帳號:guest(18.188.18.90)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):廖俊傑
作者(外文):Liao, Jyun-Jie
論文名稱(中文):以氮,硫,碳連接之cyclotriphosphazene 衍生物於有機發光二極體之應用
論文名稱(外文):Cyclotriphosphazene derivatives Linked with Nitrogen. Sulfur. Carbon atoms and Their Application in OLEDs
指導教授(中文):陳秋炳
指導教授(外文):Cheng, Cheu-Pyeng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:9623551
出版年(民國):98
畢業學年度:97
語文別:中文
論文頁數:153
中文關鍵詞:有機發光二極體
外文關鍵詞:OLED
相關次數:
  • 推薦推薦:0
  • 點閱點閱:192
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
摘要
於本論文中,我們選擇鮮少被應用於OLED 材料中的Hexachloro
-cyclotriphosphazene(N3P3Cl6)分子為中心體,並以簡單的單環或雙環芳香環為外圍基團,以普通酸鹼反應及Appel reaction 合成出一系列材料。
由 NP 系列材料與其外圍基團的UV 吸收光譜比較,可以發現電子的躍遷主要發生在外圍基團上,亦即光物理性質取決於外圍基團;此外,此系列材料均具有相當大的能隙,能有效的阻擋電洞。於電化學方面,藉由循環伏安法的量測,可知材料於溶液中大多具有不錯的
LUMO 能階與還原電化學性質。於熱性質方面,使用示差掃描卡計量
測材料的玻璃轉換溫度Tg,發現Tg 並不會隨著分子量的增加而有太
大的改善,其受分子結構的影響似乎較大。
最後,藉由X-ray 晶體繞射探討分子結構,且進行相關的元件製
作並與最常見的電子傳輸材料Alq3 進行比較,以探討此類材料的實用性。
Abstract
The molecule Hexachlorocyclotriphosphazene(N3P3Cl6) was seldom being applied in OLEDs. In our research, it was chosen to react with some simple aromatic compounds, such as pyrrole and indole, by general acid-base and Appel reactions, and then a series of materials with cyclotriphosphazene core were synthesized.
By comparing the UV-Vis spectrums of the NP materials with those of their substituents, it was known that the electron transition mainly occured on the outer
substituent parts of the whole molecules said the photophysical properties were determined by the outer substituents.
Besides, all the NP materials got large energy gaps to block holes. Otherwise,they almost possessed well reductive properties and suitable LUMO energy levels for transporting electrons. From the discussion of thermal properties, it was known that their glass transition temperatures(Tg) would not increase very much while increasing their molecular weights, but effected significantly by their molecular structures. .
Among the NP materials, ProNP and IndNP were determined and discussed by X-ray diffraction. At last, devices were designed and made to test their practicality by comparing to Alq3.
目錄
第一章 緒論
前言 --------------------------------------------------1
第一節 OLED 的發展歷史---------------------------------2
第二節 OLED 的發光機制與元件效率及構造-----------------3
第三節 OLED 元件各層材料介紹---------------------------8
第四節 Hexachlorocyclotriphosphazene 相關探討---------22
第五節 研究動機---------------------------------------25

第二章 實驗
第一節 藥品-------------------------------------------26
第二節 儀器-------------------------------------------28
第三節 實驗步驟---------------------------------------29
第四節 OLED 元件製作----------------------------------51

第三章 結果與討論
第一節 合成相關探討-----------------------------------54
第二節 紫外-可見光吸收光譜探討------------------------58
第三節 電化學性質探討---------------------------------62
第四節 熱性質探討-------------------------------------67
第五節 X-ray 晶體結構探討-----------------------------69
第六節 元件效率探討-----------------------------------77

第四章 結論---------------------------------------------87

參考文獻------------------------------------------------88

附錄----------------------------------------------------91
參考文獻
1. M. Pope, H. P. Kallmann, P. Magnante, J. Chem. Phys., 1963, 38, 2024.
2. C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett., 1987, 51, 913.
3. Tang, VanSlyke, and Chen, J. Appl. Phys., 1989, 65, 3610.
4. M. A. Baldo, D. F. O¡Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson,
S. R. Forrest, Nature, 1998, 395, 151.
5. M. Y. Lai, C. H. Chen, W. S. Huang, J. T. Lin, T. H. Ke, L. Y. Chen, M. H. Tsai,
C. C. Wu, Angew. Chem. Int. Ed., 2008, 47, 581.
6. L. Ke, P. Chen, S. J. Chua, Appl. Phys. Lett., 2002, 80, 697.
7. T. Ishida, H. Kobayashi, Y. Nakato, J. Appl. Phys., 1993, 73, 4344.
8. S. K. Sol, W. K. Choi, C. H. Cheng, L. M. Leung, C. F. Kwong, Appl. Phys. A,
1999, 68, 447.
9. M. Stolka, J. F. Janus, D. M. Pai, J. Phys. Chem., 1984, 88, 4707.
10. B. Chen, C. S. Lee, S. T. Lee, P. Webb, Y. C. Chan, W. Gambling, H. Tian and W.
Zhu, Jpn. J. Appl. Phys. Part 1, 2000, 39, 1190.
11. Y. Shirota, K. Okumoto, H. Inada, Synth. Met., 2000, 111, 387.
12. C. H. Chen, J. Shi, K. P. Klubek, U.S. 5908581 (1999)
13. J. L. Fox and C. H. Chen, U.S. 4736032 (1988)
14. C. C. Wu, Y. T. Lin, H. H. Chiang, T. Y. Cho, C. W. Chen, K. T. Wang, Y. L. Liao,
G. H. Lee, S. M. Peng, Appl. Phys. Lett., 2002, 81, 577.
15. Y. H. Kim, D. C. Shin, S. H. Kim, C. H. Ko, H. S. Yu, Y. S. Chae, S. K. Kwon,
Adv. Mater., 2001, 13, 1690.
16. D. F. O¡brien, M. A. Baldo, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett.,
1999, 74, 442.
17. M. A. Baldo, M. E. Thompson, S. R. Forrest, Nature(London), 2000, 403, 750.
18. A. Tsuboyama, H. Iwawaki, M. Furugori, T. Mukaide, J. Kamatani, S. Igawa, T.
Moriyama, S. Miura, T. Takiguchi, S. Okada, M. Hoshino, K. Ueno, J. Am. Chem.
Soc., 2003, 125, 12971.
19. M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, S. R. Forrest, Appl.
Phys. Lett., 1999, 78, 4.
20. M. Ikai, S. Ichinosawa, Y. Sakamoto, T. Suzuki, Y. Taga, Appl. Phys. Lett., 2001,
79, 156.
21. C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich, M. A. Baldo, M. E.
Thompson, S. R. Forrest, Appl. Phys. Lett., 2001, 79, 2082.
22. S. Tokito, T. Iijima, Y. Suzuri, H. Kita, T. Tsuzuki, F. Sato, Appl. Phys. Lett., 2003,
83, 569.
23. M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, S. R. Forrest, Appl.
89
Phys. Lett., 1999, 75, 4.
24. J. Shi, C. W. Tang, C. H. Chen, U.S. 5646948 (1997)
25. T. C. Wong, J. Kovac, C. S. Lee, L. S. Hung, S. T. Lee, Chem. Phys. Lett., 2001,
334, 61.
26. K. Okumoto, Y. Shirota, Chem. Mater., 2003, 15, 699.
27. Z. H. Li, K. L. Tong, M. S. Wong, S. K. So, J. Mater. Chem., 2006, 16, 765.
28. Y. Shirota, H. Kageyama, Chem. Rev., 2007, 107, 953.
29. J. D. Anderson, E. M. McDonald, P. A. Lee, M. L. Anderson, E. L. Ritchie, H. K.
Hall, T. Hopkins, E. A. Mash, J. Wang, A. Padias, S. Thayumanavan, S. Barlow,
S. R. Marder, G. E. Jabbour, S. Shaheen, B. Kippelen, N. Peyghambarian, R. M.
Wightman, and N. R. Armstrong, J. Am. Chem. Soc., 1998, 120, 9646.
30. H. Inomata, K. Goushi, T. Masuko, T. Konno, T. Imai, H. Sasabe, J. J. Brown,
C. Adachi, Chem. Mater., 2004, 16, 1285.
31. M. Uchida, T. Izumizawa, T. Nakano, S. Yamaguchi, K. Tamao, K. Furukawa,
Chem. Mater., 2001, 13, 2680.
32. H. Murata, G. G. Malliaras, M. Uchida, Y. Shen, and Z. H. Kafafi, Chem. Phys.
Lett. , 2001, 339, 161.
33. Y. Sakamoto, T. Suzuki, A. Miura, H. Fujikawa, S. Tokito, Y. Taga, J. Am. Chem.
Soc., 2000, 122, 1832.
34. S. Heidenhain, Y. SaKAmoto, T. Suzuki, A. Miura, H. Fujikawa, T. Mori, S.
Tokito, Y. Taga, J. Am. Chem. Soc., 2000, 122, 10240.
35. C. C. Wu, T. L. Liu, W. Y. Hung, Y. T. Lin, K.T. Wong, R. T. Chen, Y. M. Chen,
Y. Y. Chien, J. Am. Chem. Soc., 2003, 125, 3710.
36. E. Cil, M. Arslan, A. O. Gorgulu, Polyhedron, 2006, 25, 3526.
37. (a) R. L. Kugel and H. R. Allcock, J. Am. Chem. Soc., 1965, 87, 4216 ; (b) H. R.
Allcock, R. L. Kugel and K. J. Valan, Inorg. Chem., 1966, 5, 1709 ; (c) Yun
Zhang, Keith Huynh, Ian Manners and Christopher A. Reed, Chem. Commun.,
2008, 494.
38. (a) Allcock, H. R. Chemistry and Applications of Polyphosphazenes;
Wiley-Interscience: New York, 2003; Chapters 4 and 5. (b) Sulkowski, W. W. In
Synthesis and Characterizations of Poly-(organophosphazenes); Gleria, M., De
Jaeger, R., Eds.; Nova Science:New York, 2004, Chapter 4. (c) Amy J. Heston,
Matthew J. Panzner, Wiley J. Youngs, and Claire A. Tessier, Inorg. Chem., 2005,
44, 6518.
39. J. K. Valaitis, G. S. Kyker, J. Appl. Polym. Sci., 1979, 23, 765.
40. A. Gissibl, C. Padie, M. Hager, F. Jaroschik, R. Rasappan, E. Cuevas-Yanez, C. O.
Turrin, A. M. Caminade, J. P. Majoral, O. Reiser, Org. Lett., 2007, Vol. 9, No.
5,2895.
90
41. C. W. Allen, J. Fire Sci., 1993, 11, 320.
42. G. X. Xu, Q. Lu, B. T. Yu, L. Wen, Solid State Ionics, 2006, 177, 305.
43. H. J. Bolink, S. G. Santamaria, S. Sudhakar, C. Zhen, A. Sellinger, Chem.
Commun., 2008, 618.
44. V. Vicente, A. Fruchier, M. Taillefer, C. Combes-Chamalet, I. J. Scowen, F.
Plenata, H. J. Cristau, New. J. Chem., 2004, 28, 418.
45. R. Appel, Angew. Chem. Int. Ed., 1975, 14, 801.
46. L. Zhang, J. Shi, Z. Jiang, M. Huang, Z. Chen, Q. Gong, S. Cao, Adv. Funct.
Mater., 2008, 18, 362.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *