帳號:guest(3.134.90.44)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳傑文
作者(外文):Chen, Chieh-Wen
論文名稱(中文):吲哚類抗癌化合物之合成和結構與活性關係(SAR)的研究
論文名稱(外文):Synthesis and Structure-Activity Relationship of Indole Compounds as Anticancer Agents
指導教授(中文):廖俊臣
謝興邦
指導教授(外文):Liao, Chun-Chen
Hsieh, Hsing-Pang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:9623560
出版年(民國):98
畢業學年度:97
語文別:中文
論文頁數:178
中文關鍵詞:吲哚抗癌藥物
外文關鍵詞:indoleanticancer drugs
相關次數:
  • 推薦推薦:0
  • 點閱點閱:505
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
本論文的主旨在於研究一系列以吲哚 (indole) 為主架構的抗癌藥物之設計與合成,並進一步的探討這系列化合物的結構與抗癌生物活性之相關 (structure -activity relationship,簡稱為 SAR)。

在抗癌機制上的主要研究方向為研發抗有絲分裂試劑,以阻礙癌細胞之細胞週期,進而達到抗癌之效果。而在研究過程中,可分成兩階段 : 第一階段是以微管作為抗癌標靶之藥物設計;第二階段則是以極光激酶 A (Aurora kinase A) 作為抗癌標靶之藥物設計。

在這系列的吲哚化合物中,以帶有 3-甲基吡唑 (3-methylpyrazole) 的化合物擁有對於極光激酶 A 的抑制活性,抑制效果最高可達 77%,而化合物 9c 更對於人類結腸癌細胞株 HCT116 (human colon cancer - 116 cell line) 顯現出明顯的抗癌生物活性 (IC50 = 2.6 μM) ,並以此化合物作為先導化合物 (lead compound) 做結構與抗癌生物活性之相關之探討。
This dissertation is focused on the design and synthesis of the indole system compounds as anticancer drugs, and a study on their structure-activity relationship (SAR) outlined as follows.
For the anticancer drug design we intend to make antimitotic agents to disrupt the cancer cell’s cell cycle. In our study, there are two stages. At the initial stage, we use microtubules as the anticancer target to design the drug. Then, we change the target to the Aurora kinase A.
In this series indole compound that we prepared, we found that the compound which has the 3-methyl pyrazole as the heterocyclic part can be the Aurora kinase A inhibitor, and the highest case can inhibit around 77% Aurora kinase A. The compound 9c has the anticancer bioactivity of 2.6 μM (IC50) against the HCT116 (human colon cancer - 116 cell line). Furthermore we use this compound as the lead compound to make the SAR (structure -activity relationship) for further study and optimization.
中文摘要 I 英文摘要 II 謝誌 III 目錄 IV 圖目錄 IX 表目錄 XI 縮寫對照表 XIII

壹、緒論 1
1.1 癌症之簡介 1
1.2 化學療法 (Chemotherapy) 3
1.2.1 抗癌藥物之分類 3
1.3 抗有絲分裂試劑之背景介紹 9
1.3.1 細胞週期 (cell cycle) 10
1.3.2 有絲分裂 (mitosis) 12
1.4 以微管蛋白為標靶之抗癌藥物研究 14
1.4.1 微管的結構與功能簡介 14
1.4.2 微管抑制劑的研究 16
1.5 以激酶 (kinase) 為標靶之抗癌藥物研究 18
1.5.1 極光激酶 (Aurora kinases) 20
1.5.2 擬球形激酶 (Polo-like Kinases, PLKs) 22
1.5.3 驅動蛋白 (Kinesin spindle protein, KSP) 23
1.6 新世代抗有絲分裂試劑之展望 25
貳、研究構想 27
2.1 智慧型導向藥物設計 (Knowledge-Based Drug Design) 28
2.2 合成策略 31
參、結果與討論 33
3.1 吲哚系列化合物對於微管抑制劑之開發 33
3.1.1 吲哚系列化合物之合成研究之一 34

3.1.2 吲哚系列化合物之抗癌活性 38
3.2 吲哚系列化合物對於極光激酶抑制劑之開發 40
3.2.1 先導化合物 9c 之循理性設計與合成研究 42
3.2.2 先導化合物 12 之循理性設計與合成研究 44
3.2.3 極光激酶 A 抑制性試驗 46
3.3 吲哚系列化合物結合 VX-680 之衍生物合成研究 51
3.4 結論 56
肆、總結 58
伍、實驗部份 60
5.1 一般實驗方法 60
5.2 吲哚 (indole) 系列化合物之實驗方法及光譜資料 64
5.2.1 化合物 7a 的合成 64
5.2.2 化合物 7b 的合成 65
5.2.3 化合物 7c 的合成 66
5.2.4 化合物 7d 的合成 67
5.2.5 化合物 8a 的合成 69

5.2.6 化合物 8b 的合成 70
5.2.7 化合物 8c 的合成 72
5.2.8 化合物 8d 的合成 73
5.2.9 化合物 9a 的合成 75
5.2.10 化合物 9b 的合成 76
5.2.11 化合物 9c 的合成 78
5.2.12 化合物 9d 的合成 79
5.2.13 化合物 10 的合成 81
5.2.14 化合物 11 的合成 82
5.2.16 化合物 13 的合成 85
5.2.17 化合物 14 的合成 86
5.2.18 化合物 15a 的合成 87
5.2.19 化合物 15b 的合成 88
5.2.20 化合物 15c 的合成 90
5.2.21 化合物 15d 的合成 91
5.2.22 化合物 17 的合成 93
5.2.23 化合物 18 的合成 94

5.2.24 化合物 19 的合成 95
5.2.25 化合物 25 的合成 97
5.2.26 化合物 24 的合成 98
5.2.27 化合物 21 的合成 99
5.2.28 化合物 20 的合成 101
5.2.29 化合物 31 的合成 102
5.2.30 化合物 32 的合成 103
陸、參考資料 105
附錄一、核磁共振光譜圖 113
附錄二、化合物編號對照表 162
附錄三、碩士口試投影片 165
1. Matsudaira, P. T.; Lodish, H. F.; Arnold, B.; Kaiser, C.; Monty, K.; Matthew, P. S.; Anthony, B.; Hidde, P. Molecular Cell Biology; W. H. Freeman; 5th edition; 2004.
2. Hanahan, D.; Weinberg, R. A. The hallmarks of Cancer. Cell, 2000, 100, 57-70.
3. http://www.who.int/cancer/en/
4. Williams, D. A.; Lemke, T. L. Foye’s Principles of Medicinal Chemistry; Lippincott Williams & Wilkins; 5th edition; 2002; p 924-929.
5. Lipp, H. P. Anticancer Drug Toxicity: Prevention, Management, and Clinical Pharmacokinetics; Marcel Dekker Inc.; New York; 1999; p 11-201
6. Nelson, D. L.; Michael M. C. Lehninger Principles of Biochemistry; W. H. Freeman; 3rd BK&CD edition; 2003; p 921.
7. http://www.medicinenet.com/chemotherapy/article.htm
8. 董彥士,化學博士論文,國立清華大學,2007 年。
9. Patrick, G. L. An Introduction to Medicinal Chemistry; Oxford; 3rd edition; New York; 2005; p 500-527.
10. Tien, H. F. Molecular Therapy in Hematologic Malignancies. Formosan. J. Med. 2003, 7, 212-221.
11. Hsieh, R.K. Molecular Targeted Therapy for Solid Tumors. Formosan. J. Med. 2003, 7, 222-226.
12. Melisi, D.; Troiani, T.; Damiano, V.; Tortora, G.; Ciardiello, F. Therapeutic Integration of Signal Transduction Targeting Agents and Conventional Anti-cancer Treatments. Endocrine-Related Cancer, 2004, 11, 51-68.
13. Pollard, J. R.; Mortimore, M. Discovery and Development of Aurora Kinase Inhibitors as Anticancer Agents, J. Med. Chem. 2009, 52, 2629-2651.
14. Lo, Y. H.; Lin, C. F.; Yang, S. C.; Wu, M. J. New Targets in Cell Cycle for New Antitumor Agents Development, J. Chin. Chem. Soc. 2008, 66, 293-308.
15. http:// www.nobelprize.org/nobel_prizes/
16. Jordan, A.; Hadfield, J. A.; Lawrence, N. J.; McHown, A. T. Tublin as A Target for Anticancer Drugs: Agents which Interact with The Mitotic Spindle. Med. Res. Rev. 1998, 18, 259-296.
17. http://life.nthu.edu.tw/~b831608/ps/cells3.html
18. (a) Marcos, M. Therapeutic opportunities to control tumor cell cycles. Clin. Transl. Oncol. 2006, 8, 399-408. (b) Guillermo, D. C.; Ignacio, P. D. C.; Maros, M. Targeting Cell Cycle Kinases for Cancer Therapy. Curr. Med. Chem. 2007, 14, 969-985.
19. Jordan, M. A.; Wilson, L. Microtubules as Target for Anticancer Drugs. Nat. Rev. Cancer 2004, 4, 253-265.
20. Heald, R.; Nogales, E. Microtubule dynamics. J. Cell Sci. 2002, 115, 3-4.
21. Mahindroo, N.; Liou, J. P.; Chang, J. Y. ; Hsieh, H. P. Antitublin agents for the treatment of cancer - a medicinal chemistry update. Expert Opin. Ther. Patents 2006, 16, 647-691.
22. Domont, R.; Broeei, A.; Chignell, C. F.; Quinn, F. R.; Suffness, M. A. Novel synthesis of colchicine and analogues from thiocolchicine and congeners: reevaluation of colchicine as a potential antitumor agent. J. Med. Chem. 1987, 30, 732-735.
23. Mujagic, H.; Conger, B. M.; Smith, C. A.; Occhipinti, S. J.; Schuette, W. H.; Shackney, S. E. Schedule dependence of vincristine lethality in sarcoma 180 cells following partial synchronization with hydroxyurea. Cancer Res. 1983, 43, 3598-3603.
24. (a) Manfriedi, J. J.; Horwitz, S. B. Taxol: an antimitotic agent with a new mechanism of action. Pharmacol. Ther. 1984, 25, 83. (b) Thoret, S.; Gueritte, F.; Guenard, D.; Dubois, J. Semisynthesis and biologoical evaluation of a novel D-seco docetaxel analogue. Org. Lett. 2006, 8, 2301-2304.
25. Rowinsky, E. K. The development and clinical utility of the taxane class of antimicrotubule chemotherapy agents. Annu. Rev. Med. 1997, 48, 353-374.
26. Mekhail, T. M.; Markman, M. Paclitaxel in cancer therapy. Expert Opin. Pharmacother. 2002, 3, 755-766.
27. (a) Kirschner, L. S.; Greenberger, L. M.; Hsu, S. I. H.; Yang, C. P. H.; Cohen, D.; Piekarz, R. L.; Castillo, G.; Han, E. K. H.; Yu, L.; Horwitz, S. B. Biochemical and genetic characterization of the multidrug resistance phenotype in murine macrophage-like J774.2 cells. Biochem. Pharm. 1992, 43, 77. (B) Gottesman, M. M.; Pastan, I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Ann. Rev. Biochem. 1993, 62, 385.
28. Keen, N.; Taylor, S. Aurora-Kinase inhibitors as anticancer agents. Nat. Rev. Cancer 2004, 4, 927-936.
29. (a) Hsu, J. Y.; Sun, Z.W.; Li, X.; Reuben, M.; Tatchell, K.; Bishop, D. K.; Grushcow, J. M.; Brame, C. J.; Caldwell, J. A.; Hunt, D. F.; Lin, R.; Smith, M. M.; Allis, C. D. Mitotic phosphorylation of histone H3 is governed by Ip11/ Aurora kinase and Glc 7/PP1 phosphatase in budding yeasts and nematodes. Cell 2000, 102, 279-291. (b) Giet, R.; Glover, D. M. Drosophila Aurora B kinase is required for histone H3 phosphorylation and condensin recruitment during chromosome condensation and to organize the central spindle during cytokinesis. J. Cell. Biol. 2001, 152, 669-682.
30. (a) Keen, N.; Taylor, S. Aurora-kinase inhitbitors as anticancer agents. Nature Rev. Cancer 2004, 4, 927-936. (b) Carvajal, R. D.; Rse, A.; Schwartz, G. K. Aurora kinases: new targets for cancer therapy. Clin. Cancer Res. 2006, 12 , 6869-6875.
31. McInnes, C.; Mezna, M.; Fischer, P. M. Progress in the discovert of polo-like kinase inhibitors. Curr. Top. Med. Chem. 2005, 5, 181-197.
32. Qian, Y. W.; Erikson, E.; Li, C.; Maller, J. L. Activated polo-like kinase Plx1 is required at multiple points during mitosis in Xenopus laevis. Mol. Cell. Biol. 1998, 18, 4262-4271.
33. Castro, A.; Bernis, C.; Vigneron, S.; Labbé, J. C.; Lorca, T. The anaphase-promoting complex: a key factor in the regulation of cell cycle. Oncogene 2005, 24, 314-325.
34. Strebhardt, K.; Ullrich, A. Targeting polo-like kinase 1 for cancer therapy. Nat. Rev. Cancer 2006, 6, 321-330.
35. Li, W. T.; Hwang, D. R.; Chen, C. P.; Shen, C. W.; Huang, C. L.; Chen, T. W.; Lin, C. H;.; Chang, Y. L.; Chang, Y. Y.; Lo, Y. K.; Tseng, H.Y.; Lin, C.C.; Song, J. S.; Chen, H. C.; Chen, S.J.; Wu, S. H.; Chen, C. T. Synthesis and biological evaluation of N-heterocyclic indolyl glyoxylamides as orally active anticancer agents, J. Med. Chem. 2003, 46, 1706-1715.
36. Liou, J. P.; Chang, Y. L.; Kuo, F. M.; Chang, C. W.; Tseng, H. Y.; Wang, C. C.; Yang, Y. N.; Chang, J. Y.; Lee, S. J.; Hsieh, H. P. Concise synthesis and structure-activity relationships of Combretastatin A-4 analogues, 1-Aroylindoles and 3-Aroylindoles, as novel classes of potent antitubulin agents, J. Med. Chem 2004, 47, 4347-4257.
37. Jordan, A.; Hadfiedld, J. A.; Lawrence, N. J.; McGown, A. T. Tublin as a target for anticancer drugs: agents which interact with the mitotic spindle, Med. Res. Rev. 1998, 18, 259-296.
38. (a) Bacher, G.; Nickel, B.; Emig, P.; Vanhoefer, U.; Seeber, S.; Shandra, A.; Klenner, T. B.; Beckers, T. D-24851, a novel synthetic microtubule inhibitor, exerts curative antitumoral activity in vivo, shows efficacy toward multidrug-resistant tumor cells, and lacks neurotoxicity, Cancer Res. 2001, 61, 392-399. (b) Bacher, G.; Beckers, T.; Emig, P.; Klenner, T. B.; Kutscher, B.; Nickel, B. New small-molecule tubulin inhibitors, Pure Appl. Chem. 2001, 73, 1459-1464.
39. (a) Pettit, G. R.; Singh, S. B.; Niven, M. L.; Hamel, E.; Schmidt, J. M. Isolation, structure, and synthesis of Combretastatins A-1 and B-1, potent new inhibitors of microtubule assembly, derived from combretum caffrum., J. Nat. Prod. 1987, 50, 119-131. (b) Pettit, G. R.; Singh, S. B.; Boyd, M.R.; Hamel, E.; Pettit, R. K.; Schmidt, J. M.; Hogan, F. Isolation and synthesis of Combretastatins A-4, A-5, and A-6., J. Med. Chem. 1995, 38, 1666-1672
40. Coumar, M. S.; Leou, J. S.; Shukla, P.; Wu, J. S.; Dixit, A. K.; Lin, W. H.; Chang, C. Y.; Lien, T. W.; Tan, U. K.; Chem, C. W.; Hsu, J. T. A.; Chao, Y. S.; Wu, S. Y.; Hsieh, H. P. Structure-Based Drug Design of Novel Aurora Kinase A Inhibitors: Structure Basis for Potency and Specificity. J. Med. Chem. 2009, 52, 1050-1062.
41. Sarli, V.; Giannis, A. Inhibitors of mitotic kinesins: next-generation antimitotics. Chem. Med. Chem. 2006, 1, 293-298.
42. Leizerman, I.; Avunie-Masala, R.; Elkabets, M.; Fich, A.; Gheber, L. D.; Mayer, T. U.; Kapoor, T. M.; Haggarty, S. J.; King, R. W.; Schreiber, S. L.; Mitchison, T. J. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 1999, 286, 971-974.
43. Harrington, E. A.; Bebbington, D.; Moore, J.; Rasmussen, R. K.; Ajose-Adeogun, A. O.; Nakayama, T.; Graham, J. A.; Demur, C.; Hercend, T.; Diu-Hercend, A.; Su, M.; Golec, J. M.; Miller, K. M. VX-680, a potent and selective small- molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nat. Med. 2004, 10, 262-267.
44. Suzanne, C. M.; Jane deSolms, S.; Shaw, A. W.; Abrams, M. T.; Ciccarone, T. M.; Davide, J. P.; Hamilton, K. A.; Hutchinson, J. H.; Koblan, K. S.; Kohl, N. E.; Lobell, R. B.; Robinson, R. G.; Graham, S. L. Diaryl Ether Inhibitors of Farnesyl- Protein Transgerase. Bioorg. Med. Chem. Lett. 2001, 11, 1257.
45. Kuo, C. C.; Hsieh, H. P.; Pan, W. Y.; Chen, C. P.; Liou, J. P.; Lee, S. J.; Chang, Y. L.; Chen, L. T.; Chen, C. T.; Chang, J. Y. BPR0L075, A novel synthetic indole compound with antimitotic activity in human cancer cells, exerts effective antitumoral activity in vivo. Cancer Res. 2004, 64, 4621-4628.
46. Coumar, M. S.; Wu, J. S.; Leou, J. S.; Tan, U. K.; Chang, C. Y.; Chang, T. Y.; Lin, W. H.; Hsu, J. T. A.; Chao, Y. S.; Wu, S. Y.; Hsieh, H. P. Aurora kinase A inhibitors: Identification, SAR exploration and molecular modeling of 6,7-dihydro-4H-pyrazolo[1,5-a]pyrrolo[3,4-d]pyrimidine-5,8-dione scaffold Bioorg. Med. Chem. Lett. 2008, 18, 1623-1627.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 掩飾鄰苯醌與相關2,4-環己二烯酮的Diels-Alder反應之研究
2. 雜芳香環駢蓓菉苓類化合物之合成與光化學重排反應
3. 壹.雙環[2.2.2]辛烯酮硫化物與硒化物之反應研究.貳.天然物 (±)-5α,6α,7α,10α-4(15),11(13)-Eudesmadiene-12,6-olide之合成研究
4. 博菜黴素雙醣體及藻酸之合成研究
5. 藉著熱裂解二聚體生成6,6-二甲氧基環己-2,4-二烯酮 新PPAR 抑制劑當作抗糖尿病試劑的設計與合成
6. 掩飾鄰苯醌之化學:由2-甲氧基酚化合物應用重排反應於高效率合成多環化合物之研究
7. 芳香雜環駢苯駢於Di-π-methane反應中之取代基效應
8. 1,3,3-三甲基雙環[2.2.2]辛-5,7-二烯-2-酮系列化合物之光化學反應研究
9. 壹. 掩飾鄰苯醌之hetero-Diels-Alder反應研究 貳. 路易士酸催化掩飾鄰苯醌進行1,3-甲氧基重排反應之研究
10. 壹、天然物(±)-□9(12)-Capnellene之合成研究 ; 貳、天然物(+)-Eudesmadiene-12,6-olide之合成研究
11. 壹、掩飾鄰苯醌與掌性丙烯酸酯之分子間不對稱Diels-Alder反應研究: 貳、天然物(±)-Drechslerine D與E之合成研究
12. Corey-Chavkovsky 試劑與鄰羥二苯甲酮衍生物之新穎反應的研究
13. 壹. Promazine衍生物之合成與抗SARS病毒活性之研究 ; 貳. 3-氧酚-1-吲哚衍生物之合成與抗癌活性之研究
14. 掩飾鄰苯醌與單態氧的化學反應
15. 以呋喃并嘧啶化合物為極光激酶抑制劑之研究
 
* *