帳號:guest(18.119.118.99)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林迺彬
作者(外文):Lin, Nai-Pin
論文名稱(中文):α(2→9)唾液酸寡糖之固相合成
論文名稱(外文):Solid-phase Synthesis of α(2→9) Oligosialic Acids
指導教授(中文):林俊成
指導教授(外文):Lin, Chun-Cheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:9623538
出版年(民國):98
畢業學年度:98
語文別:英文
論文頁數:189
中文關鍵詞:固相合成唾液酸寡糖唾液酸
外文關鍵詞:Solid-phase SynthesisOligosialic AcidsSialic Acids
相關次數:
  • 推薦推薦:0
  • 點閱點閱:218
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
The thesis described the development of a solid-phase synthetic method for the synthesis of α(2→9) oligosialic acids. The TentaGel was chosen as the solid support and Wang linker was used to link with sialic acid. The use of 5-N,4-O-carbonyl protected thiosialoside as donor provided an excellent α selectivity on solid phase sialylation reaction. To achieve the synthesis of higher order oligosialic acids, a semiautomatic reaction system was used to keep the resin away form moisture. To increment the yield of sialylation reaction, sialyl phosphate donor and acetylation step to protect remained hydroxyl groups after sialylation was tested.
本篇論文之目的在於發展出利用固相合成的方法合成出α(2→9)唾液酸寡
糖,藉由Wang type TentaGel 作為固相材料,使用5-N,4-O-羰基保護的唾液酸
作為予體,可成功的獲得高度α 選擇性的α(2→9)唾液酸鍵結。為了得到更長單
元的α(2→9)唾液酸寡糖,密閉系統的設計用以隔絕空氣中水氣的干擾,使用新
發展的磷酸唾液酸予體以期增加反應性、以及在合成過程中反保護未反應之羥
基等方式皆被嘗試運用。
Table of Contents i
Index of Schemes iv
Index of Figures vii
Index of Tables viii
Abbreviations ix
Abstract xi
中文摘要 xii

Chapter 1. Introduction 1
1 Solid-phase Synthesis of Oligosaccharide 1
1-1 Central Aspects of Solid-phase Oligosaccharide Synthesis 2
1-2 Polymer Solid Supports 3
1-3 Linker Systems 7
1-3-1 Linker Types. 8
1-3-2 Cleavages of Linkers 10
1-3-2-1 Acid-labile Linkers 10
1-3-2-2 Base Labile Linkers 13
1-3-2-3 Silyl Ether Linkers 15
1-3-2-4 Thioglycoside Linkers 16
1-3-2-5 Linker Cleaved by Oxidation 17
1-3-2-6 Linkers Cleaved by Hydrogenation 17
1-3-2-7 Linkers Cleaved by Olefin Metathesis 19
1-4 On-support Monitoring 21
1-4-1 Colorimetric Methods 22
1-4-2 Spectroscopy 24
2 Polysialic Acids 25
3 O-Sialylation 27
3-1 Inherent Problems of O-sialylation 27
3-2 Leaving Groups of Sialyl Donors. 29
3-3 Auxiliaries of Sialyl Donors 32
3-4 C-5 Modifications of Sialyl Donors 33
3-5 Synthesis of Oligosialic acids 35
4 Glycosyl Phosphate Donors 37
5 Specific Aim and Concepts of Synthetic Design 42
Chapter 2. Result and Discussion 44
1 Synthesis of Thiosialoside Donor 44
2 Synthesis of Disialic Acid in Solution Phase 46
3 Immobilization of Sialic Acid 51
4 Chain Elongation 58
5 Design of Closed System 65
6 Synthesis of Sialyl Phosphate Donor 68
7 Glycosyl Phosphate Donor and O-TMS Acceptor System 72
8 Aceylation 74
Chapter 3. Conclusions 77
Chapter 4. Experimental Section 78
1 General Procedures 78
1-1 Reagents and Solvents 78
1-2 Spectra Notes 78
2 Procedures and Spectroscopy Data 79

References 103
Appendix 121
Index of Appendix 123
1. Merrifield, R. B., Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. J. Am. Chem. Soc. 1963, 85, 2149-2154.
2. Fréchet, J. M.; Schuerch, C., Solid-Phase Synthesis of Oligosaccharides. I. Preparation of the Solid Support. Poly[p-(1-propen-3-o1-1-yl)styrene]. J. Am. Chem. Soc. 1971, 93, 492-496.
3. Toshim, K.; Tatsuta, K., Recent Progress In O-Giycosylation Methods and Its Application to Natural Products Synthesis. Chem. Rev. 1993, 93, 1503-1531.
4. Zhu, X.-M.; Schmidt, R. R., New Principles for Glycoside-Bond Formation. Angew. Chem. Int. Ed. 2009, 48, 2-37.
5. Seeberger, P. H.; Haase, W.-C., Solid-Phase Oligosaccharide Synthesis and Combinatorial Carbohydrate Libraries. Chem. Rev. 2000, 100, 4349-4393.
6. Sears, P.; Wong, C.-H., Toward Automated Synthesis of Oligosaccharides and Glycoproteins. Science 2001, 291, 2344-2350.
7. Plante, O. J.; Palmacci, E. R.; Seeberger, P. H., Automated Solid-Phase Synthesis of Oligosaccharides. Science 2001, 291, 1523-1527.
8. Randolph, J. T.; McClure, K. F.; Danishefsky, S. J., Major Simplifications in Oligosaccharide Syntheses Arising from a Solid-Phase Based Method: An Application to the Synthesis of the Lewis b Antigen. J. Am. Chem. Soc. 1995, 117, 5712-5719.
9. Seeberger, P. H.; Danishefsky, S. J., Solid-Phase Synthesis of Oligosaccharides and Glycoconjugates by the Glycal Assembly Method: A Five Year Retrospective. Acc. Chem. Res. 1998, 31, 685-695.
10. Wang, Z.-G.; Douglas, S. P.; Krepinsky, J. J., Polymer-Supported Syntheses of Oiigosaccharides: Using Dibutylboron Triflate to Promote Glycosylations with Glycosyl Trichloroacetimidates. Tetrahedron Lett. 1996, 37, 6985-6988.
11. Toy, P. H.; Janda, K. D., New supports for solid-phase organic synthesis: development of polystyrene resins containing tetrahydrofuran derived cross-linkers. Tetrahedron Lett. 1999, 40, 6329-6332.
12. Tanaka, K.; Fujii, Y.; Tokimoto, H.; Mori, Y.; Tanaka, S.; Bao, G.-m.; Siwu, E. R. O.; Nakayabu, A.; Fukase, K., Synthesis of a Sialic Acid Containing Complex-Type N-Glycan on a Solid Support. Chem. Asian J. 2009, 4, 574-580.
13. Bayer, E., Towards the Chemical Synthesis of Proteins. Angew. Chem. Int. Ed. 1991, 30, 113-147.
14. Li, W.-B.; Yan, B., Effects of Polymer Supports on the Kinetics of Solid-Phase Organic Reactions: A Comparison of Polystyrene- and TentaGel-Based Resins. J. Org. Chem. 1998, 63, 4092-4097.
15. Tanaka, H.; Tateno, Y.; Nishiura, Y.; Takahashi, T., Efficient Synthesis of an α(2,9) Trisialic Acid by One-Pot Glycosylation and Polymer-Assisted Deprotection. Org. Lett. 2008, 10, 5597-5600.
16. Gerritz, S. W.; Trump, R. P.; Zuercher, W. J., Probing the Reactivity of Solid Supports via Hammett Relationships. J. Am. Chem. Soc. 2000, 122, 6357-6363.
17. Vaino, A. R.; Goodin, D. B.; Janda, K. D., Investigating Resins for Solid Phase Organic Synthesis: The Relationship between Swelling and Microenvironment As Probed by EPR and Fluorescence Spectroscopy. J. Comb. Chem. 2000, 2, 330-336.
18. Buchardt, J.; Meldal, M., A Chemically Inert Hydrophilic Resin for Solid Phase Organic Synthesis. Tetrahedron Lett. 1998, 39, 8695-8698.
19. Wentworth, P. J.; Janda, K. D., Liquid-phase chemistry: recent advances in soluble polymer-supported catalysts, reagents and synthesis. Chem. Commun. 1999, 1918-1924.
20. Douglas, S. P.; Whitfield, D. M.; Krepinsky, J. J., Polymer-Supported Solution Synthesis of Oligosaccharides. J. Am. Chem. Soc. 1991, 113, 5095-5097.
21. Malmstroem, E.; Johansson, M.; Hult, A., Hyperbranched Aliphatic Polyesters. Macromolecules 1995, 28, 1698-1730.
22. Kantchev, A. B.; Parquette, J. R., Disaccharide synthesis on a soluble hyperbranched polymer. Tetrahedron Lett. 1999, 40, 8049-8053.
23. Guillier, F.; Orain, D.; Mark, B., Linkers and Cleavage Strategies in Solid-Phase Organic Synthesis and Combinatorial Chemistry. Chem. Rev. 2000, 100, 2091-2157.
24. Wang, S.-S., p-Alkoxybenzyl Alcohol Resin and p-Alkoxybenzyloxycarbonyl-
hydrazide Resin for Solid Phase Synthesis of Protected Peptide Fragments. J. Am. Chem. Soc. 1973, 95, 1328.
25. Silva, D. J.; Wang, H.; Allanson, N. M.; Jain, R. K.; Sofia, M. J., Stereospecific Solution- and Solid-Phase Glycosylations. Synthesis of β-Linked Saccharides and Construction of Disaccharide Libraries Using Phenylsulfenyl 2-Deoxy-2-Trifluoroacetamido Glycopyranosides as Glycosyl Donors. J. Org. Chem. 1999, 64, 5926-5929.
26. Shimizu, H.; Ito, Y.; Kanie, O.; Ogawa, T., Solid Phase Synthesis Of Polylactosamine Oligosaccharide. Bioorg. Med. Chem. Lett. 1996, 6, 2841-2846.
27. Jensen, K. J.; Alsina, J.; Songster, M. F.; Vágner, J.; Albericio, F.; Barany, G., Backbone Amide Linker (BAL) Strategy for Solid-Phase Synthesis of C-Terminal-Modified and Cyclic Peptides. J. Am. Chem. Soc. 1998, 120, 5441-5452.
28. Tolborg, J. F.; Jensen, K. J., Solid-phase oligosaccharide synthesis with tris(alkoxy)benzyl amine (BAL) safety-catch anchoring. Chem. Commun. 2000, 147-148.
29. Leung, O. T.; Douglas, S. P.; Whitfield, D. M.; Dong, H. Y. S.; Krepinsky, J. J., New J. Chem. 1994, 18, 349-363.
30. Adinolfi, M.; Barone, G.; De Napoli, L.; Iadonisi, A.; Piccialli, G., Use of Controlled Pore Glass in Solid Phase Oligosaccharide Synthesis. Application to the Semiautomated Synthesis of a Glyconucleotide Conjugate. Tetrahedron Lett. 1998, 39, 1953-1956.
31. Parlato, M. C.; Kamat, M. N.; Wang, H.; Stine, K. J.; Demchenko, A. V., Application of Glycosyl Thioimidates in Solid-Phase Oligosaccharide Synthesis. J. Org. Chem. 2008, 73, 1716-1725.
32. Wang, Y.; Zhang, H.; Voelter, W., A New Base-Labile Anchoring Group for Polymer-Supported Oligosaccharide Synthesis. Chem. Lett. 1995, 273-274.
33. Wu, J.; Guo, Z.-G., Cap and Capture-Release Techniques Applied to Solid-Phase Synthesis of Oligosaccharides. J. Org. Chem. 2006, 71, 7067-7070.
34. Chiu, S. H. L.; Anderson, L., Oligosaccharide synthesis by the thioglycoside scheme on soluble and insoluble polystyrene supports. Carbohydr. Res. 1976, 50, 227-238.
35. Yan, L.; Taylor, C. M.; Goodnow, R. J.; Kahne, D., Glycosylation on the Merrifield Resin Using Anomeric Sulfoxides. J. Am. Chem. Soc. 1994, 116, 6953-6954.
36. Rademann, J.; Schmidt, R. R., Repetitive Solid Phase Glycosylation on an Alkyl Thiol Polymer Leading to Sugar Oligomers Containing 1,2-trans- and 1,2-cis-Glycosidic Linkages. J. Org. Chem. 1997, 62, 3650-3653.
37. Fukase, K.; Nakai, Y.; Egusa, K.; Porco Jr., J. A.; Kusumoto, S., Synlett 1999, 1074-1078.
38. Fukase, K.; Egusa, K.; Nakai, Y.; Kusumoto, S., Novel oxidatively removable protecting groups and linkers for solid-phase synthesis of oligosaccharides. Mol. Diversity 1997, 2, 182-188.
39. Douglas, S. P.; Whitfield, D. M.; Krepinsky, J. J., Polymer-Supported Solution Synthesis of Oligosaccharides Using a Novel Versatile Linker for the Synthesis of D-Mannopentaose, a Structural Unit of D-Mannans of Pathogenic Yeasts. J. Am. Chem. Soc. 1995, 117, 2116-2117.
40. Mehta, S.; Whitfield, D., Beneficial Participation of the Polymer : Improvement in Polymer-Supported Oligosaccharide Synthesis. Tetrahedron Lett. 1998, 39, 5907-5910.
41. Andrade, R. B.; Plante, O. J.; Melean, L. G.; Seeberger, P. H., Solid-Phase Oligosaccharide Synthesis: Preparation of Complex Structures Using a Novel Linker and Different Glycosylating Agents. J. Org. Chem. 1999, 1, 1811-1814.
42. Fraser-Reid, B.; Udodong, U. E.; Wu, Z.; Ottosson, H.; Merritt, J. R.; Rao, S.; Roberts, C.; Madsen, R., Synlett 1992, 927-942.
43. Allen, J. R.; Danishefsky, S. J., New Applications of the n-Pentenyl Glycoside Method in the Synthesis and Immunoconjugation of Fucosyl GM1: A Highly Tumor-Specific Antigen Associated with Small Cell Lung Carcinoma. J. Am. Chem. Soc. 1999, 121, 10875-10882.
44. Buskas, T.; Söderberg, E.; Konradsson, P.; Fraser-Reid, B., Use of n-Pentenyl Glycosides as Precursors to Various Spacer Functionalities. J. Org. Chem. 2000, 65, 958-963.
45. Melean, L. G.; Haase, W.-C.; Seeberger, P. H., A novel 4,5-dibromooctane-1,8-
diol linker for solid-phase oligosaccharide synthesis. Tetrahedron Lett. 2000, 41, 4329-4333.
46. Gaggini, F.; Porcheddu, A.; Reginato, G.; Rodriquez, M.; Taddei, M., Colorimetric Tools for Solid-Phase Organic Synthesis. J. Comb. Chem. 2004, 6, 805-810.
47. Komba, S.; Sasaki, S.; Machida, S., A new colorimetric test for detection of hydroxyl groups in solid-phase synthesis. Tetrahedron Lett. 2007, 48, 2075-2078.
48. Manabe, S.; Ito, Y., On-Resin Real-Time Reaction Monitoring of Solid-Phase Oligosaccharide. J. Am. Chem. Soc. 2002, 124, 12638-12639.
49. Ko, K.-S.; Park, G.; Yu, Y.; Pohl, N. L., Protecting-Group-Based Colorimetric Monitoring of Fluorous-Phase and Solid-Phase Synthesis of Oligoglucosamines. J. Org. Chem. 2008, 10, 5381-5384.
50. Seeberger, P. H.; Beebe, X.; Sukenick, G. D.; Pochapsky, S.; Danishefsky, S. J., Monitoring the Progress of Solid-Phase Oligosaccharide Synthesis by High-Resolution Magic Angle Spinning NMR: Observations of Enhanced Selectivity for Glycoside Formation from 1,2-Anhydrosugar Donors in Solid-Phase Couplings. Angew. Chem. Int. Ed. 1997, 36, 491-493.
51. Mogemark, M.; Elofsson, M.; Kihlberg, J., Monitoring Solid-Phase Glycoside Synthesis with 19F NMR Spectroscopy. Org. Lett. 2001, 3, 1463-1466.
52. Kanemitsu, T.; Kanie, O.; Wong, C.-H., Quantitative Monitoring of Solid-Phase Synthesis Using Gated Decoupling 13C NMR Spectroscopy with a 13C-Enriched Protecting Group and an Internal Standard in the Synthesis of Sialyl LewisX Tetrasaccharide. Angew. Chem. Int. Ed. 1998, 37, 3415-3418.
53. Kanemitsu, T.; Wong, C.-H.; Kanie, O., Solid-Phase Synthesis of Oligosaccharides and On-Resin Quantitative Monitoring Using Gated Decoupling 13C NMR. J. Am. Chem. Soc. 2002, 124, 3591-3599.
54. Chan, T.-Y.; Chen, R.; Sofia, M. J., High Throughput On-Bead Monitoring of Solid Phase Reactions by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). Tetrahedron Lett. 1997, 38, 2821-2824.
55. Ando, H.; Manabe, S.; Nakahara, Y.; Ito, Y., Tag-Reporter Strategy for Facile Oligosaccharide Synthesis on Polymer Support. J. Am. Chem. Soc. 2001, 123, 3848-3849.
56. Blix, G.; Gottschalk, A.; Klenk, E., Proposed Nomenclature in the Field of Neuraminic and Sialic Acids. Nature 1957, 179, 1088.
57. Schauer, R., Chemistry, Metabolism, and Biological Functions of Sialic Acids. Adv. Carbohydr. Chem. Biochem. 1982, 40, 131-234.
58. Jennings, H. J., Capsular polysaccharides as human vaccines. Adv. Carbohydr. Chem. Biochem. 1993, 41, 155-208.
59. Bhattacharjee, A. K.; Jennings, H. J.; Kenny, C. P.; Martin, A.; Smith, I. C. P., Structural determination of the sialic acid polysaccharide of Neisseria meningitidis. J. Biol. Chem. 1975, 250, 1926-1932.
60. Egan, W.; Liu, T.-Y.; Dorow, D.; Cohen, J. S.; Robbins, J. D.; Gothshlich, E. C.; Robbins, J. B., Structural studies on the sialic acid polysialic acid antigen of Escherichia coli strain Bos-12. Biochemistry 1977, 16, 3687-3692.
61. Rosenstein, N. E.; Perkins, B. A.; Stephens, D. S.; Popovic, T.; Hughes, J. M., Meningococcal disease. N. Engl. J. Med. 2001, 344, 1378-1388.
62. Fotschlich, E. C.; Goldschneider, I.; Artenstein, M. S., Human immunity to the meningococcus: IV: Immunogenicity of group A snd group C meningococcal poolysaccharides in human volunteers. J. Exp. Med. 1969, 129, 1367-1384.
63. Boons, G. J.; Demchenko, A. V., Recent Advances in O-Sialylation. Chem. Rev. 2000, 100, 4539-4565.
64. Ress, D. K.; Linhardt, R. J., Sialic Acid Donors: Chemical Synthesis and Glycosylation. Curr. Org. Synth. 2004, 1, 31-46.
65. Meo, C. D.; Priyadarshani, U., C-5 Modifications in N-acetyl-neuraminic acid: scope and limitations. Carbohydr. Res. 2008, 343, 1540-1552.
66. Kanie, O.; Kiso, M.; Hasegawa, A., J. Carbohydr. Chem. 1988, 7, 501-506.
67. Sparks, M. A.; Williams, K. W.; Lukacs, C.; Schrell, A.; Priebe, G.; Spaltenstein, A.; Whitesides, G. M., Synthesis of potential inhibitors of hemagglutination by influenza virus: chemoenzymic preparation of N-5 analogs of N-acetylneuraminic acid. Tetrahedron 1993, 49, 1-12.
68. Castro-Palomino, J. C.; Tsvetkov, Y. E.; Schneider, R.; Schmidt, R. R., 8-O-Sialylation of Neuraminic Acid Acceptor Reactivity and Anomeric Stereocontrol. Tetrahedron Lett. 1997, 38, 6837-6840.
69. Okamoto, K.; Goto, T., Glycosidation of sialic acid. Tetrahedron 1990, 46, 5835-5837.
70. DeNinno, M. P., Syntesis 1991, 583-593.
71. Koenigs, W.; Knoor, E., Chem. Ber. 1901, 34, 957.
72. Hekferich, B.; Zirner, J., Chem. Ber. 1962, 95, 2604.
73. Sharma, M. N.; Eby, R., Synthesis and conformational studies of 2-β-chloro, 2-α-fluoro, and 2-β-fluoro derivatives of 2-deoxy-N-acetyl-neuraminic acid. Carbohydr. Res. 1984, 127, 201-210.
74. Kanie, O.; Nakamura, J.; Kiso, M.; Hasegawa, A., Stereoselective Synthesis of 5'-S-(5-Acetamido-3,5-dideoxy-D-glycero-α-and-β-D-galacto-2-nonulopyranosylonic Acid)-5'-thio Cytidixe. J. Carbohydr. Chem. 1987, 6, 105-115.
75. Kunz, H.; Waldmann, H.; Klinkhammer, U., Helv. Chim. Acta. 1988, 71, 1868-1874.
76. Paulsen, H.; von Dessen, U., Glycosidsynthese von N-acetylneuraminsäure mit sekundären Hydroxylgruppen. Carbohydr. Res. 1986, 146, 147-153.
77. Paulsen, H.; Tietz, H., Synthese eines trisaccharides aus N-acetylneuraminsäure und N-acetyllactosamin. Carbohydr. Res. 1984, 125, 47-64.
78. Byramova, N. E.; Tuzikov, A. B.; Bovin, N. V., A simple procedure for the synthesis of the methyl and benzyl glycosides of Neu5Ac and 4-epi-Neu5Ac. Conversion of the benzyl and methyl glycosides of Neu5Ac into N-trifluoroacetylneuraminic acid benzyl glycosides. Carbohydr. Res. 1992, 237, 161-175.
79. Martin, T. J.; Schmidt, R. R., Efficient sialylation with phosphite as leaving group. Tetrahedron Lett. 1992, 33, 6123-6126.
80. Kondo, H.; Ichikawa, Y.; Wong, C.-H., β-Sialyl Phosphite and Phosphoramidite: Synthesis and Application to the Chemoenzymatic Synthesis of CMP-Sialic Acid and Sialyl Oligosaccharides. J. Am. Chem. Soc. 1992, 114, 8148-8750.
81. Kanie, O.; Kiso, M.; Hasegawa, A., Glycosylation Using Methylthioglycosides of N-Acetylneuraminic Acid and Dimethyl(Methylthio)Sulfonium Triflate. J. Carbohydr. Chem. 1988, 7, 501-506.
82. Marra, A.; Sinay, P., Stereoselective synthesis of 2-thioglycosides of N-acetylneuraminic acid. Carbohydr. Res. 1989, 187, 35-42.
83. Cao, S.; Meunier, S. J.; Andersson, F. O.; Letellier, M.; Roy, R., Mild stereoselective syntheses of thioglycosides under PTC conditions and their use as active and latent glycosyl donors. Tetrahedron Asymmetry 1994, 5, 2303-2312.
84. Kirchner, E.; Thiem, F.; Dernick, R.; Heukeshoven, J.; Thiem, J., Studies on the Glycosylation of N-Acetylneuraminic Acid. J. Carbohydr. Chem. 1988, 7, 453-486.
85. Roy, R.; Andersson, F. O.; Letellier, M., "Active" and "latent" thioglycosyl donors in oligosaccharide synthesis. Application to the synthesis of α-sialosides. Tetrahedron Lett. 1992, 33, 6053-6056.
86. Haberman, J. M.; Gin, D. Y., Dehydrative Sialylation with C2-Hemiketal Sialyl Donors. Org. Lett. 2003, 5, 2539-2541.
87. Cai, S.; Yu, B., Efficient Sialylation with Phenyltrifluoroacetimidates as Leaving Groups. Org. Lett. 2003, 5, 3827-3830.
88. Martichonok, V.; Whitesides, G. M., Stereoselective α-Sialylation with Sialyl Xanthate and Phenylsulfenyl Triflate as a Promotor. J. Org. Chem. 1996, 61, 1702-1706.
89. Lin, C.-C.; Huang, K.-T.; Lin, C.-C., N-Trifluoroacetyl Sialyl Phosphite Donors for the Synthesis of α(2 → 9) Oligosialic Acids. Org. Lett. 2005, 7, 4169-4172.
90. Hasegawa, A.; Nagahama, T.; Ohki, H.; Hotta, K.; Ishida, H.; Kiso, M., Communication: Synthetic Studies on Sialoglycoconjugates 25: Reactivity of Glycosyl Promoters in α-Glycosylation of N-Acetyl-Neuraminic Acid with the Primary and Secondary Hydroxyl Groups in the Suitably Protected Galactose and Lactose Derivatives. J. Carbohydr. Chem. 1991, 10, 493-498.
91. Kondo, H.; Ichikawa, Y.; Wong, C.-H., β-Sialyl Phosphite and Phosphoramidite: Synthesis and Application to the Chemoenzymatic Synthesis of CMP-Sialic Acid and Sialyl Oligosaccharides. J. Am. Chem. Soc. 1992, 114, 8148-8750.
92. Martin, T. J.; Brescello, R.; Toepfer, A.; Schmidt, R. R., Synthesis of phosphites and phosphates of neuraminic acid and their glycosyl donor properties — convenient synthesis of GM3. Glycoconjugate 1993, 10, 16-25.
93. Okamoto, K.; Kondo, T.; Goto, T., A Stereospecific Synthesis of β-Glycosides of N-Acetylneuraminic Acid and Secondary Alcohols. Chem. Lett. 1986, 1449-1452.
94. Okamoto, K.; Kondo, T.; Goto, T., A stereospecific β-glycosylation of 2β,3α-dibromo-N-acetylneuraminic acid. Tetrahedron 1987, 43, 5909-5918.
95. Erctégovic, E.; Magnusson, G., Highly Stereoselective α-Sialylation. Synthesis of GMs-Saccharide and a Bis-Sialic Acid Unit. J. Org. Chem. 1996, 60, 3378-3384.
96. Martichonok, V.; Whitesides, G. M., A Practical Method for the Synthesis of Sialyl α-Glycosides. J. Am. Chem. Soc. 1996, 118, 8187-8191.
97. Ercégovic, T.; Magnusson, G., Synthesis of a Bis(sialic acid) 8,9-Lactam. J. Org. Chem. 1996, 61, 179-184.
98. Ito, Y.; Numata, M.; Sugimoto, M.; Ogawa, T., Highly Stereoselective Synthesis of Ganglioside GD3. J. Am. Chem. Soc. 1989, 111, 8508-8510.
99. Ito, Y.; Ogawa, T., An efficient approach to streoselective glycosylation of N-acetylneuraminic acid: Used of phenylselenyl group as a stereocontrolling auxillary. Tetrahedron Lett. 1987, 28, 6221-6224.
100. Ito, Y.; Ogawa, T., Highly stereoselective glycosylation of N-acetylneuraminic acid aided by a phenylthio substituent as a stereocontrolling auxilliary. Tetrahedron Lett. 1988, 29, 3987-3990.
101. Ito, Y.; Ogawa, T., Highly stereoselective glycosylation of sialic acid aided by stereocontrolling auxiliaries. Tetrahedron 1990, 46, 89-102.
102. Castro-Palomino, J. C.; Tsvetkov, Y. E.; Schmidt, R. R., 8-O-Sialylation of Neuraminic Acid. J. Am. Chem. Soc. 1998, 120, 5434-5440.
103. Okamoto, K.; Kondo, T.; Goto, T., An effective synthesis of α-glycosides of N-acetylneuraminic acid by use of 2β-halo-3β-hydroxy-4,7,8,9-tetra-O-acetyl-
N-acetylneuraminic acid methyl ester. Tetrahedron Lett. 1986, 27, 5233-5236.
104. Takahashi, T.; Tsukamoto, H.; Yamada, H., A New Method for the Formation of the α-Glycoside Bond of Sialyl Conjugates Based on Long-Range Participation. Tetrahedron Lett. 1997, 38, 8223-8226.
105. Haberman, J. M.; Gin, D. Y., A New C(1)-Auxiliary for Anomeric Stereocontrol in the Synthesis of α-Sialyl Glycosides. Org. Lett. 2001, 3, 1665-1668.
106. Synlett 2003, 9, 1339-1349.
107. Hanashima, S.; Akai, S.; Sato, K., Thioester-assisted α-sialylation reaction. Tetrahedron Lett. 2008, 49, 5111-5114.
108. Demchenko, A. V.; Boons, G. J., A Novel and Versatile Glycosyl Donor for the Preparation of Glycosides of N-Acetyineuraminic Acid. Tetrahedron Lett. 1998, 39, 3065-3068.
109. Demchenko, A. V.; Boons, G. J., A Novel Direct Glycosylation Approach for the Synthesis of Dimers of N-Acetylneuraminic Acid. Chem. Eur. J. 1999, 5, 1278-1283.
110. Crich, D.; Li, W.-J., Efficient Glycosidation of a Phenyl Thiosialoside Donor with Diphenyl Sulfoxide and Triflic Anhydride in Dichloromethane. Org. Lett. 2006, 8, 959-962.
111. Schneider, R.; Freyhardt, C. C.; Schmidt, R. R., 5-Azido Derivatives of Neuraminic Acid 2 Synthesis and Structure. Eur. J. Org. Chem. 2001, 1655-1661.
112. Yu, C.-S.; Niikura, K.; Lin, C.-C.; Wong, C.-H., The Thioglycoside and Glycosyl Phosphite of 5-Azido Sialic Acid: Excellent Donors for the α-Glycosylation of Primary Hydroxy Groups. Angew. Chem. Int. Ed. 2001, 40, 2900-2903.
113. Lu, K.-C.; Tseng, S.-Y.; Lin, C.-C., 5-Azido neuraminic acid thioglycoside as sialylation donor. Carbohydr. Res. 2002, 337, 755-760.
114. Meo, C. D.; Demchenko, A. V.; Boons, G. J., Trifluoroacetamido Substituted Sialyl Donors for the Preparation of Sialyl Galactosides. Aust. J. Chem. 2002, 55, 131-134.
115. Meijer, A.; Ellervik, U., Interhalogens (ICl/IBr) and AgOTf in Thioglycoside Activation; Synthesis of Bislactam Analogues of Ganglioside GD3. J. Org. Chem. 2004, 69, 6249-6256.
116. Pan, Y.-B.; Chefalo, P.; Nagy, N.; Harding, C.; Guo, Z.-G., Synthesis and Immunological Properties of N-Modified GM3 Antigens as Therapeutic Cancer Vaccines. J. Med. Chem. 2005, 48, 875-883.
117. Tanaka, H.; Adachi, M.; Takahashi, T., One-Pot Synthesis of Sialo-Containing Glycosyl Amino Acids by Use of an N-Trichloroethoxycarbonyl-b-thiophenyl Sialoside. Chem. Eur. J. 2005, 11, 849-862.
118. Adachi, M.; Tanaka, H.; Takahashi, T., Synlett 2004, 609-614.
119. Ando, H.; Koike, Y.; Ishida, H.; Kiso, M., Extending the possibility of an N-Troc-protected sialic acid donor toward variant sialo-glycoside synthesis. Tetrahedron Lett. 2003, 44, 6883-6886.
120. Hanashima, S.; Castagner, B.; Esposito, D.; Nokami, T.; Seeberger, P. H., Synthesis of a Sialic Acid α(2-3) Galactose Building Block and Its Use in a Linear Synthesis of Sialyl Lewis X. Org. Lett. 2007, 9, 1777-1779.
121. Tanaka, H.; Nishiura, Y.; Takahashi, T., Stereoselective Synthesis of Oligo-α-(2,8)-Sialic Acids. J. Am. Chem. Soc. 2006, 128, 7124-7125.
122. Farris, M. D.; Meo, C. D., Application of 4,5-O,N-oxazolidinone protected thiophenyl sialosyl donor to the synthesis of α-sialosides. Tetrahedron Lett. 2007, 48, 1225-1227.
123. Tanaka, H.; Nishiura, Y.; Takahashi, T., Stereoselective Synthesis of α(2,9) Di- to Tetrasialic Acids, Using a 5,4-N,O-Carbonyl Protected Thiosialoside. J. Org. Chem. 2009, 74, 4383-4386.
124. Crich, D.; Li, W.-J., O-Sialylation with N-Acetyl-5-N,4-O-Carbonyl-Protected Thiosialoside Donors in Dichloromethane: Facile and Selective Cleavage of the Oxazolidinone Ring. J. Org. Chem. 2007, 72, 2387-2391.
125. Crich, D.; Li, W.-J., α-Selective Sialylations at -78 oC in Nitrile Solvents with a 1-Adamantanyl Thiosialoside. J. Org. Chem. 2007, 72, 7794-7797.
126. Crich, D.; Wu, B.-L., Stereoselective Iterative One-Pot Synthesis of N-Glycolylneuraminic Acid-Containing Oligosaccharides. Org. Lett. 2008, 10, 4033-4035.
127. Fujita, S.; Numata, M.; Sugimoto, M.; Tomita, K.; Ogawa, T., Total synthesis of the modified ganglioside de-N-acetyl-GM3 and some analogs. Carbohydr. Res. 1992, 228, 347-370.
128. Sherman, A. A.; Yudina, O. N.; Shashkov, A. S.; Menshov, V. M.; Nifantév, N. E., Synthesis of Neu5Ac- and Neu5Gc-α-(2.6')-lactosamine 3-aminopropyl glycosides. Carbohydr. Res. 2001, 330, 445-458.
129. Ikeda, K.; Miyamoto, K.; Sato, M., Synthesis of N,N-Ac,Boc laurylthio sialoside and its application to O-sialylation. Tetrahedron Lett. 2007, 48, 7431-7435.
130. Fujita, S.; Numata, M.; Sugimoto, M.; Tomita, K.; Ogawa, T., Total synthesis of a modified ganglioside, de-N-acetyl GM2. Carbohydr. Res. 1994, 263, 181-196.
131. Tanaka, S.; Takashi, G.; Tanaka, K.; Fukase, K. J., Highly Efficient α-Sialylation by Virtue of Fixed Dipole Effects of N-Phthalyl Group: Application to Continuous Flow Synthesis of α(2-3)- and α(2-6)-Neu5Ac-Gal Motifs by Microreactor. J. Carbohydr. Chem. 2007, 26, 369-394.
132. Tanaka, K.; Takashi, G.; Fukase, K., Synlett 2005, 2958-2962.
133. Wang, Y.; Ye, X.-H., Sialylation reactions with N,N-acetyl, benzoyl-O-perbenzoyl-protected sialyl donor. Tetrahedron Lett. 2009, 50, 3823-3826.
134. Ando, H.; Koike, Y.; Koizumi, S.; Ishida, H.; Kiso, M., 1,5-Lactamized Sialyl Acceptors for Various Disialoside Syntheses: Novel Method for the Synthesis of Glycan Portions of Hp-s6 and HLG-2 Gangliosides. Angew. Chem. Int. Ed. 2005, 44, 6759-6763.
135. Crich, D.; Wu, B.-L., Imposing the trans/gauche conformation on a sialic acid donor with a 5-N,7-O-oxazinanone group: effect on glycosylation stereoselectivity. Tetrahedron 2008, 64, 2042-2047.
136. Tanaka, H.; Ando, H.; Ishiharaa, H.; Koketsu, M., Sialylation reactions with 5-N,7-O-carbonyl-protected sialyl donors: unusual stereoselectivity with nitrile solvent assistance. Carbohydr. Res. 2008, 343, 1585-1593.
137. Kononov, L. O.; Malysheva, N. N.; Orlova, A. V., Stereoselectivity of Glycosylation May Change During the Reaction Course: Highly α-Stereoselective Sialylation Achieved by Supramer Approach. Eur. J. Org. Chem. 2009, 611-616.
138. Lin, C.-C.; Adak, A. K.; Horng, J.-C.; Lin, C.-C., Phosphite-based sialic acid donors in the synthesis of α(2 → 9) oligosialic acids. Tetrahedron 2009, 65, 4717-4725.
139. Boons, G. J.; Burton, A.; Wyatt, P., Glycosyl Phosphates: A New Latent-Active Anomeric Phosphorylation Strategy. Synlett 1996, 310-312.
140. Hariprasad, V.; Singh, G.; Tranoy, I., Stereoselective O-glycosylation reactions employing diphenylphosphinate and propane-1,3-diyl phosphate as anomeric leaving groups. Chem. Commun. 1998, 2129-2130.
141. Plante, O. J.; Andrade, R. B.; Seeberger, P. H., Synthesis and Use of Glycosyl Phosphates as Glycosyl Donors. Org. Lett. 1999, 1, 211-214.
142. Garcia, B. A.; Gin, D. Y., Synthesis of Glycosyl-1-phosphates via Dehydrative Glycosylation. Org. Lett. 2000, 2, 2135-2138.
143. Ravida, A.; Liu, X.-Y.; Kovacs, L.; Seeberger, P. H., Synthesis of Glycosyl Phosphates from 1,2-Orthoesters and Application to in Situ Glycosylation Reactions. Org. Lett. 2006, 8, 1815-1818.
144. Stallforth, P.; Adibekian, A.; Seeberger, P. H., De Novo Synthesis of a D-Galacturonic Acid Thioglycoside as Key to the Total Synthesis of a Glycosphingolipid from Sphingomonas yanoikuyae. Org. Lett. 2008, 10, 1573-1576.
145. Hashimoto, S. I.; Honda, T.; Ikegami, S., A Rapid and Efficient Synthesis of 1,2-trans-P-Linked Glycosides via Benzyl- or Benzoyl-protected Glycopyranosyl Phosphates. J. Chem. Soc. Chem. Commun. 1989, 685-687.
146. Vankayalapati, H.; Jiang, S.; Singh, G., Glycosylation Based on Glycosyl Phosphates as Glycosyl Donors. Synlett 2002, 16-25.
147. Plante, O. J.; Palmacci, E. R.; Andrade, R. B.; Seeberger, P. H., Oligosaccharide Synthesis with Glycosyl Phosphate and Dithiophosphate Triesters as Glycosylating Agents. J. Am. Chem. Soc. 2001, 123, 9545-9554.
148. Vankayalapati, H.; Singh, G.; Tranoy, I., Stereoselective O-glycosylation reactions using glycosyl donors with diphenylphosphinate and propane-1,3-diyl phosphate leaving groups. Tetrahedron: Asymmetry 2001, 12, 1373-1381.
149. Tsuda, T.; Nakamura, S.; Hashimoto, S., A stereocontrolled construction of 2-azido-2-deoxy-1,2-trans-β-glycosidic linkages utilizing 2-azido-2-deoxyglyco-
pyranosyl diphenyl phosphates. Tetrahedron Lett. 2003, 44, 6453-6457.
150. Tsvekov, Y. E.; Nifantiev, N. E., Enhanced Sialylating Activity of O-Chloroacetylated 2-Thioethyl Sialosides. Synlett 2005, 1375-1380.
151. Masaki, M.; Kitahara, T.; Kurita, H.; Ohta, M., A New Method for the Removal of Chloroacetyl Groups. J. Am. Chem. Soc. 1968, 90, 4508-4509.
152. Blatter, G.; Jacquinet, J.-C., The use of 2-deoxy-2-trichloroacetamido-D-gluco-
pyranose derivatives in syntheses of hyaluronic acid-related tetra-, hexa, and octa-saccharides having a methyl β-D-glucopyranosiduronic acid at the reducing end. Carbohydr. Res. 1996, 288, 109-125.
153. Naruto, M.; Ohno, K.; Naruse, N.; Takeuchi, H., Synthesis of Prostaglandins and their congeners I. (+)-11-deoxy-11α-hydroxymethyl prostaglandin F2α from aucubin. Tetrahedron Lett. 1979, 3, 251-254.
154. van Boeckel, C. A. A.; Beetz, T., Hydrazinedithiocarbonate (HDTC) as a New Reagent for the Improved Removal of Chloroacetyl and Bromoacetyl Pretective Groups. Tetrahedron Lett. 1983, 24, 3375-3378.
155. Udodong, U. E.; Rao, C. S.; Fraser-Reid, B., n-Pentenyl glycosides in the efficient assembly of the blood group substance B tetrasaccharide. Tetrahedron 1992, 48, 4713-4724.
156. Lefeber, D. J.; Kamerling, J. P.; Vliegenthart, J. F. G., The Use of Diazabicyclo[2.2.2]octane as a Novel Highly Selective Dechloroacetylation Reagent. Org. Lett. 2000, 2, 701-703.
157. Nicolaou, K. C.; Mitchell, H. J.; Fylaktakidou, K. C.; Rodriguez, R. M.; Suzuki, H., Total Synthesis of Everninomicin 13,384-1--Part 2: Synthesis of the FGHA2 Fragment. Chem. Eur. J. 2001, 6, 3116-3148.
158. Hauske, J. R.; Dorff, P., A Solid Phase Cbz Chloride Equivalent - A New Matrix Specific Linker. Tetrahedron Lett. 1995, 36, 1589-1592.
159. Gouilleux, L.; Fehrentz, J.-A.; Winternitz, F.; Martinez, J., Solid Phase Synthesis of chiral 3-substituted Quinazoline-2,4-diones. Tetrahedron Lett. 1996, 37, 7031-7034.
160. Raju, B.; Kogan, T. P., Solid Phase Synthesis of Sulfonamides Using a Carbamate Linker. Tetrahedron Lett. 1997, 38, 3373-3376.
161. Hori, H.; Nakajuma, T.; Nishida, Y.; Ohrui, H.; Meguro, H., A Simple Method to Determine the Anomeric Configuration of Sialic Acid and Its Derivatives by 13C-NMR. Tetrahedron Lett. 1988, 29, 6317-6320.
162. Nouvel, C.; Dubois, P.; Dellacherie, E.; Six, J.-L., Silylation Reaction of Dextran: Effect of Experimental Conditions on Silylation Yield, Regioselectivity, and Chemical Stability of Silylated Dextrans. Biomacromolecules 2003, 4, 1443-1450.
163. Chen, C.-T.; Kuo, J.-H.; Pawar, V. D.; Munot, Y. S.; Weng, S.-S.; Ku, C.-H.; Liu, C.-Y., Nucleophilic Acyl Substitutions of Anhydrides with Protic Nucleophiles Catalyzed by Amphoteric, Oxomolybdenum Species. J. Org. Chem. 2005, 70, 1188-1197.
164. Tai, C.-A.; Kulkarni, S. S.; Hung, S.-C., Facile Cu(OTf)2-Catalyzed Preparation of Per-O-acetylated Hexopyranoses with Stoichiometric Acetic Anhydride and Sequential One-Pot Anomeric Substitution to Thioglycosides under Solvent-Free Conditions. J. Org. Chem. 2003, 68, 8719-8722.
165. Procopiou, P. A.; Baugh, S. P. D.; Flack, S. S.; Inglis, G. G. A., An extremely fast and efficient acylation reaction of alcohols with acid anhydrides in the presence of trimethylsilyl trifluoromethanesulfonate as catalyst. Chem. Commun. 1996, 2625-2626.
166. Procopiou, P. A.; Baugh, S. P. D.; Flack, S. S.; Inglis, G. G. A., An Extremely Powerful Acylation Reaction of Alcohols with Acid Anhydrides Catalyzed by Trimethylsilyl Trifluoromethanesulfonate. J. Org. Chem. 1998, 63, 2342-2347.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *