帳號:guest(18.222.193.207)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):魏吟靜
作者(外文):Wei, Yin-Ching
論文名稱(中文):含咪唑及酚基之雙亞硝基鐵化合物與其相互轉換
論文名稱(外文):Mixed Imidazoleate-phenoxide-containing Dinitrosyl Iron Complexes (DNICs) and Its Interconversion
指導教授(中文):廖文峯
指導教授(外文):Liaw, Wen-Feng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:9623577
出版年(民國):98
畢業學年度:97
語文別:中文
論文頁數:52
中文關鍵詞:雙亞硝基鐵化合物
外文關鍵詞:DNICs
相關次數:
  • 推薦推薦:0
  • 點閱點閱:76
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究主要以已知化合物[Fe4(C3H3N2)4(NO)8] (1)當作起始物,加入酚
基( phenoxide )和亞硝酸鹽( nitrite )合成O, N配位的雙亞硝基鐵錯合物[(C3H3N2)(OPh)Fe(NO)2]- (2)及[(C3H3N2)(NO2)Fe(NO)2]- (3’),並探討其反應性。
化合物[(C3H3N2)(OPh)Fe(NO)2]- (2)的成功合成證實含Tyrosine和Histidine混合配位之protein-bound DNICs存在的可能性。將此化合物2與等當量的thiol或thiolate反應可以置換化合物2上的酚基形成硫和氮配位的DNICs;
硫氮配位的DNICs再多加一當量的thiol或thiolate則會置換掉咪唑基( Imidazolate ),形成兩個硫配位的DNICs。這一系列反應可以清楚說明S/N/O配位基與{Fe(NO)2}的鍵結能力;也間接證實為何生物體中DNICs較多由半胱胺酸當配位基。化合物[(C3H4N2)2(η2-ONO)Fe(NO)2][18-crown-6-ether]2 (3)的成功合成,又是6配位{Fe(NO)2}9 DNIC的另一例子,而其中間產物[(C3H3N2)(NO2)Fe(NO)2]- (3’)在[OPh]-的存在下,可轉換形成化合物2,在EPR光譜上,化合物3’的室溫光譜g值落在2.03附近,這也間接證實了化合物3’的存在。
In this research, reaction of [Fe4(C3H3N2)4(NO)8] (1) with phenoxide and nitrite led to the formation of [(C3H3N2)(OPh)Fe(NO)2]- (2) and [(C3H3N2)(NO2)Fe(NO)2]- (3’), respectively. Synthesis of the anionic {Fe(NO)2}9 [(C3H3N2)(OPh)Fe(NO)2]- (2) supports the existence of protein-bound NHis/OTyr-DNICs. Reaction of complex 2 and thiol or thiolate in 1:1 molar ratio led to the formation of [(C3H3N2)(SPh)Fe(NO)2]- with mixed imidazolate-/thiolate- coordinated ligands. Addition of another 1 equivalent of thiol or thiolate into imidazolate-/thiolate- coordinated DNIC yielded [(SPh)2Fe(NO)2]- . These reactions elucidate the binding ability of {Fe(NO)2} moiety toward thiolate, imidazolate and phenoxide.
The non-classical six-coordinated DNIC{Fe(NO)2}9 [(C3H4N2)2(η2-ONO)Fe(NO)2] [18-crown-6-ether]2 (3) was synthesized. The proposed precursor of complex 3, [(C3H3N2)(NO2)Fe(NO)2]- (3’) with EPR g value 2.03, transforms into complex 2 upon addition of 2 equivalent of phenoxide into it.
目錄
第一章:緒論 1
1-1 前言 1
1-2 一氧化氮在生物體內的重要性 2
1-3 NO結構及NO鍵結在過渡金屬上的電子狀態多樣性 4
1-4 一氧化氮在生物體的儲存及傳遞形式 6
1-5 Nitrite在體內的重要性 7
1-6 雙亞硝基鐵錯合物的特性及其重要性 10
1-7 含亞硝酸鹽之單/雙亞硝基鐵錯合物的特性及其重要性 14
1-8 生物擬態DNICs 15
1-9 實驗研究方向 18
第二章:實驗部份 19
2-1 一般實驗 19
2-2 儀器 19
2-3 藥品 20
2-4 化合物之合成與鑑定 21
2-4-1合成[Fe4(C3H3N2)4(NO)8] (1) 21
2-4-2合成[Na-18-crown-6-ether][(C3H3N2)(OPh)Fe(NO)2] (2). 21
2-4-3合成[Na-18-crown-6-ether][(C3H3N2)(NO2)Fe(NO)2] (3’). 22
2-5 化合物之反應 22
2-5-1 化合物[Na-18-crown-6-ether][(C3H3N2)(OPh)Fe(NO)2] (2)與HSPh和[Na-18-crown-6-ether][SPh]反應. 22
2-5-2 化合物[Na-18-crown-6-ether][(C3H3N2)(OPh)Fe(NO)2] (2) 與[Na-18-crown-6-ether][OPh]和HOPh之反應 23
2-5-3 化合物[Na-18-crown-6-ether][(C3H3N2)(OPh)Fe(NO)2] (2) 與 [Na-18-crown-6-ether][NO2]之反應 23
2-5-4 化合物[Na-18-crown-6-ether][(C3H3N2)(OPh)Fe(NO)2] (2)與MeOH之反應 23
2-5-5 化合物[Na-18-crown-6-ether][(C3H3N2)(OPh)Fe(NO)2] (2)與[H(2,6-lutidine)] [BF4]之反應 24
2-5-6 化合物[Na -18-crown-6-ether][(C3H3N2)(NO2)Fe(NO)2] (3’)與[Na-18-crown-6-ether][OPh]之反應 24
2-5-7 化合物[Na-18-crown-6-ether][(C3H3N2)(NO2)Fe(NO)2] (3’)與Imidazole之反應 24
2-6 晶體結構解析( Crystallography ) 25
2-6-1 [Na-18-crown-6-ether][(C3H3N2)(OPh)Fe(NO)2] (2) 25
2-6-2 [(C3H4N2)2( η2-ONO)Fe(NO)2][18-crown-6-ether]2 (3) 25
第三章:結果與討論 28
3-1化合物[Fe4(C3H3N2)4(NO)8] (1) 28
3-2 化合物[Na-18-crown-6-ether][(C3H3N2)(OPh)Fe(NO)2] (2)的合成、光譜及晶體結構 30
3-2-1 化合物[Na-18-crown-6-ether][(C3H3N2)(OPh)Fe(NO)2] (2)之合成 30
3-2-2 化合物[Na-18-crown-6-ether][(C3H3N2)(OPh)Fe(NO)2] (2)之光譜 30
3-2-3 化合物[Na-18-crown-6-ether][(C3H3N2)(OPh)Fe(NO)2] (2)之晶體結構 33
3-3 化合物[Na-18-crown-6-ether][(NO)2Fe(C3H3N2)(NO2)] (3’)的合成、光譜及[(C3H4N2)2(η2-ONO)Fe(NO)2] (3)的合成、光譜及晶體結構. 35
3-3-1 化合物[Na-18-crown-6-ether][(NO)2Fe(C3H3N2)(NO2)] (3’)之合成 35
3-3-2 化合物[Na-18-crown-6-ether][(C3H3N2)(NO2)Fe(NO)2] (3’)之光譜 36
3-3-3 化合物[(C3H4N2)2( η2-ONO)Fe(NO)2][18-crown-6-ether]2 (3)之合成 37
3-3-4 化合物[(C3H4N2)2( η2-ONO)Fe(NO)2][18-crown-6-ether]2 (3)之光譜 38
3-3-5 化合物[(C3H4N2)2( η2-ONO)Fe(NO)2][18-crown-6-ether]2 (3)之晶體結構 40
3-4 化合物[Na-18-crown-6-ether][(C3H3N2)(OPh)Fe(NO)2] (2)與[Na-18-crown-6-ether][(NO)2Fe(C3H3N2) (NO2)] (3’)之反應性探討 43
3-4-1 化合物[Na-18-crown-6-ether][(NO)2Fe(C3H3N2)(OPh)] (2)與HSPh或[Na-18-crown-6-ether][SPh]反應. 43
3-4-2 化合物[Na-18-crown-6-ether][(C3H3N2)(OPh)Fe(NO)2] (2)與[H(2,6-lutidine)] [BF4]之反應 46
3-4-3 化合物[Na-18-crown-6-ether][(C3H3N2)(NO2)Fe(NO)2] (3’)與[Na-18-crown-6-ether][OPh]之反應 46
第四章:結論 47
參考文獻 49










Figure
Figure 1-2. NO的分子軌域圖 4
Figure 1-3. 金屬與一氧化氮分子軌域中dπ-π*的交互作用 5
Figure 1-4. Cys-NO和GS-NO的結構 7
Figure 1-5. 由mtALDH催化之GTN的活化機制 9
Figure 1-6. protein-bound DNICs:GST P1-1的合成及晶體結構 11
Figure 1-7. 高電位含鐵硫蛋白質( HiPIP )和一氧化氮反應的生成物 12
Figure 1-8. 生物體中iron-surfer Cluster的降解應與修復 13
Figure 3-1. [Fe4(C3H3N2)4(NO)8] (1)為四核之鐵亞硝基化合物 28
Figure 3-2-1. [Na-18-crown-6-ether][(C3H3N2)(OPh)Fe(NO)2] (2)在THF下之紅外光譜。 31
Figure 3-2-2. [Na-18-crown-6-ether][(C3H3N2)(OPh)Fe(NO)2] (2)在THF下之電子吸收光譜。 31
Figure 3-2-3. [Na-18-crown-6-ether][(C3H3N2)(OPh)Fe(NO)2] (2)在THF下之電子順磁共振光譜 (a)室溫( g = 2.026, aN(NO) =2.42 G, aN(Im) = 4.15 G ) (b) 77 K ( g1 =2.046, g2 = 2.020, g3 = 2.01, gav = 2.025) 32
Figure 3-2-5. 化合物[Na-18-crown-6-ether][(C3H3N2)(OPh)Fe(NO)2] (2)的ORTEP圖 34
Figure 3-3-1. [Na-18-crown-6-ether][(C3H3N2)(NO2)Fe(NO)2] (3’)在THF下之紅外光譜 36
Figure 3-3-2. [Na-18-crown-6-ether][(C3H3N2) (NO2)Fe(NO)2] (3’)在THF下之電子 吸收光譜 37
Figure 3-3-3. [(C3H4N2)2( η2-ONO)Fe(NO)2][18-crown-6-ether]2 (3)在THF下之紅外光譜 38
Figure 3-3-4. [Na-18-crown-6-ether][(C3H3N2)(NO2)Fe(NO)2] (3’)在THF下之電子順磁共振光譜 (a)室溫 (b) 220 K (c) 180 K (d) 160 K (e) 120 K (f) 77 K 39
Figure 3-3-7. 化合物[(C3H4N2)2(η2-ONO)Fe(NO)2][18-crown-6-ether]2 (3)的3D圖. 41
Figure 3-3-8. 化合物[(C3H4N2)2(η2-ONO)Fe(NO)2][18-crown-6-ether]2 (3)的ORTEP圖. 41
Figure 3-4-1. [Na-18-crown-6-ether][(SPh)(C3H3N2)Fe(NO)2]之紅外光譜 45
Figure 3-4-2. [Na-18-crown-6-ether][(SPh)2Fe(NO)2]之紅外光譜 45


Table
Table 2-1: [Na-18-crown-6-ether][(C3H3N2)(OPh)Fe(NO)2] (2)之晶體參數 26
Table 2-2: [(C3H4N2)2( η2-ONO)Fe(NO)2] (3)之晶體參數 27
Table 3-2-1. 化合物2的重要鍵長[ Å ]及鍵角[ o ]. 34
Table 3-2-2. 一些Anionic/Neutral/Cationic {Fe(NO)2}9 DNICs的Fe-N(O)和N-O的 鍵長. 35
Table 3-3-1. 化合物3的重要鍵長[ Å ]及鍵角[ o ]. 42



Scheme
Scheme 1 ……………. 9
Scheme 2 合成含O, N之雙亞硝基鐵錯合物( DNICs )之反應路徑 29
Scheme 3 ..................... 44
Scheme 4 ……………. 44
1. Culotta, E.; Koshland, D.E. Science 1992, 258, 1861.
2. Ignarro, L. J.; Buga, G. M.; Wood, K. S.; Byrns, R. E.; Chaudhuri G. Proc. Natl.
Acad. Sci. USA 1987, 84, 9265.
3. Marletta, M.A. Cell 1994, 78, 927.
4. (a) Garrett, R. H.; Grisham, C. M. Biochemistry 2nd, Harcourt college publishers,
1999;p S-31. (b) Henry, Y.; Ducrocq, C.; Drapier, J.-C.; Servent, D.; Pellat, C.;
Guissani, A. Eur. Biophys. J. 1991, 20, 1. (c) Lancaster, J. R., Jr. Am, Sci. 1992, 80,
248. (d) Moncada, S.; Palmer, R. M. J.; Higgs, E. A. Pharmacol. Rev. 1991, 43,
109. (e) Voet, D.; Voet, J.G. Biochemistry 3rd, 2004, p671-673.
5. Teillet-Billy, D.; Fiquet-Fayard, F. J. Phys. 1977, 10B, L111.
6. Feltham, R. D.; Enemark, J. H. Top. Stereochem. 1981, 12, 155.
7. Franz, K. J.; Lippard, S. J. J. Am. Chem. Soc. 1999, 121, 10504.
8. Wang, P. G.; Xian, M.; Tang, X.; Wu, X.; Wen, Z.; Cai, T.; Janczuk, A. J. Chem. Rev.
2002, 102, 1091.
9. Ford, P. C.; Lorkovic, I. M. Chem. Rev. 2002, 102, 993.
10. (a) Hayton, T. W.; Legzdins, P.; Sharp, W. B. Chem. Rev. 2002, 102, 935. (b)
Butler, A. R.; Megson, I. L. Chem. Rev. 2002, 102, 1155. (c) Ford, P. C.; Bourassa,
J.; Miranda, K.; Lee, B.; Lorkovic, I.; Boggs, S.; Kudo, S.; Laverman, L. Coord.
Chem. Rev. 1998, 171, 185.
11. Stamler, J. S.; Singel, D. J.; Loscalzo, J. Science 1992, 258, 1898.
12. Cosby, K.; Partovi, K. S.; Crawford, J. H.; Patel, R. P.; Reiter, C. D.; Martyr, S.;
Yang, B. K.; Waclawiw, M. A.; Zalos, G.; Xu, X.; Huang, K. T.; Shield, H.;
Kim-Shapiro, D. B.; Schechter, A, N,; Cannon III, R. O.; Gladwin, M. T. Nat. Med.
2003, 9, 1498.
13. (a) Bryan, S. N.; Fernandez, O. B. ; Bauer, M. S. ; Garcia-Saura, F. M.; Milsom, B.
A. ; Rassaf, T. ; Maloney, E. R. ; Bharti, A. ; Rodriguez, J.; Feelish, M. Nat. Chem.
Boil. 2005, 1, 290. (b) Gladwin, M. T. Nat. Chem. Boil. 2005, 1, 245. (c) Donzelli,
S.; Switzer, H. C.; Thomas, D. D.; Ridnour, A. L.; Espey, G. M.; Isenberg, S. J.;
Tocchetti, G. C.; King, B. S.; Lazzarino, G.; Miranda, M. K.; Roberts, D. D.;
Feeliah, M.; Wink, A. D. Antiox. Redox Signaling 2006, 8, 1363. (d) Zhiqiang, C.;
Stamler, J. S. Trends Cardiovasc. Med. 2006, 16, 259.
14. Muller, B.; Alencar. J. L.; Chalupsky, K.; Sarr, M.; Schini-Kerth, V.; Vanin, A. F.;
Stoclet, J. C. Biochemical Pharmacology. 2003, 66, 2365.
15. Cesareo, E.; Parker, L. J.; Pedersen, J. Z.; Nuccetelli, M.; Mazzetti, A. P.; Pastore,
A.; Federici, G.; Caccuri, A. M.; Ricci, G.; Adams, J. J.; Parker, M. W.; Bello, M.
L. J. Bio.Chem. 2005, 280, 42172.
16. Foster, M. W.; Cowan, J. A. J. Am. Chem. Soc. 1999, 121, 4093.
17. Yang, W.; Rogers, P. A.; Ding, H. J. Bio.Chem. 2002, 277, 12868.
18. Arulsamy, N.; Bohle, D. S.; Hansert, B.; Powell, A. K.; Thomson, A. J.; Wocaldo,
S. Inorg. Chem. 1998, 37, 746.
19. Tsai, F.-T.; Kuo, T.-S.; Liaw, W.-F. J. Am. Chem. Soc. 2009, 131, 3426.
20. Gwost, D.; Caulton, K.G. Inorg. Chem. 1973, 12, 2095.
21. Baltusis, L. M.; Karlin, K. D.; Rabinowitz, H. N.; Dewan, J. C.; Lippard., S. J.
Inorg. Chem. 1980, 19, 2627.
22. (a) Strasdeit, H.; Krebs, B.; Henkel, G. Z. Naturforsch. 1986, 41b, 1357. (b) Bryar,
T. R.; Eaton, D. R. Can. J. Chem. 1992, 70, 1917. (c) Osterloh, F.; Saak, W.;
Haase, D.; Pohl, S. Chem. Commun. 1997, 979. (d) Liaw, W.-F.; Chiang, C.-Y.;
Lee, G.-H.; Peng, S.-M.; Lai, C. H.; Darensbourg, M. Y. Inorg. Chem. 1980, 19,
2627. (e) Davies, S. C.; Evans, D. J.; Hughes, D. L.; Konkol, M.; Richards, R. L.;
Sanders, J. R.; Sobota, P. J. Chem. Soc., Dalton Trans. 2002, 2473. (f) Chiang,
C.-Y.; Miller, M. L.; Reibenspies, J. H.; Darensbourg, M. Y. J. Am. Chem. Soc.
2004, 126, 10867. (g) Tsai, M.-L.; Chen, C.-C.; Hsu, I.-J.; Ke, S.-C.; Hsieh, C.-H.;
Chiang, K.-A.; Lee, G.-H.; Wang, Y.; Liaw, W.-F. Inorg. Chem. 2004, 43, 5159. (h)
Tsai, F.-T.; Chiou, S.-J.; Tsai, M.-C.; Tsai, M.-L.; Huang, H.-W.; Chiang, M.-H.;
Liaw, W.-F. Inorg. Chem. 2005, 44, 5872. (i) Lu, T.-T.;Chiou, S.-J.;Chen, C.-Y.;
Liaw, W.-F. Inorg. Chem. 2006, 45, 8799. (j) Tsai, M.-L.; Hsieh, C.-H.; Liaw, W.-F.
Inorg. Chem. 2007, 46, 5110.
23. Wang, X.; Sundberg, E. B.; Li, L.; Kantardjieff, K. A.; Herron, S. R.; Lim, M.;
Ford, P. C. Chem. Commun. 2005, 477.
24. McBride, D.W.; Stafford, S. L.; Stone, F. G. A. Inorg. Chem. 1962, 1, 386.
26. Hung, M.-C.; Tsai, M.-L.; Lee, G.-H.; Liaw, W.-F. Inorg. Chem. 2006, 45, 6041.
27. Reginato,N.; McCrory, C. T. C.; Pervitsky, D.; Li, L. J. Am. Chem. Soc. 1999,
121, 10217.
28. Ignarro, L. J. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 7816.
29. (a) Zhiqiang, C.; Zhang, J.; Stamler, J. S. Proc. Natl. Acad. Sci. U.S.A. 2002, 99,
8306. (b) Wenzel, P.; Hink, U.; Oelze, M.; Schuppan, S.; Schaeuble, K.;
Schildknecht, S.; Ho, K. K.; Weiner, H.; Bachschmid, M.; Munzel, T.; Daiber, A. J.
Biol. Chem. 2007, 282, 792.
30. Artz, J. D.; Toader, V.; Zavorin, S. I.; Bennett, B. M.; Thatcher, G. R. J.
Biochemistry 2001, 40, 9256.
(此全文未開放授權)
電子全文
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *