu, P.; Yin, C.L.; Huang, S.L. and Li, J.L., “Preparation and Properties of Zinc Oxide Nanoparticles Coated with Zinc Aluminate”, Journal of Materials Chemistry. 13, 634-637. (2003).
[53]Du, H.C.; Yuan, F.L.; Huang, S.L.; Li, J.L.and Zhu, Y.F., “A New Reaction to ZnO Nanoparticles”, Chemistry Letters, 33, 770-771. (2004).
[54]Umar, A.; Lee, S.; Lee, Y.S.; Nahm, K.S. and Hahn, Y.B., “Star-shaped ZnO Nanostructures on Silicon by Cyclic Feeding Chemical Vapor Deposition”, Journal of Crystal Growth. 277, 479-484. (2005).
[55]Jie, J.S.; Wang, G.Z., Wang, Q.T.; Chen, M.; Han, X.H.; Wang, X.P. and Hou, J.G., “Synthesis and Characterization of Aligned ZnO Nanorods on Porous Aluminum Oxide Template”, Journal of Physical Chemistry B. 108, 11976-11980. (2004).
[56]Qian, D. ; Jiang, J.Z. and Hansen, P.L., “Preparation of ZnO Nanocrystals via Ultrasonic Irradiation”, Chemical Communications. 9, 1087-1089. (2003).
[57]Pacholski, C.; Kornowski, A. and Weller, H., “Self-assembly of ZnO: From Nanodots, to Nanorods”, Angewandte Chemie-International Edition. 41, 1188. (2002).
[58]Tam, K.H.; Djurisic, A.B.; Chan, C.M.N.; Xi, Y.Y.; Tse, C.W.; Leung, Y.H.; Chan, W.K.; Leung, F.C.C. and Au, D.W.T., “Antibacterial Activity of ZnO Nanorods Prepared by a Hydrothermal Method”, Thin Solid Films. 516, 6167-6174. (2008).
[59]Huang, M.H.; Wu, Y.Y.; Feick, H.; Tran, N.; Weber, E. and Yang, P.D., “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport”, Advanced Materials. 13, 113-116. (2001).
[60]Liu, W.C. and Cai, W., “Synthesis and Characterization of ZnO Nanorings with ZnO Nanowires Array Aligned at the Inner Surface without Catalyst”, Journal of Crystal Growth. 310, 843-846. (2008).
[61]Li, P., “One-Step Solution Synthesis of ZnO Nanotubes”, Chinese Journal of Inorganic Chemisrty. 25, 354-358. (2009).
[62]Yang, Z.; Biasini, M.; Beyermann, W.P.; Katz, M.B.; Ezekoye, O.K.; Pan, X.Q.; Pu, Y.; Shi, J. Zuo, Z. and Liu, J.L., “Electron Carrier Concentration Dependent Magnetization and Transport Properties in ZnO: Co Diluted Magnetic Semiconductor Thin Films”, Journal of Applied Physics. 104, 113712. (2008).
[63]Mueller, R.; Madler, L. and Pratsinis, S.E., “Nanoparticle Synthesis at High Production Rates by Flame Spray Pyrolysis”, Chemical Engineering Science. 58, 1969-1976. (2003).
[64]Rodríguez-Paéz, J.E.; Caballero, A.C.; Villegas, M.; Moure, C.; Duran, P. and Fernandez, J.F., “Controlled Precipitation Methods: Formation Mechanism of ZnO Nanoparticles”, Journal of the European Ceramic Society. 21, 925-930. (2001).
[65]Cao, H.L.; Qian, X.F.; Gong, Q.Q.; Du, W.M.; Ma, X.D. and Zhu, Z.K., “Shape- and Size-Controlled Synthesis of Nanometre ZnO from a Simple Solution Route at Room Temperature”, Nanotechnology., 17, 3632–3636. (2006).
[66]Ge, M.Y.; Wu, H.P.; Niu, L.; Liu, J.F.; Chen, S.Y.; Shen, P.Y.; Zeng, Y.W.; Wang, Y.W.; Zhang, G.Q. and Jiang, J.Z., ”Nanostructured ZnO: From Monodisperse Nanoparticles to Nanorods”, Journal of Crystal Growth., 305, 162–166. (2007).
[67]Davoren, M.; Herzog, E.; Casey, A.; Cottineau, B.; Chambers, G.; Byrne, H.J. and Lyng, F.M., “In Vitro Toxicity Evaluation of Single Walled Carbon Nanotubes on Human A549 Lung Cells”, Toxicology In Vitro. 21, 438-448. (2007).
[68]Karlsson, H.L.; Cronholm, P.; Gustafsson, J. and Möller, L., “Copper Oxide Nanoparticles are Highly Toxic: A Comparison between Metal Oxide Nanoparticles and Carbon Nanotubes”, Chemical Research in Toxicology. 21, 438-448. (2007).
[69]Wikipedia. “MTT assay”, (http://en.wikipedia.org/wiki/MTT_assay) Access date April 13, 2009.
[70]Connor, E.E.; Mwamuka, J.; Gole, A. and Wyatt, M.D., “Gold Nanoparticles are Taken up by Human Cells but do not Cause Acute Cytotoxicity”, Small. 1, 325-327. (2005).
[71]Pulskamp, K.; Wrle-Knirsch, J.M. and Krug, H.F., “Carbon Nanotubes and Their Influence on Cell Viability and Function”, Toxicology Letters. 172, S35-36. (2007).
[72]Sayes, M.C.; Wahi, R.; Kurian, P.A.; Liu, Y.; West, J.L.; Ausman, K.D.; Warheit, D.B. and Colvin, V.L., “Correlating Nanoscale Titania Structure with Toxicity: A Cytotoxicity and Inflammatory Response Study with Human Dermal Fibroblasts and Human Lung Epithelial Cells”, Toxicological Sciences. 92, 174-185. (2006).
[73]Cheng, M.D., “Effects of Nanophase Materials (<= 20 nm) on Biological Responses”, Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering. 39, 2691-2705. (2004).
[74]Chang, Y.J.; Liu, C.Y.Y. ; Chiang, B.L.; Chao, Y.C. and Chen, C.C., “Induction of IL-8 Release in Lung Cells via Activator Protein-1 by Recombinant Baculovirus Displaying Severe Acute Respiratory Syndrome-Coronavirus Spike Proteins: Identification of Two Functional Regions”, The Journal of Inmunology. 173, 7602-7614. (2004).
[75]Nam, H.Y.; Ahn E.K.; Kim, H.J.; Lim, Y.; Lee, C.B.; Lee, K.Y. and Vallyathan, V., “Diesel Exhaust Particles Increase IL-1β-induced Human β-defensin Expression via NF-κB-mediated Pathway in Human Lung Epithelial Cells”, Particle and Fibre Toxicology. 3:9, (2006).
[76]Masubuchi, T.; Koyama, S.; Sato, E.; Takamizawa, A.; Kubo, K.; Sekiguchi, M.; Nagai, S. and Izumi, T., “Smoke Extract Stimulates Lung Epithelial Cells to Release Neutrophil and Monocyte Chemotactic Activity”, American Journal of Pathology. 153, 1903-1912. (1998).
[77]Paakko, P.; Ramet, M.; Vahakangas, K.; Korpela, N.; Soini, Y.; Turunen, S.; Jaworska, M. and Gillissen, A., “Crocidolite Asbestos Causes an Induction of p53 and Apoptosis in Cultured A-549 Lung Carcinoma Cells”, Apoptosis. 3, 203-212. (1998).
[78]Worle-Knirsch, J.M.; Pulskamp, K. and Krug, H.F., “Oops They Did it Again! Carbon Nanotubes Hoax Scientists in Viability Assays”, Nano Letters. 6, 1261-1268. (2006).
[79]Lin, W.S.; Huang, Y.W.; Zhou, X.D. and Ma, Yi., ”In Vitro Toxicity of Silica Nanoparticles in Human Lung Cancer Cells”, Toxicological and Applied Pharmacology., 217, 252-259. (2006).
[80]Limbach,L.K.; Wick, P.; Manser,P.; Grass, R. N.; Bruinink, A. and Stark, W. J., “Exposure of Engineered Nanoparticles to Human Lung Epithelial Cells: Influence of Chemical Composition and Catalytic Activity on Oxidative Stress”, Environmental Science & Technology. 41, 4158-4163. (2007).
[81]Powers, K.; Brown, S.; Krishna, V.; Wasdo, S.; Moudgil, B.; and Roberts, S., “Research Strategies for Safety Evaluation of Nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation”, Toxicological Sciences. 90, 296–303. (2006).
[82]Driscoll, K.E.; Carter, J.M.; Howard, B.W.; Hassenbein, D.G. and Oberdorster, G., “Pulmonary Inflammatory, Chemokine, and Mutagenic Responses in Rats after Subchronic Inhalation of Carbon Black”, Toxicology and Applied Pharmacology. 136, 372-380. (1996).
[83]Yamamoto, A.; Honma, R.; Sumita, M. and Hanawa, T., “Cytotixicity Evaluation of Ceramic Particles of Different Sizes and Shapes”, Journal of Biomedical Materials Research. 68A, 244-256. (2003).
[84]Adams, L.K.; Lyon, D.Y. and Alvarez, P.J.J. ”Comparative Eco-toxicity of Nanoscale TiO2, SiO2, and ZnO Water Suspensions”, Water Research. 40, 3527-3532. (2006).
[85]Brown, J.S.; Zeman, K.L. and Bennett, W.D., “Ultrafine Particle Deposition and Clearance in the Healthy and Obstructed Lung”, American Journal of Respiratory and Critical Care Medicine. 166, 1240-1247. (2002).
[86]Li, D. and Hajime, H., “Enhancement of Photocatalytic Activity of Sprayed Nitrogen-containing ZnO Powders by Coupling with Metal Oxides during the Acetaldehyde Decomposition”, Chemosphere. 54, 1099-1110. (2004).
[87]Cho, Y.; Choi, W.; Lee, C.H.; Hyeon, T. and Lee H. I., “Visible Light-induced Degradation of Carbon Tetrachloride on Dye-sensitized TiO2”, Environmental Science & Technology. 35, 966-970. (2001).
[88]Dunphy Guzman, K.A.; Finnegan, D.L. and Banfield, J.F., “Influence of Surface Potential on Aggregation and Transport of Titania Nanoparticles”, Environmental Science & Technology. 40, 7688-7693. (2006).
[89]Wang, Y.; Zhang, J.; Shen, X.Y.; Shi, C.N.; Wu, J.J. and Sun, L., “Dispersion Investigation of TiO2 Nanoparticles Coated by Pulsed RF Plasma Polymer”, Materials Chemistry and Physics. 98, 217-224. (2006).
[90]Johnson, A.M.; Trakhtenberg, S.; Cannon, A.S. and Warner, J.C., “Effect of pH on the Viscosity of Titanium Dioxide Aqueous Dispersions with Carboxylic Acids”, Journal of Physical Chemistry A. 111, 8139-8146. (2007).
[91]Shvedova, A.A.; Kisin, E.R.; Mercer, R.; Murray, A.R.; Johnson, V.J. and Potapovich, A.I., “Unusual Inflammatory and Fibrogenic Pulmonary Responses to Single-walled Carbon Nanotubes in Mice”, American Journal of Physiology-Lung Cellular and Molecular Physiology. 289, L698-L708. (2005).
[92]Jiang, J.K.; Oberdorster, G. and Biswas, P., “Characterization of Size, Surface Charge, and Agglomeration State of Nanoparticle Dispersions for Toxicological Studies”, Journal of Nanoparticle Research. 11, 77-89. (2009).
[93]Limbach, L.K.; Li, Y.C.; Grass, R.N.; Brunner, T.J.; Hintermann, M.A.; Muller, M.; Gunther, D. and Stark, W.J., “Oxide Nanoparticle Uptake in Human Lung Fibroblasts: Effects of Particle Size, Agglomeration, and Diffusion at Low Concentrations”, Environmental Science & Technology. 39, 9370-9376. (2005).
[94]Allouni, Z.E.; Cimpan, M.R.; Hol, P.J.; Skodvin, T. and Gjerdet, N.R., “Agglomeration and Sedimentation of TiO2 Nanoparticles in Cell Culture Medium”, Colloids and Surfaces B-Biointerfaces. 68, 83-87. (2009).
[95]Gulden, M. and Seibert, H., “Impact of Bioavailability on the Correlation Between in Vitro Cytotoxic and In Vivo Acute Fish Toxic Concentrations of Chemicals”, Aquatic Toxicology. 72, 327-337. (2005).
[96]Oberdorster, G., “Toxicology of Ultrafine Particles: in Vivo Studies”, Philosophical Transactions of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences. 358, 2719-2739. (2005).
[97]Lin, W.S.; Xu, Y.; Huang, C.C.; Ma, Y.F.; Shannon, K.B.; Chen, D.R. and Huang, Y.W., “Toxicity of Nano- and Micro-sized ZnO Particles in Human Lung Epithelial Cells”, Journal of Nanoparticle Research. 11, 25-39. (2009).
[98]Gojova, A.; Guo, B.; Kota, R.S.; Rutledge, J.C.; Kennedy, I.M. and Barakat, A.I., “Induction of Inflammation in Vascular Endothelial Cells by Metal Oxide Nanoparticles: Effect of Particle Composition”, Environmental Health Perspectives. 115, 403-409. (2007).
[99]Soto, K.; Garza, K.M. and Murr, L.E., “Cytotoxic Effects of Aggregated Nanomaterials“, Acta Biomaterialia. 3, 351-358. (2007).
[100]Cael, V.; Van der Heyden, A.; Champmartin, D.; Barzyk, W.; Rubini, P. and Rogalska, E., “Interfacial Approach to Aluminum Toxicity: Interactions of Al(III) and Pr(III) with Model Phospholipid Bilayer and Monolayer Membranes”, Langmuir. 19, 8697-8708. (2003).
[101]Lockman, P.R.; Koziara, J.M.; Mumper, R. J. and Allen, D. D., “Nanoparticle Surface Charges Alter Blood-Brain Barrier Integrity and Permeability”, Journal of Drug Targeting. 12, 635-641. (2004).
[102]Rezwan, K.; Meier, L.P.; Rezwan, M.; Voros, J.; Textor, M. and Gauckler, L.J., “Bovine Serum Albumin Adsorption onto Colloidal Al2O3 Particles: A New Model Based on Zeta Potential and UV-vis Measurements”, Langmuir. 20, 10055-10061. (2004).
[103]Soto, K.F.; Carrasco, A.; Powell, T.G.; Murr, L.E. and Garza, K.M., “Biological effects of nanoparticulate materials”, Materials Science and Engineering C. 26, 1421-1427. (2006).
[104]Peto, J.; Doll, R.; Howard, S.V.; Kinlen L.J. and Lewinsohn, H.C., ”A Mortality Study among Workers in an English Asbestos Factory”, British Journal of Industrial Medecine. 34, 169-173. (1977).
[105]Lam, C.W.; James, J.T.; McCluskey R.; and Hunter, R.L., “Pulmonary Toxicity of Single-wall Carbon Nanotubes in Mice 7 and 90 Days after Intratracheal Instillation”, Toxicological Science. 77, 126–134. (2004).
[106]Birchall, J.D.; Stanley, D.R.; Pigott, G.H. and Pinto, P.J., “Toxicity of Silicon Carbide Whiskers”, Journal of Materials Science Letters. 7, 350-352. (1988).
[107]Brunner, T.J.; Wick, P.; Manser, P.; Spohn, P.; Grass, R.N.; Limbach, L.K.; Bruinink, A. and Stark, W.J., “In vitro cytotoxicity of Oxide Nanoparticles: Comparison to Asbestos, Silica, and Effects of Particle Solubility”, Environmental Science & Technology., 44, 4373-4381. (2006).
[108]Dunnick, J.K.; Elwell, M.R.; Radovsky, A.E.; Benson, J.M.; Hahn, F.F.; Nikula, K.J.; Barr, E.B. and Hobbs, C.H., “Comparative Carcinogenic Effects of Nickel Subsulfide, Nickel-Oxide, or Nickel Sulfacte Hexahydrate Chronic Exposures in the lung”, Cancer Research. 55, 5251-5256. (1995).
[109]Nel, A.; Xia, T.; Madler, L. and Li, N., “Toxic Potential of Materials at the Nanolevel”, Science., 311, 622-627. (2006).
[110]Donaldson, K. and Tran, C.L., ”Inflammation Caused by Particles and Fibers”, Inhalation Toxicology. 14, 5-27. (2002).
[111]Halliwell, B. and Gutteridge, J. M. C., “Free Radicals in Biology and Medicine” Oxford Univ. Press, Oxford, (1999).
[112]Donaldson, K.; Stone, V.; Tran, C.L.; Kreyling, W. and Borm, P.J.A., Nanotoxicology. Occup Environ Med. 61, 727-728. (2004).
[113]Loft, S. and Poulsen, H.E., “Cancer Risk and Oxidative DNA Damage in Man”, Journal of Molecular Medicine-JMM. 74, 297-312. (1996).
[114]Reddy, K.M.; Feris, K.; Bell, J.; Wingett, D.G.; Hanley, C. and Punnoose, A., “Selective Toxicity of Zinc Oxide Nanoparticles to Prokaryotic and Eukaryotic Systems”, Applied Physics Letters. 90, 213902. (2007).
[115]Lin, D.H. and Xing, B.S., “Root Uptake and Phytotoxicity of ZnO Nanoparticles”, Environmental Science & Technology. 42, 5580-5585. (2008).
[116]Deng, X.Y.; Luan, Q.X.; Chen, W.T.; Wang, Y.L. and Jiao, Z., “Nanosized Zinc Oxide Particles Induce Neural Stem Cell Apoptosis”, Nanotechnology. 20, 115101. (2009).
[117]Sharma, V.; Shukla, R.K.; Saxena, N.; Parmar, D.; Das, M. and Dhawan, A., “DNA Damaging Potential of Zinc Oxide Nanoparticles in Human Epidermal Cells”, Toxicology Letters. 185, 211-218. (2009).
[118]Yang, H.; Liu, C.; Yang, D.F.; Zhang, H.S. and Xi, Z.G., “Comparative Study of Cytotoxicity, Oxidative Stress and Genotoxicity Induced by Four Typical Nanomaterials: the Role of Particle Size, Shape and Composition”, Journal of Applied Toxicology. 29, 69-78. (2009).
[119]Xia, T.; Kovochich, M.; Liong, M.; Madler, L.; Gilbert, B.; Shi, H.; Yeh, J. I.; Zink, J. I. and Nel, A. E., “Comparison of the Mechanism of Toxicity of Zinc Oxide and Cerium Oxide Nanoparticles Based on Dissolution and Oxidative Stress Properties”, ACS Nano. 2, 2121-2134. (2008).
[120]Zhou, X.; Kobayashi, Y.; Romanyuk, V.; Ochuchi, N.; Takeda, M.; Tsunekawa, S. and Kasuya, A., “Preparation of Silica Encapsulated CdSe Quantum Dots in Aqueous Solution with the Improved Optical Properties”, Applied Surface Science 242, 281-286. (2005).
[121]Wang, J.; Long, Y.T.; Zhang, Y.L.; Zhong, X.H. and Zhu, L.Y., “Preparation of Highly Luminescent CdTe/CdS Core/Shell Quantum Dots”, Chemphyschem. 10, 680-685. (2009).
[122]Ohmori, M. and Matijevic, E., “Preparation and Properties of Uniform Coated Colloidal Particles.7. Silica on Hematite”, Journal of Colloid Interface Science. 150, 594-598. (1992).
[123]Hanprasopwattana, A.; Srinivasan, S.; Sault, A.G. and Datye, A.K., “Titania Coatings on Monodisperse Silica Spheres (Characterization using 2-propanol Dehydration and TEM)”, Langmuir. 12, 3173-3179. (1996).
[124]Dokoutchaev, A.; James, J.T.; Koene, S.C.; Pathak, S.; Prakash, G.K.S. and Thompson, M.E., “Colloidal Metal Deposition onto Functionalized Polystyrene Microspheres”, Chemistry of Materials. 11. 2389-2399. (1999).
[125]Morel, A.L.; Nikitenko, S.I.; Gionnet, K.; Wattiaux, A.; Labrugere, C.; Chevalier, B.; Deleris, G. and Petibois, C., “Sonochemical Approach to the Synthesis of Fe3O4@SiO2 Core-shell Nanoparticles with Tunable Properties”, ACS Nano. 2, 847-856. (2008).
[126]Liao, M.H.; Hsu, C.H. and Chen, D.H., “Preparation and Properties of Amorphous Titania-coated Zinc Oxide Nanoparticles”, Journal of Solid State Chemistry. 179, 2020-2026. (2006).
[127]Wu, W.; Cai, Y.W.; Chen, J.F.; Shen, S.L.; Martin, A. and Wen, L.X., “Preparation and Properties of Composite Particles Made by Nano Zinc Oxide Coated with Titanium Dioxide”, Journal of Materials Science. 41, 5845-5850. (2006).
[128]Lovric, J.; Cho, S.J.; Winnik, F.M. and Maysinger, D., “Unmodified Cadmium Telluride Quantum Dots Induce Reactive Oxygen Species Formation Leading to Multiple Organelle Damage and Cell Death”, Chemistry & Biology. 12, 1227-1234. (2005).
[129]Derfus, A.M.; Chan, W.C.W. and Bhatia, S.N., “Probing the Cytotoxicity of Semiconductor Quantum Dots”, Nano Letters. 4, 11-18. (2004).
[130]Cho, S.J.; Maysinger, D.; Jain, M.; Roder, B.; Hackbarth, S. and Winnik, F.M., “Long-term Exposure to CdTe Quantum Dots Causes Functional Impairments in Live Cells”, Langmuir, 23, 1974-1980. (2007).
[131]Su, Y.Y.; He, Y.; Lu, H.T.; Sai, L.M.; Li, Q.N.; Li, W.X.; Wang, L.H.; Shen, P.P.; Huang, Q. and Fan, C.H., “The Cytotoxicity of Cadmium Based, Aqueous Phase - Synthesized, Quantum Dots and its Modulation by Surface Coating”, Biomaterials. 30, 19-25. (2009).
[132]Gupta, A.K. and Wells, S., “Surface-modified Superparamagnetic Nanoparticles for Drug Delivery: Preparation, Characterization, and Cytotoxicity Studies”, Ieee Transactions on Nanobioscience. 3, 66-73. (2004).
[133]Brunauer, S.; Emmtt, P.H. and Teller, E.,” A Cross-Performance Relationship between Carr’s Index and Dissolution Rate Constant and the Application of Mixing Rules: The study of Acetaminophen Batches”, Journal of American Chemical Society. 60, 309-315. (1938).
[134]Faffé, H.H. and Orchin, M., “Theory and Applications of Ultraviolet Spectroscopy”, John Wiley and Sons: New York. (1962).
[135]Boss, C.B. and Fredeen, K.J., “Concepts, Instrumentation and Techniques in Inductively Coupled Plasma Optical Emission Spectrometry”, PerkinElmer Instruments: Shelton, CT. (1999).
[136]Weesner, F. and Longmire, M., “Dispersive and Fourier Transform Raman”, Spectroscopy. 16, 68. (2001).
[137]Stout, G.H. and Jensen, L.H.,”X-ray Structure Determination”, Macmillan Publishing Co., Inc. New York. (1968).
[138]Powers, K.W.; Palazuelos, M.; Moudgil, B.M. and Roberts, S.M., “Characterization of the Size, Shape, and State of Dispersion of Nanoparticles for Toxicological Sudies”, Nanotoxicology. 1, 42-51. (2007).
[139]Elliot, D.W. and Zhang, W., “Field Assessment of Nanoscale Biometallic Particles for Groundwater treatment”, Environmental Science & Technology. 35, 4922-4926. (2001).
[140]Cai, T.Q.; Jiang, G.B.; Liu, J.F. and Zhou, Q.X., “Multi-walled Carbon Nanotubes Packed Cartridge for the Solid-phase Extraction of Several Phthalate Esters from water samples and their Determination by High Performance Liquid Chromatography”, Analytica Chimica Acta. 494, 149-156. (2003).
[141]Cushing, B.L.l Kolesnichenko, V.L. and O`Connor, C.J., “Recent Advances in the Liquid-phase Syntheses of Inorganic Nanoparticles”, Chemical Review. 104, 3893-3946. (2004).
[142]Mandzy, N.; Grulke, E. and Druffel, T., “Breakage of TiO2 Agglomerates in Electrostatically Stabilized Aqueous Dispersions”, Powder Technology. 160, 121-126. (2005).
[143]Vasylkiv, O. and Sakka, Y., “Synthesis and Colloidal Processing of Zirconia Nanopowder”, Journal of the American Ceramic Society. 84, 2489-2494. (2001).
[144]Derjaguin, B.V. and Landau, L.D., “Theory of the Stability of Strongly Charged Lyophobic Sols and of the Adhesion of Strongly Charged Particles in Solutions of Electrolytes”, Acta Physicochim URSS. 14, 733-762. (1941).
[145]Verwey, E.J.W and Overbeek, J.Tg, “Theory of the Stability of Lyophobic Colloids”, Elsevier. Amsterdam. (1948).
[146]Morrison, I.D. and Ross, S., “Colloidal Dispersions: Suspensions, Emulsions, and Foams”, Wiley-Interscience. New York. (2002).
[147]Chen, K. L. and Elimelech, M., “Aggregation and Deposition Kinetics of Fullerene (C60) nanoparticles”, Langmuir. 22, 10994-11001. (2006).
[148]Chen, K. L. and Elimelech, M., “Influence of Humic Acid on the Aggregation Kinetics of Fullerene Nanoparticles in Monovalent and Divalent Electrolyte Solutions”, Journal of Colloid and Interface Science. 309, 126-134. (2007).
[149]Jia, X.L.; Zhang, H.J.; Tan, W. and Zhang, H.J., “Synthesis of Nano-ZnO Powder by Homogeneous Precipitation Method”, Rare Metal Materials and Engineering. 33, 992-995. (2004).
[150]Chen, X.B.; Cheng, H.M. and Ma, J.M., “A Study on the Stability and Rheological Behavior of Concentrated TiO2 Dispersions”, Powder Technology. 99, 171-176. (1998).
[151]Zhou, Z.W.; Scales, P.J. and Boger, D.V., “Chemical and Physical Control of the Theology of Concentrated Metal Oxide Suspensions”, Chemical Engineering Sience. 56, 2901-2920. (2001).
[152]Jailani, S.; Franks, G.V. and Healy, T.W., “Zeta Potential of Nanoparticle Suspensions: Effect of Electrolyte Concentration, Particle Size, and Volume Fraction”, Journal of the American Ceramic Society. 91, 1141-1147. (2008).
[153]Hussain, S. M.; Hess, K. L.; Gearhart, J. M.; Geiss, K. T. and Schlager, J. J., “In Vitro Toxicity of Nanoparticles in BRL 3A Rat Liver Cells”, Toxicology in Vitro. 19, 975-983. (2005).
[154]Horie, M.; Nishio, K.; Fujita, K.; Endoh, S.; Miyauchi, A.; Saito, Y.; Iwahashi, H.; Yamamoto, K., Murayama, H.; Nakano, H.; Nanashima, N.; Niki, E. and Yoshida, Y., ” Protein Adsorption of Ultrafine Metal Oxide and Its Influence on Cytotoxicity toward Cultured Cells”, Chemical Research on Toxicology. 22, 543-553. (2009).
[155]Veranth, J. M.; Kaser, E. G.; Veranth, M. M.; Koch, M. and Yost, G. S., “Cytokine Responses of Human Lung Cells (BEAS-2B) Treated with Micron-sized and Nanoparticles of Metal Oxides Compared to Soil Dusts”, Particle Fibre Toxicology. 27, 4:2. (2007).
[156]Maier, M.; Hannebauer, B.; Holldorff, H. and Albers, P., “Does Lung Surfactant Promote Disaggregation of Nanostructured Titanium Dioxide?”, Journal of Occupational and Environmental Medicine. 48, 1314-1320. (2006).
[157]Casey, A.; Herzog, E.; Davoren, M.; Lyng, F.M.; Byrne, H.J. and Chambers, G., “ Spectroscopic Analysis Confirms the Interactions Between Single Walled Carbon Nanotubes and Various Dyes Commonly Used to Assess Cytotoxicity”, Carbon. 45, 1425-1432. (2007).
[158]Seagrave, J., “Mechanisms and Implications of Air Pollution Particle Associations with Chemokines”, Toxicology and Applied Pharmacology. 232, 469-477. (2008).
[159]Lin, W.; Huang, Y.W.; Zhou, X.D. and Ma, Y., “In Vitro Toxicity of Silica Nanoparticles in Human Lung Cancer Cells”, Toxicology and Applied Pharmacology. 217, 252-259. (2006).
[160]Brown, S.C.; Kamal, M.; Nasreen, N.; Baumuratov, A., Sharma, P.; Antony, V.B. and Moudgil, B.M., “Influence of Shape, Adhesion and Simulated Lung Mechanics on Amorphous Silica Nanoparticle Toxicity”, Advanced Powder Technology. 18, 69-79. (2007).
[161]Cury-Boaventura, M.F.; Kanunfre, C.C.; Gorjao, R.; de Lima, T.M. and Curi, R., “Mechanisms Involved in Jurkat Cell Death Induced by Oleic and Linoleic Acids”, Clinical Nutrition. 25, 1004-1014. (2006).
[162]Cury-Boaventura, M.F.; Gorjao, R.; de Lima, T.M., Newsholme, P. and Curi, R., “Comparative Toxicity of Oleic and Linoleic Acid on Human Lymphocytes”, Life Sciences. 78, 1448-1456. (2006).
[163]Chiu, S.W., “Wortmannin Ameliorates Zinc Oxide Nanoparticles-induced Cytotoxicity and Morphological Abnormality in NIH-3T3 cell”, Master thesis, National Chiao-Tung University, Hsinchu, Taiwan. (2005).
[164]Chen, W.Y., “Cytochalasin D ameliorates Zinc oxidenanoparticles-induced cytotoxicity and morphological abnormality in NIH-3T3 cell”, Master thesis, National Chiao-Tung University, Hsinchu, Taiwan. (2005).
[165]Wang, X.T.; Zhong, S.H. and Xiao, X.F., “Photo-catalysis of Ethane and Carbon Dioxide to Produce Hydrocarbon Oxygenates over ZnO-TiO2/SiO2 Catalyst”, Journal of Molecular Catalysis A-Chemical. 229. 87-93. (2005).
[166]Xie, Y.T.; Liu, X.Y.; Huang, A.P.; Ding, C.X. and Chu, P.K., “Improvement of Surface Bioactivity on Titanium by Water and Hydrogen Plasma Immersion Ion Implantation”, Biomaterials. 26, 6129-6135. (2005).
[167]Yang, R.D.; Tripathy, S.; Li, Y.T. and Sue, H.J., “Photoluminescence and Micro-Raman Scattering in ZnO Nanoparticles: The Influence of Acetate Adsorption”, Chemical Physics Letters. 411, 150-154. (2005).
[168]Zhang, H.Z.; Luo, X.H.; Xu, J.; Xiang, B. and Yu, D.P., “Synthesis of TiO2/SiO2 Core/shell Nanocable Arrays”, Journal of Physical Chemistry B. 108, 14866-14869. (2004).
[169]Chen, C.C.; Chen, R.S.; Tsai, T.Y.; Huang, Y.S.; Tsai, D.S. and Tiong, K.K.,” The Growth and Characterization of Well Aligned RuO2 Nanorods on Sapphire Substrates”, Journal of Physics-condensed Matter. 16, 8475-8484. (2004).
(此全文未開放授權)
電子全文
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 工業區周界中超微、微米及粗微粒之分布與特性及氧化鋅微粒對人類肺上皮細胞的生物效應之探討
2. 過渡性金屬修飾銅鋅基質觸媒於室溫啟動催化部分甲醇氧化重組製氫反應之研究
3. 貴重金屬(釕、銠、鈀)修飾銅鋅基質觸媒於室溫啟動催化氧化性蒸氣甲醇重組製氫反應之研究
4. 功能性配位基合成及應用在奈米氧化銅去毒性之研究
5. 應用在甲醇重組反應中之金修飾銅鋅觸媒的合成、特性及反應性探討
6. 不同的製備及塗佈銅錳鋅觸媒於微型甲醇重組器之研究
7. 金、鋯金屬修飾銅鋅催化劑於甲醇重組反應中穩定度與活性之探討
8. 都市垃圾焚化爐排氣廢氣中微粒的物化特性分析和細胞毒性試驗
9. 銅鋅基質觸媒於甲醇部分氧化反應之微動力學分析與可調式氧空缺修飾之研究
10. 銅核矽殼奈米粒子製備方法之研究及應用於甲醇重組製氫反應已提高觸媒穩定性
11. 以均勻觸媒漿料塗佈於多孔性微流道提升附著度製程研究
12. 奈米二氧化鈦對於中樞神經系列細胞 (小鼠腦神經瘤細胞、小鼠神經微膠質細胞、小鼠星狀膠質細胞)的毒性研究
13. 醫療焚化爐飛灰對人類肺泡上皮癌細胞A549毒性之影響
14. 合成高穩定度中孔洞CuZn@SiO2蛋殼型殼核觸媒於部分甲醇氧化反應之研究
15. Photocatalytic reforming of methanol over gold promoted copper zinc catalyst for low ignition temperature
 
* *