帳號:guest(18.222.200.143)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):呂端晏
作者(外文):Lu, Duan-Yen
論文名稱(中文):低配位、低價數擴展的金屬鏈與金屬-金屬鍵之合成、反應性和形成機制的探討
論文名稱(外文):Synthesis, Reactivity, and Formation Mechanism of Low-Coordinate and Low-Valent Extended Metal Atom Chains and M-M Bonds (M = Niobium, Chromium, Manganese, Zinc and Cadmium)
指導教授(中文):蔡易州
指導教授(外文):Tsai, Yi-Chou
口試委員(中文):季昀
彭之皓
尤禎祥
許智能
口試委員(外文):Chi,Yun
Peng,Chi-How
Yu, Jen-Shiang
Hsu, Sodio C. N.
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學系
學號:9623807
出版年(民國):100
畢業學年度:100
語文別:中文
論文頁數:193
中文關鍵詞:多重鍵五重鍵氮-氮耦合反應多金屬鏈錯合物錳-錳單鍵鎘-鎘單鍵
外文關鍵詞:Multiple BondsQuintuple BondsN-N Coupling reactionExtended Metal Atom ChainsManganese-Manganese BondCadmium-Cadmium Bond
相關次數:
  • 推薦推薦:0
  • 點閱點閱:85
  • 評分評分:*****
  • 下載下載:50
  • 收藏收藏:0
去質子化的雙胺配基Li4[Me2Si(NDipp)2]2 (Dipp = 2,6-iPrC6H3)和氯化錳(MnCl2)或氯化鎘(CdCl2)反應,可以得到雙錳、雙鎘錯合物Mn2{m2-Me2Si(NDipp)2}2 (3)和Cd2{m-k2-Me2Si(NDipp)2}2 (4)。錯合物3,可以經過兩個電子的分段還原反應,分離出錯合物[(THF)2K⊂18-crown-6][Mn2{m-h2-Me2Si(NDipp)2}2] (18-crwon-6 = 1,4,7,10,13,16-hexaoxacyclooctadecane; THF = tetrahydrofuran) ([(THF)2K⊂18-crown-6][5])、[K⊂222-cryptand]2[Mn2{k2-Me2Si(NDipp)2}2] (222-cryptand = 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane) ([K⊂222-cryptand]2[6])和[K2⊂6]。 [K⊂222-cryptand]2[6]和[K2⊂6]皆具有[Mn22+]核心,兩者都是利用4s軌域形成錳-錳□鍵鍵結。另外,錯合物4經過一個電子的還原可以得到四核鎘金屬化合物[(THF)2K⊂18-crown-6]2[{k2-Me2Si(NDipp)2}Cd{m-Me2Si(NDipp)2}Cd]2
([(THF)2K⊂18-crown-6]2[7]),其中兩個鎘原子之間具有鎘-鎘單鍵。藉由錯合物3和4隨著還原反應的結構變化,我們可以證實理論計算中雙鋅金屬錯合物Zn2{m-k2-Me2Si(NDipp)2}2 (1)隨著還原反應得到具有鋅-鋅鍵的雙核鋅(I)金屬錯合物[{k2-Me2Si(NDipp)2}Zn-Zn{k2-Me2Si(NDipp)2}]2- (2),所預測產生的兩個中間體。
去質子化的吡啶雙胺配基2,6-(DippN)2-4-MeC5H4N (N2N)與溴化鋅(ZnBr2)和氯化鎘(CdCl2)反應,可以得到雙鋅錯合物[Zn(THF)(m-k3-N2N)]2 (8)和雙鎘錯合物[Cd(m-k3-N2N)]2 (9)。將錯合物8和9與鹼金屬還原劑(如鉀石墨和銣金屬)進行還原反應,可以分離出新奇的三核金屬團簇化合物[K(THF)n(18-crown-6)][(MKM)(N2N)2] (10: M = Zn, n = 0; 11: M = Cd, n = 1)、[Rb(THF)(18-crown-6)][(ZnRbZn)(N2N)2] (12),錯合物10、11和12具有很短的M-A鍵結(M = Zn, A = K, Rb; M = Cd, A = K);錯合物9與銣金屬反應,只能分離出[Rb(18-crown-6)2]{Cd(THF)[□2-2,6-(DippN)2-4-MeC5H4N][□2-2-(DippN)-6-(DippNH)-4-MeC5H4N]} (13)。而錯合物10和碘化鎂反應,可以產生Zn-K-Zn被氧化的產物[K(18-crown-6)][{Zn(m-I)Zn}(N2N)2] (16);錯合物12分別與碘化鉀與碘化鈉反應,卻只能對陽離子銣(I)進行離子交換反應,分別得到錯合物[K(18-crown-6)][(ZnRbZn)(N2N)2] (14)和[Na(THF)2(18-crown-6)][(ZnRbZn)(N2N)2] (15)。因此,錯合物10、11和12具有未曾發表過的M(I)-A(I)-M(I)共價鍵結(M = Zn, Cd; A = K, Rb),也展現了很高的還原能力。
吡啶雙胺配基與三氯化鉻(CrCl3)反應後,再直接以鉀石墨進行還原反應,可以分離出新穎的雙鉻(I)金屬錯合物{(OEt2)KCr(□1:□2-N2N)}2 (26),具有鉻-鉻五重鍵。而利用18-冠-6-醚以四氫呋喃或苯為溶劑下與錯合物26進行反應,可以得到[K(18-crown-6)(THF)2][(THF)KCr(m-k1:k2-N2N)2] (27)和[K(18-crown-6)(THF)2]2[Cr2(m-k2-N2N)2(m-k2:k2-C6H6)] (28),發現具有所謂的親芳烴性(Arene-philic)和取代基效應(Substitution effect),且第三個具有配位能力的氮原子確實會影響雙鉻之間鍵結的形成。除此之外,利用雙氮基脒、a-雙亞胺和吡啶雙胺配基與鈮的氯化物NbCl3(DME)反應,可以得到(m-Cl)3[Li(THF)2(m-Cl)2][Nb(k2-HC(N-2,6-iPr2C6H3)]2 (30)、Cl3Nb(k2-o,o’-iPr2C6H3-DAB) (o,o’-iPr2C6H3-DAB = 2,3-dimethyl-1,4-bis-(2,6-iPr2C6H3)-1,4-diaza-1,3-butadiene)) (31)和[NbCl(m-k3-N2N)]2 (32),其中錯合物30和32具有鈮=鈮雙鍵。錯合物31可以用鋅粉繼續進行兩個電子的還原反應,得到錯合物[ClNb(m-Cl)2Nb(THF)][k2-o,o’-iPr2C6H3-DAB]2 (33),具有鈮-鈮單鍵。當氯化物NbCl3(DME)與鉀石墨先進行還原反應,再與雙氮基脒配基反應,卻可以產生新穎的蝴蝶構形四核鈮金屬錯合物[{(THF)Nb}(m-Cl)2{Nb(THF)Cl}]2[m-k2-HC(N-2,6-iPr2C6H3)2]2 (29)。
鋅-鋅和錳-錳鍵可以催化有機疊氮化合物氮-氮的耦合反應。將K2[{k2-Me2Si(NDipp)2}Zn-Zn{k2-Me2Si(NDipp)2}]¬¬ (17)或[{HC(CMeNAr)2}Mn]2 (Ar = 2,6-iPr2C6H3) (18)與一系列有機疊氮化合物R-N3 (R = 1-adamantly, p-tolyl, trimethylsilyl)進行反應,可以分別分離出錯合物[K(18-crown-6)(THF)]2{[k2-Me2Si(NDipp)2]Zn(m-k4-RNN2NR)Zn[k2-Me2Si(NDipp)2]} (R = p-tolyl) (19a)、[K(18-crown-6)(THF)2]2 {[k2-Me2Si(NDipp)2]Zn(m-NSiMe3)Zn[k2-Me2Si(NDipp)2]} (20)、(m-h2:h2-RN6R)[Mn(Nacnac)]2 (Nacnac = HC(C(Me)N-2,6-iPr2C6H3)2 (21: R = 1-adamantyl; 22: R = p-tolyl)和[(Nacnac)Mn(μ-N3)]3 (23)。錯合物19a具有一個橋接反式四氮烯基RNN2NR (R = p-tolyl),我們認為反應機制是先形成類似錯合物20的中間體,再與另一當量的甲苯疊氮化合物反應,得到錯合物19a。錯合物20和21具有橋接式六氮烯基RNN4NR,錯合物23則為三核錳金屬錯合物,具有三個疊氮基橋接著三個錳原子。
當使用矽基橋聯雙氮基脒(Silyl-linked bis(amidinate))配基與碘化銅(CuI)和三氯化鉻(CrCl3)反應,可以分別得到錯合物Cu4{m-h4-Me2Si[NC(C6H5)N(2,6-iPr2C6H3)]2}2 (34)和[Cl(m-Cl)2(THF)Cr]2{m-h4-Me2Si[NC(C6H5)N(2,6-iPr2C6H3)]2} (35)。錯合物35可以進一步用經過兩個電子的還原,得到錯合物[Cl(THF) Cr]2{m-h4-Me2Si[NC(C6H5)N(2,6-iPr2C6H3)]2} (36)。雙鉻金屬錯合物35和36其鉻與鉻之間沒有任何鍵結作用力存在,錯合物34為四核銅金屬錯合物,每個銅之間存在著很強的d10-d10交互作用力。
以上所有合成出來的產物,皆已經過核磁共振光譜和元素分析鑑定。透過單晶X-ray繞射解析,我們也清楚了解其分子結構。
The reaction between diamido ligand, Li4[Me2Si(NDipp)2]2 (Dipp = 2,6-iPrC6H3), and MCl2 (M = Mn and Cd) yields Mn2{□2-Me2Si(NDipp)2}2 (3) and Cd2{□-□2-Me2Si(NDipp)2}2 (4). After stepwise reduction of Complex 3, we could separate [(THF)2K⊂18-crown-6][Mn2{□-□2-Me2Si(NDipp)2]2 (18-crwon-6 = 1,4,7,10,13,16-hexaoxacyclooctadecane; THF = tetrahydrofuran ([(THF)2K⊂18-crown-6][5]), [K⊂222-crptand]2[Mn2{□2-Me2Si(NDipp)2]2 (222-cryptand = 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane) ([K⊂222-cryptand]2[6]) and [K2⊂6]. Both Complex [K⊂222-cryptand]2[6] and [K2⊂6] possess [Mn22+] core with Mn-Mn single bond. The addition of KH to Complex 4 leads the isolation of tetranuclear cadmium complex, [(THF)2K⊂18-crown-6]2[{□2-Me2Si(NDipp)2}Cd{□-Me2Si(NDipp)2}Cd]2
([(THF)2K⊂18-crown-6]2[7]), with Cd-Cd single bond. The isolation of these compounds corroborate the existence of the intermediates anticipated in structural transformations between Zn2{□-□2-Me2Si(NDipp)2}2 (1) and [{□2-Me2Si(NDipp)2}Zn-Zn{□2-Me2Si(NDipp)2}]2- (2) by theoretical calculations.
A series of stable molecules containing unprecedented three-center, two-electron M-A-M bonds (M = Zn, Cd; A = K, Rb) were prepared. Reduction of dinuclear Zn(II) and Cd(II) compounds, [Zn(THF)(□-□3-N2N)]2 (N2N = 2,6-(DippN)2-4-MeC5H4N) (8) and [Cd(□-□3-N2N)]2 (9), by potassium graphite or elemental rubidium with the presence of 18-crown-6 ether afforded thermally stable compounds [K(THF)n(18-crown-6)][(MKM)(N2N)2] (10: M = Zn, n = 0; 11: M = Cd, n = 1) and [Rb(THF)(18-crown-6)][(ZnRbZn)(N2N)2] (12). The A-M bond lengths are surprisingly short (Zn-Kavg = 2.474 Å, Cd-Kavg = 2.606 Å, and Zn-Rbavg = 2.532 Å). The M-Rb-M three-center, two-electron covalent bonding is also supported by the fact that the bridging alkali metals cannot be replaced by other Group 1 metal ions via ion exchange reactions. Complex 10 shows highly reducting potential in view of the reaction between 10 and MgI2.
Treatment of pyridyl diamido ligand, Li2[N2N](OEt2), with CrCl3 and subsequently reduced by 2.5 equiv of potassium graphite gives a novel quintuply-bonded dichromium complex, {(OEt2)KCr(□1:□2-N2N)}2 (26). We also found the arene-philic and substitution effect on the formation of Cr-Cr quintuple bond. In addition, the reaction of NbCl3(DME) and different type of ligands, such as amidinates, pyridyl diamido ligand, and □-dimine ligand, leads to the isolation of (□-Cl)3[Li(THF)2(□-Cl)2][Nb(□2-HC(N-2,6-iPr2C6H3)]2 (30), Cl3Nb(□2-o,o’-iPr2C6H3-DAB) (o,o’-iPr2C6H3-DAB = 2,3-dimethyl-1,4-bis-(2,6-iPr2C6H3)-1,4-diaza-1,3-butadiene)) (31), and [ClNb (□-□3-N2N)]2 (32). Complex 30 and 32 have Nb=Nb doble bond. Redution of Complex 31 with zinc powder gives dinioubium complex, [ClNb(□-Cl)2Nb(THF)](□2-o,o’-iPr2C6H3-DAB)2 (33), with Nb-Nb single bond. However, addition of 0.25 equiv of amidinates ligand to the precursor, reduced by potassium graphite from NbCl3(DME), leads to the isolation of tetranuclear niobium(II) complex, [{(THF)Nb}(□-Cl) 2{Nb(THF)Cl}]2[□-□2-HC(N-2,6-iPr2C6H3)2]2 (29). It’s an unprecedented butter-fly conformation.
We also present N-N coupling reactions mediated by univalent Zn–Zn and Mn–Mn bonds. Treatment of the Zn–Zn bonded complex K2[{□2-Me2Si(NDipp)2}Zn-Zn{□2-Me2Si(NDipp)2}]¬¬ (17) with 2 equiv of p-tolylazide or azidotrimethylsilane in presence of 18-crwon-6 ether gives [K(18-crown-6)(THF)]2{[□2-Me2Si(NDipp)2]Zn(□-□4-RNN2NR)Zn[□2-Me2Si(NDipp)2]} (R = p-tolyl) (19a) with a bridging trans-tetrazene ligand [(p-tolyl)NN2N(p-tolyl)] and [K(18-crown-6)(THF)2]2 {[□2-Me2Si(NDipp)2]Zn(□-NSiMe3)Zn[□2-Me2Si(NDipp)2]} (20), respectively. However, addition of 2 equiv of organic azides RN3 (R = 1-adamantyl, p-tolyl) to the Mn–Mn bonded complex [Mn(Nacnac)]2 (Nacnac = HC[C(Me)N(2,6-iPr2C6H3)]2 (18) also induces N-N coupling to give (□-□2:□2-RN6R)[Mn(Nacnac)]2 (20: R = adamantyl; 21: R = p-tolyl). Both 20 and 21 feature essentially the same core with a bridging hexazene ligand (RNN4NR). Interestingly, a trinuclear manganese complex [(Nacnac)Mn(μ-N3)]3 (22), where three manganese atoms are linked together via three bridging azido ligands, is obtained if 18 is treated with 2 equiv of azidotrimethylsilane.
Furthermore, the reaction of Silyl-linked bis(amidinate) ligand, [Li(THF)4][Li3{□3-□4-Me2Si[NC(C6H5)N(2,6-iPr2C6H3)]2}2] and CuI leads to the isolation of Cu4{□-□4-Me2Si[NC(C6H5)N(2,6-iPr2C6H3)]2}2 (34) with the d10-d10 interactions between four copper atoms. Finally, addition of the same ligand to CrCl3 gives [Cl(□-Cl)(THF)Cr]2{□-□4-Me2Si[NC(C6H5)N(2,6-iPr2C6H3)]2} (35). [Cl(THF) Cr]2{□-□4-Me2Si[NC(C6H5)N(2,6-iPr2C6H3)]2} (36) is prepared by further reduced by 2 equiv of potassium graphite from complex 35. There is no bonding interactions between two dichormium atoms of Comples 34 and 35.
All the synthesized products are characterized by NMR spectroscopy and elemental analysis and their molecular structures are determined by single crystal X-ray crystallography.
目錄
摘要………………………………………………………………………………I
Abstract…………………………………………………………………………III
謝誌……………………………………………………………………………..V
目錄…………………………………………………………………………….VI
圖目錄……………………………………………………………………….…XI
流程圖目錄…………………………………………………………………...XIII
表目錄………………………………………………………………………...XIV
第一章 緒論…………………………………………………………….……...1
1-1. 低價數、低配位數金屬錯合物………………………………..……..2
1-1-1. 反三明治雙釩、雙鉻錯合物………………………….…..2
1-2. 金屬-金屬鍵…………………………………………….…………….4
1-2-1. 金屬-金屬四重鍵................................................................4
1-2-2. 金屬-金屬五重鍵................................................................6
1-2-3. 雙鋅金屬錯合物:鋅-鋅單鍵…………………………....10
1-2-4. 直線六銦金屬錯合物:{[LIn(I)](LIn)2}2……………..…16
1-3. 多金屬系統:擴展的金屬鏈……………………………….……….18
1-4. 研究方向……………………………………………………………..20
1-4-1. 新穎雙鈮(I)和雙鉻(I)金屬錯合物的合成…………….…20
1-4-2. 順磁性單核一價鋅離子…………………………………..22
1-4-3. 雙錳(I)、雙鎘(I)金屬錯合物的合成……………………..23
1-4-4. 擴展的金屬鏈錯合物:四銅(I)、四鉻(I)金屬錯合物…..23
1-4-5. 雙鋅(I)金屬錯合物和小分子的反應……………………..24
第二章 雙錳(I)、雙鎘(I)金屬錯合物的合成和結構轉變機制的探討…….27
2-1. 雙核錳(II)、雙核鎘(II)金屬錯合物的合成:Mn2{□2-Me2Si(NDipp)2}2 (3)和Cd2{□-□2-Me2Si(NDipp)2}2 (4)...................................................30
2-2. Mn2{□2-Me2Si(NDipp)2}2 (3)隨著還原反應的結構變化..................34
2-3. Cd2{□-□2-Me2Si(NDipp)2}2 (4)隨著還原反應的結構變化….……..41
2-4. 結論…………………………………………………………………..43
2-5. 實驗合成……………………………………………………………..44
2-5-1. Mn2{□2-Me2Si(NDipp)2}2 (3)的合成………………………44
2-5-2. Cd2{□-□2-Me2Si(NDipp)2}2 (4)的合成…………………….44
2-5-3. [(THF)2K⊂18-crown-6][Mn2{□-□2-Me2Si(NDipp)2}2 ([(THF)2K⊂18-crown-6][5])的合成……………………...45
2-5-4. [K⊂222-cryptand]2[Mn{□2-Me2Si(NDipp)2}2] ([K⊂222-cryptand]2[6])的合成………………………..…45
2-5-5. [K2⊂6]的合成……………………………………………...46
2-5-6. [(THF)2K⊂18-crown-6]2 [{□2-Me2Si(NDipp)2}Cd{□-Me2Si- (NDipp)2}Cd]2 ([(THF)2K⊂18-crown-6]2[7])的合成……46
第三章 高立體阻礙的三牙配基所穩定的三核金屬團蔟化合物:M(I)-A(I)-M(I)共價鍵(M = Zn, Cd; A = K, Rb)…………………..48
3-1. 雙核鋅(II)和鎘(II)金屬錯合物的合成:[Zn(THF)(□-□3-N2N)]2 (8)和[Cd(□-□3-N2N)]2 (9)…………………………………………...51
3-2. 三核金屬團蔟錯合物的合成:[K(THF)n(18-crown-6)][(MKM)(N2N)2] (10: M = Zn, n = 0; 11: M = Cd, n = 1)和[Rb(THF)(18-crown-6)][(ZnRbZn)(N2N)2] (12)……...55
3-3. 結論………………………………………………………….….......67
3-4. 實驗合成……………………………………………………………68
3-4-1. [Zn(THF)(□-□3-N2N)]2 (8)的合成………………………..68
3-4-2. [Cd(□-□3-N2N)]2 (9)的合成………………………………68
3-4-3. [K(18-crown-6)][ZnKZn(N2N)2] (10)的合成……………69
3-4-4. [K(THF)(18-crown-6)][CdKCd(N2N)2] (11)的合成…….70
3-4-5. [Rb(THF)(18-crown-6)][ZnRbZn(N2N)2] (12)的合成…..71
3-4-6. [Rb(18-crown-6)2]{Cd(THF)[□2-2,6-(DippN)2-4-MeC5H4N] [□2-2-(DippN)-6-(DippNH)-4-MeC5H4N]} (13)的合成的合成…………………………………………………………..72
3-4-7. [K(18-crown-6)][ZnRbZn(N2N)2] (14)的合成…………...73
3-4-8. [Na(THF)2(18-crown-6)][ZnRbZn(N2N)2] (15)的合成.…74
3-4-9. [K(18-crown-6)][{Zn(□-I)Zn}(N2N)2] (16)的合成……....74
第四章 鋅-鋅與錳-錳鍵雙核金屬錯合物與有機疊氮化物的反應性........76
4-1. 鋅-鋅鍵與有機疊氮化合物的反應性研究......................................78
4-1-1. 鋅-鋅鍵與甲基苯疊氮化合物的反應…………………..78
4-1-2. 鋅-鋅鍵與三甲基矽烷疊氮化合物的反應……………..81
4-1-3. 推測的反應機制:鋅-鋅鍵與疊氮化合物的反應…......84
4-2. 錳-錳鍵與有機疊氮化合物的反應性研究…………..…………....86
4-2-1. 錳-錳鍵與1-金鋼烷基疊氮或甲基苯疊氮化合物的
反應……………………………………………………....86
4-2-2. 錳-錳鍵與三甲基矽烷疊氮化合物的反應……………..90
4-2-3. 推測的反應機制:錳-錳鍵與有機疊氮化合物的反應..93
4-3. 結論…………..……………………………………………………..95
4-4. 實驗合成……………..……………………………………………..96
4-4-1. [K(18-crown-6)(THF)]2{[□2-Me2Si(NDipp)2] Zn(□-□4-RNN2NR)Zn[□2-Me2Si(NDipp)2]} (R = p-tolyl) (19a)的合成……………………………………………….96
4-4-2. [K(18-crown-6)(THF)2]2{[□2-Me2Si(NDipp)] Zn(□-NSiMe3)Zn[□2-Me2Si(NDipp)2]} (20)的合成……..97
4-4-3. (□-□2:□2-RN6R)[Mn(Nacnac)]2 (21: R = 1-adamantyl)的合成………………………………………………………….97
4-4-4. (□-□2:□2-RN6R)[Mn(Nacnac)]2 (22: R = p-tolyl)的合成..98
4-4-5. [(Nacnac)Mn(□-N3)]3 (23)的合成……………………….98
第五章 新穎雙鉻(I)五重鍵錯合物與低價數、低配位數鈮金屬錯合物的合成………………………………………………………………….100
5-1. 新穎雙鉻(I)五重鍵錯合物{(OEt2)KCr(□1:□2-N2N)}2 (26)
的合成…………………………………………………………….101
5-1-1. 鉻-鉻五重鍵的親芳烴性(Arene-philic)和斷裂………105
5-1-2. 取代基效應(Substitution effect)……………………….109
5-2. 低價數、低配位數鈮金屬錯合物的合成……………………….111
5-2-1. 四核鈮(II)金屬二聚物的合成…………………………111
5-2-2. 其他嘗試………………………………………………..117
5-3. 結論………………………………………………………………..122
5-4. 實驗合成…………………………………………………………..123
5-4-1. [(OEt2)KCr(□1:□2-N2N)]2 (26)的合成…………………..123
5-4-2. [K(18-crown-6)(THF)2][(THF)KCr(□-□□□□□-N2N)]2 (27)的合成………………………………………………………124
5-4-3. [K(18-crown-6)(THF)2]2[Cr2(□-□2-N2N)2(□-□2:□2-C6H6)] (28)的合成……………………………………………….125
5-4-4. {[(THF)Nb](□-Cl)2[Nb(THF)(□-Cl)]}2 [□-□2-HC(N-2,6-iPr2C6H3)2]2 (29)的合成……………….125
5-4-5. (□-Cl)3[Li(THF)2(□-Cl)2][Nb(□2-HC(N-2,6-iPr2C6H3)]2 (30)的合成……………………………………………………126
5-4-6. Cl3Nb(□2-o,o’-iPr2C6H3-DAB) (31)的合成…………….127
5-4-7. [NbCl(□-□3-N2N)]2 (32)的合成…………………………128
5-4-8. [ClNb(□-Cl)2Nb(THF)](□2-o,o’-iPr2C6H3-DAB)2 (33)
的合成……………………………………………………129
第六章 擴展的金屬鏈:四銅金屬錯合物……………………………….130
6-1. 四銅金屬錯合物的合成………………………………………….131
6-2. 雙鉻金屬錯合物的合成………………………………………….134
6-3. 結論………………………………………………………………..137
6-4. 實驗合成…………………………………………………………..138
6-4-1. Cu4{□-□4-Me2Si[NC(C6H5)N(2,6-iPr2C6H3)]2}2 (34)的
合成………………………………………………………138
6-4-2. [ClCr(□-Cl)(THF)]2{□-□4-Me2Si- [NC(C6H5)N(2,6-iPr2C6H3)]2} (35)的合成…………….138
6-4-3. [CrCl(THF)]2{□-□4-Me2Si[NC(C6H5)N(2,6-iPr2C6H3)]2} (36)的合成………………………………………………….139
第七章 實驗步驟與晶體結構資料…………………………………….…140
7-1. 一般操作………………………………………………………….140
7-2. 實驗使用儀器…………………………………………………….140
7-3. 實驗溶劑與藥品………………………………………………….142
7-4. 晶體結構資料表………………………………………………….144
7-4-1. Mn2{□2-Me2Si(NDipp)2}2 (3)的晶體資料……………..144
7-4-2. Cd2{□-□2-Me2Si(NDipp)2}2 (4)的晶體資料.…………..145
7-4-3. [(THF)2K⊂18-crown-6][Mn2{□-□2-Me2Si(NDipp)2}2] ([(THF)2K⊂18-crown-6][5])的晶體資料……………...146
7-4-4. [K⊂222-crptand]2[6]的晶體資料……………………...147
7-4-5. [K2⊂6]的晶體資料……………………………………..148
7-4-6. [(THF)2K⊂18-crown-6]2[{□2-Me2Si(NDipp)2}Cd{□-Me2Si- (NDipp)2}Cd]2 ([(THF)2K⊂18-crown-6]2[7])
的晶體資料……………………………………………..149
7-4-7. [Zn(THF)(□-□3-N2N)]2 (8)的晶體資料………………..150
7-4-8. [Cd(□-□3-N2N)]2 (9)的晶體資料……………………….151
7-4-9. [K(18-crown-6)][(ZnKZn)(N2N)2] (10)的晶體資料…..152
7-4-10. [K(THF)(18-crown-6)][(CdKCd)(N2N)2] (11)的
晶體資料……………………………………………….153
7-4-11. [Rb(THF)(18-crown-6)][(ZnRbZn)(N2N)2] (12)的
晶體資料……………………………………………….154
7-4-12. [Rb(18-crown-6)2]{Cd(THF)[□2-2,6-(DippN)2-4-MeC5H4N] [□2-2- (DippN)-6-(DippNH)-4-MeC5H4N]} (13)的晶體資料……………………………………………………….155
7-4-13. [K(18-crown-6)][(ZnRbZn)(N2N)2] (14)的晶體資料...156
7-4-14. [Na(THF)2(18-crown-6)][(ZnRbZn)(N2N)2] (15)的
晶體資料………………………………………………157
7-4-15. [K(18-crown-6)][Zn(□-I)Zn(N2N)2] (16)的晶體資料...158
7-4-16. [K(18-crown-6)(THF)]2{[□2-Me2Si(NDipp)2] Zn(□-□4-RNN2NR)Zn[□2-Me2Si(NDipp)2]} (R = p-tolyl) (19a)的晶體資料………………………………………159
7-4-17. [K(18-crown-6)(THF)2]2{[□2-Me2Si(NDipp)2] Zn(□-NR)Zn[□2-Me2Si-(NDipp)2]} (R = SiMe3) (20)的晶體資料………………………………………………….160
7-4-18. (□-□2:□2-RN6R)[Mn(Nacnac)]2 (R = 1-Adamantyl) (21)的晶體資料……………………………………………….161
7-4-19. (□-□2:□2-RN6R)[Mn(Nacnac)]2 (R = p-tolyl) (22)的
晶體資料………………………………………………162
7-4-20. [(Nacnac)Mn(μ-N3)]3 (23)的晶體資料……………….163
7-4-21. {(OEt2)KCr(□1:□2-N2N)}2 (26)的晶體資料………….164
7-4-22. [K(18-crown-6)(THF)2][(THF)KCr(□-□□□□□-N2N)2] (27)的晶體資料………………………………………………165
7-4-23. [K(18-crown-6)(THF)2]2[Cr2(□-□2-N2N)2(□-□2:□2-C6H6)] (28)的晶體資料……………………………………….166
7-4-24. {[(THF)Nb](□-Cl)2[Nb(THF)Cl]}2 [□-□2-HC(N-2,6-iPr2C6H3)2]2 (29)的晶體資料……….167
7-4-25. (□-Cl)3[Li(THF)2(□-Cl)2][Nb(□2-HC(N-2,6-iPr2C6H3)]2 (30)的晶體資料……………………………………………168
7-4-26. Cl3Nb(k2-o,o’-iPr2C6H3-DAB) (31)的晶體資料……...169
7-4-27. [ClNb(□-□3-N2N)2]2 (32)的晶體資料…………….......170
7-4-28. [ClNb(□-Cl)2Nb(THF)](k2-o,o’-iPr2C6H3-DAB)2 (33)的晶體資料………………………………………………….171
7-4-29. Cu4{□-□4-SiMe2[NC(C6H5)N(2,6-iPr2C6H3)]2}2 (34)的晶體資料…………………………………………………….172
7-4-30. [CrCl(□-Cl)(THF)]2{□-□4-Me2Si- [NC(C6H5)N(2,6-iPr2C6H3)]2} (35)的晶體資料………173
7-4-31. [CrCl(THF)]2{□-□4-Me2Si[NC(C6H5)N(2,6-iPr2C6H3)]2} (36)的晶體資料………………………………………..174
第八章 參考文獻……………………………………………………..……175
















圖目錄
圖1-1.[Re2Cl8]2-結構與分子軌域(Molecular orbital)圖。………………………......5
圖1-2.(a) Cr2Ar2’、(b) Cr2Ar2’分子軌域圖和(c) RMMR反式彎折結構圖。..8
圖1-3.分子結構確定的金屬-金屬五重鍵錯合物(金屬-金屬鍵長單位為Å)。…...9
圖1-4.(a) [Cd2(TpMe2)2]、(b) ArCdCdAr和(c) [K(2,2,2-crypt)]6[Cd2Pb18]的分子示意圖。…………………………………………………………………………12
圖1-5.具有鋅-鋅鍵結且分子結構確定的雙鋅(I)錯合物(金屬-金屬鍵長單位為Å)。…………………………………………………………………..………13
圖1-6.(a) Zn2(□5-C5R5)2與代表雙鋅鍵結的HOMO-4分子軌域和(b) Zn2Ar’2與代表雙鋅鍵結的HOMO分子軌域。…………………………………..……..14
圖1-7.(a) [{HC(CMeNAr)2}Zn]2和鋅-鋅□鍵軌域圖、(b) [{HC(CMeNAr)2}Mn]2的分子結構圖和錳-錳□鍵分子軌域圖(c) LMg-MgL分子結構圖與鎂-鎂□鍵軌域圖(金屬-金屬鍵長單位為Å)。………………………………….….….16
圖1-8.電子式開關轉換(Electric on/off switching)。……………………………….19
圖1-9.(a) Nb2(hpp)4和(b) Nb2(azin)4風車式雙鈮(II)金屬錯合物(金屬-金屬鍵長單位為Å)。…………………………………………………………………….21
圖1-10.(a)雙氮基脒配基、(b)□□雙亞胺配基和(c)吡啶雙胺配基。………………22
圖1-11.預測的結構:吡啶雙胺配基所穩定的新穎雙鉻(I)五重鍵錯合物。……..22
圖1-12.(a)三銅金屬錯合物[Li(THF)4][Cu3(□-□3-N2N)2]和(b)四銅金屬錯合物[K(18-crown-6)(THF)2]{(Cu2)2(□-I)[□-□4-Me2Si(NDipp)2]2}與(c)矽基橋聯雙氮基脒{Li(THF)4}[{[SiMe2{NC(C6H5)N(2,6-iPr2C6H3)}2]2Li3}的分子結構圖。…………………………………………………………………………...24
圖2-1.雙核鋅(I)金屬錯合物形成鋅-鋅鍵可能的兩種結構。………………..…....27
圖2-2.Mn2{□2-Me2Si(NDipp)2}2 (3)的分子結構圖。……………………………...31
圖2-3.Mn2{□2-Me2Si(NDipp)2}2 (3)的磁化率和磁矩隨溫度變化圖。…………...32
圖2-4.Cd2{□-□2-Me2Si(NDipp)2}2 (4)的分子結構圖。…………………………....33
圖2-5.[(THF)2K⊂18-crown-6][Mn2{□-□2-Me2Si(NDipp)2]2 ([(THF)2K⊂18-crown-6] [5])的分子結構圖……………………………………………………………35
圖2-6.[K⊂222-crptand]2[6]的分子結構圖。..........................................................37
圖2-7.[K2⊂6]的分子結構圖。……………………………………………………...38
圖2-8.[(THF)2K⊂18-crown-6][5]的磁化率和磁矩隨溫度變化圖。……………..39
圖2-9.[K2⊂6]的磁化率和磁矩隨溫度變化圖。…………………………………..40
圖2-10.[(THF)2K⊂18-crown-6]2[{□2-Me2Si(NDipp)2}Cd{□-Me2Si(NDipp)2}Cd]2 ([(THF)2K⊂18-crown-6]2[7])的分子結構圖。……………………………42
圖3-1.[Zn(THF)(□-□3-N2N)]2 (8)的分子結構圖。…………………………….…..52
圖3-2.[Cd(□-□3-N2N)]2 (9)的分子結構圖。………………………………….……53
圖3-3.[K(THF)n(18-crown-6)][(MKM)(N2N)2] (10: M = Zn, n = 0 (左); 11: M = Cd, n = 1 (右))的分子結構圖。………………………………………………….56
圖3-4.[Rb(THF)(18-crown-6)][(ZnRbZn)(N2N)2] (12)的分子結構圖。…………..59
圖3-5.[Rb(18-crown-6)2]{Cd(THF)[□2-2,6-(DippN)2-4-MeC5H4N][□2-2-(DippN)-6- (DippNH)-4-MeC5H4N]} (13)的分子結構圖。………………………….….60
圖3-6.(a) 鋅的K緣X-ray近緣光譜(XANES)和(b) K緣X-ray近緣吸收光譜vs.鋅的氧化態趨勢圖:參考樣品(Zn foil and ZnBr2)、錯合物8與10。.….61
圖3-7.線形H3+和環形H3+分子軌域相關圖(Correlation diagram of H3+ linear and H3+ cyclic)。……………………………………………………………….…62
圖3-8.[K(18-crown-6)][(ZnRbZn)(N2N)2] (14)和[Na(THF)2(18-crown-6)] [(ZnRbZn)(N2N)2] (15)的分子結構圖。………………………………….…64
圖3-9.[K(18-crown-6)][{Zn(□-I)Zn}(N2N)2] (16)的分子結構圖。………………..65
圖4-1.金屬與亞胺基(Imido)的鍵結模式:彎曲型結構(A)和直線型結構(B)。....77
圖4-2.鍵結在金屬上的四氮烯配基:順式(Cis-)和反式(Trans-)。……………….78
圖4-3.[K(18-crown-6)(THF)]2{[□2-Me2Si(NDipp)2]Zn(□-□4-RNN2NR)Zn[□2-Me2Si (NDipp)2]} (R = p-tolyl) (19a)的分子結構圖。……………………………..79
圖4-4.四氮烯配基的電子組態(Formal electronic configurations):中性配基(A)、負一價陰離子自由基配基(B)和負二價陰離子配基(C)。……………………80
圖4-5.[K(18-crown-6)(THF)2]2{[□2-Me2Si(NDipp)2]Zn(□-NR)Zn[□2-Me2Si(NDipp)2]} (R = SiMe3) (20)的分子結構圖。……………………………………………83
圖4-6.錯合物(□-□2:□2-RN6R)[Mn(Nacnac)]2 (21: R = 1-adamantyl (右); 22: R = p-tolyl (左))的分子結構圖。…………………………………………………88
圖4-7.六氮烯配基兩種可能的共振結構。………………………………………...87
圖4-8.[□-□2:□2-(p-tolyl)N6(p-tolyl)][Mn(Nacnac)]2(22)的磁化率和磁矩隨溫度變化圖。……………………………………………………………………………87
圖4-9.錯合物[(Nacnac)Mn(μ-N3)]3 (Nacnac = HC[C(Me)N-2,6-iPr2C6H3]2 (23)的分子結構圖。……………………………………………………………………91
圖4-10.[(Nacnac)Mn(μ-N3)]3 (23)的磁化率和磁矩隨溫度變化圖。………………92
圖5-1.軸向配體效應:錯合物Cr2[μ-η2-HC(N-2,6-Me2C6H3)2]2•2THF (左)和Cr2[μ-η2-HC(N-2,6-Me2C6H3)2]2•2-methylTHF (右) (金屬鍵長單位Å)。.100
圖5-2.配基上第三個氮原子提供孤對電子密度給雙鉻金屬反鍵結軌域力示意圖。………………………………………………………………………….101
圖5-3.{(OEt2)KCr(□1:□2-N2N)}2 (26)的分子結構圖。……………………………104
圖5-4.錯合物26與Cr2{□-□2-[2-(2,4,6-iPr3C6H2)-6-(N-2,4,6-Me3C6H2)C5H3N]2}的比較。………………………………………………………………………….105
圖5-5.[K(18-crown-6)(THF)2][(THF)KCr(□-□□□□□-N2N)2] (27)的分子結構圖。...107
圖5-6.[K(18-crown-6)(THF)2]2[Cr2(□-□□-N2N)2(□-□□:□□-C6H6)] (28)的分子結
構圖…………………………………………………………………………108
圖5-7.{[(THF)Nb](□-Cl)2[Nb(THF)(□-Cl)]}2[□-□2-HC(N-2,6-iPr2C6H3)2]2 (29)的分子結構圖。………………………………………………………………….112
圖5-8. (□-Cl)3[Li(THF)2(□-Cl)2][Nb(□2-HC(N-2,6-iPr2C6H3)]2 (30)的
分子結構圖。………………………………………………………………..115
圖5-9.Cl3Nb(□2-o,o’-iPr2C6H3-DAB) (31)的分子結構圖。……………………….118
圖5-10.□-雙亞胺配基不同氧化態之鍵長(鍵長單位Å)。………………………..119
圖5-11.[ClNb(□-Cl)2Nb(THF)](□2-o,o’-iPr2C6H3-DAB)2 (33)的分子結構圖。…..120
圖5-12.[ClNb(□-□3-N2N)]2 (32)的分子結構圖。………………………………….121
圖6-1.Cu4{□-□4-SiMe2[NC(C6H5)N(2,6-iPr2C6H3)]2}2 (34)的分子結構圖。…….132
圖6-2.Cu4{□-□4-Me2Si[NC(C6H5)N(2,6-iPr2C6H3)]2}2 (34)的循環伏安圖。…….133
圖6-3. [CrCl(□-Cl)(THF)]2{□-□4-Me2Si[NC(C6H5)N(2,6-iPr2C6H3)]2} (35) (左)和[CrCl(THF)]2{□-□4-Me2Si[NC(C6H5)N(2,6-iPr2C6H3)]2}2 (36) (右)的分子結構圖。……………………………………………………………………….135


流程圖目錄
流程圖1-1.(μ-η6:η6-C7H8)M(Nacnac)]2 (M = Cr, V)與小分子的反應。…………...3
流程圖1-2.雙核銠(II)金屬錯合物催化劑。……………………………….……….6
流程圖1-3.雙鉬(II)四重鍵錯合物Mo2[□2-□□-Me2Si(N-2,6-iPr2C6H3)2]2的合成示意圖。………………………………………………………………………9
流程圖1-4.雙鉻五重鍵錯合物Cr2[μ-η2-HC(N-2,6-iPr2C6H3)2]2與小分子的活化反應。……………………………………………………………….…….10
流程圖1-5.Zn2(□5-C5Me5)2的合成示意圖。……………………………………...11
流程圖1-6.螺旋六銦金屬鏈化合物的合成示意圖。……………………….…….17
流程圖1-7.擴展的金屬鏈。………………………………………………….…….18
流程圖1-8.雙氮基脒配基的斷裂。………………………………………….…….20
流程圖1-9.雙鋅(I)金屬錯合物(a) Cp*Zn-ZnCp* (Cp* = C5Me5)和(b) (dpp-BIAN)Zn-Zn(dpp-BIAN)的反應性。…………………………...26
流程圖2-1.雙核鋅(II)金屬錯合物進行還原反應時結構轉變的途徑。………....28
流程圖2-2.Mn2{□2-Me2Si(NDipp)2}2 (3)和Cd2{□-□2-Me2Si(NDipp)2}2 (4)的合成示意圖。……………………………………………………………….…30
流程圖2-3.錯合物3隨著還原反應的結構變化。…………………………….…34
流程圖2-4.[(THF)2K⊂18-crown-6]2[{□2-Me2Si(NDipp)2}Cd{□-Me2Si- (NDipp)2}Cd]2 ([(THF)2K⊂18-crown-6]2[7])的合成示意圖。…….....41
流程圖3-1.推測的反應機構:金屬-氫鍵的均裂和自由基ArM•的耦合反應。.50
流程圖3-2.[Zn(THF)(□-□3-N2N)]2 (8)和[Cd(□-□3-N2N)]2 (9)的合成示意圖。…..51
流程圖3-3.三金屬蔟錯合物的合成:[K(THF)n(18-crown-6)][(MKM)(N2N)2] (10: M = Zn, n = 0; 11: M = Cd, n = 1)和[Rb(THF)(18-crown-6)][(ZnRbZn)(N2N)2] (12)……………....55
流程圖3-4.推測的反應機制:金屬鹵化物經過還原反應得到金屬-金屬鍵。….63
流程圖3-5.錯合物16的合成示意圖。…………………………………………......65
流程圖4-1.金屬亞胺錯合物的生成反應。………………………………………….76
流程圖4-2.錯合物16和甲基苯疊氮的反應。………………………………….....78
流程圖4-3.錯合物17和三甲基矽烷疊氮的反應。…………………………….....81
流程圖4-4. LFe=NAd的形成機制。………………………………………………..84
流程圖4-5.推測的反應機制:四氮烯基雙鋅金屬錯合物19a的形成。………...85
流程圖4-6.錯合物17與1-金鋼烷基疊氮和甲基苯疊氮化合物的反應。……....86
流程圖4-7.錯合物18和三甲基矽烷疊氮化合物的反應。…………………….…90
流程圖4-8. LFe(□-□2:□2-AdN6Ad)FeL的形成機制。…………………………..…93
流程圖4-9.推測的反應機制:六氮烯基金屬錯合物21、22的形成。……….…93
流程圖4-10.推測的反應機制:錯合物23的形成。……………………………...94
流程圖5-1.新穎雙鉻(I)五重鍵錯合物{(OEt2)KCr(□1:□2-N2N)}2 (26)的合成。…103
流程圖5-2.錯合物27和28的合成。……………………………………………..106
流程圖5-3. 推測的形成機制:錯合物27的生成。……………………………..109
流程圖5-4.錯合物[Cr(THF)]2[□-□3-(2,6-(NSiiPr3)2-C5H3N)]的還原反應。……..110
流程圖5-5.錯合物29與30的合成反應。……………………………………..…111
流程圖5-6.兩個M-M四重鍵單元進行[2+2]環加成形成四核金屬環狀二炔團蔟錯合物。………………………………………………………………..…113
流程圖5-7.錯合物31、32和33的合成反應示意圖。……………………….…117
流程圖6-1.四銅金屬錯合物的Cu4{□-□4-Me2Si[NC(C6H5)N(2,6-iPr2C6H3)]2}2 (34)合成。……………………………………………………………….…131
流程圖6-2.錯合物[CrCl(□-Cl)(THF)]2{[□-□4-Me2Si[NC(C6H5)N(2,6-iPr2C6H3)]2} (35)和[CrCl(THF)]2{□-□4-Me2Si[NC(C6H5)N(2,6-iPr2C6H3)]2} (36)的合成反應示意圖。………………………………………………………..134


表目錄
表2-1.已發表的雙錳金屬錯合物的錳-錳鍵長。…………………………………36
(1) Smaglik, P. Nature 2000, 406, 807.
(2) (a) Cummins, C. C. Prog. Inorg. Chem. 1998, 47, 685. (b) Alvarez, S. Coord. Chem. Rev. 1999, 193-195, 13. (c) Cummins, C. C. Chem. Commun. 1998, 1777.
(3) Mackay, B. A.; Fryzuk, M. D. Chem. Rev. 2004, 104, 385.
(4) (a) Laplaza, C. E.; Cummins, C. C. Science 1995, 268, 861. (b) Laplaza, C. E.; Johnson, M. J. A.; Peters, J. C.; Odom, A. L.; Kim, E.; Cummins, C. C.; George, G. N.; Pickering, I. J. J. Am. Chem. Soc. 1996, 118, 8623.
(5) (a) Kornath, A., J. Chem. Phys. 2002, 116, 3323. (b) L. G. M. Pettersson, Chem. Phys. 1993, 170, 149. (c) Bock, H., Inorg. Chem. 1984, 23, 4365. (d) Figueroa, J. S.; Cummins, C. C. J. Am. Chem. Soc. 2003, 125, 4020.
(6) (a) Figueroa, J. S., Cummins, C. C. Angew. Chem., Int. Ed. 2004, 43, 984. (b) Piro, N. A.; Figueroa, J. S.; Mckellar, J. T.; Cummins, C. C. Science, 2006, 313, 1276. (c) Piro, N. A.; Cummins, C. C. J. Am. Chem. Soc., 2008, 130, 9524. (d) Cossairt, B. M.; Piro, N. A.; Cummins, C. C. Chem. Rev. 2010, 110, 4164.
(7) (a) Stoian, S. A.; Vela, J.; Smith, J. .; Sadique, A. R.; Holland, P. L.; Munck, E.; Bominaar, E. L. J. Am. Chem. Soc. 2006, 128, 10181. (b) Yu, Y.; Smith, J. M.; Flaschenriem, C. J.; Holland, P. L. Inorg. Chem. 2005, 45, 5742. (c) Smith, J. M.; Sadique, A. R.; Cundari, T. R.; Rodgers, K. R.; Lukat-Rodgers, G.; Lachicotte, R. J.; Flaschenriem, C. J.; Vela, J.; Holland, P. L. J. Am. Chem. Soc. 2006, 128, 756. (d) Ding, K.; Pierpont, A. W.; Brennessel, W. W.; Lukat-Rodgers, G.; Rodgers, K. R.; Cundari, T. R.; Bill, E.; Holland, P. L. J. Am. Chem. Soc. 2009, 131, 9471. (e) Tsai, Y.-C. et al. J. Am. Chem. Soc. 2007, 129, 8066. (f) Tsai, Y.-C. et al. Chem. Commun. 2008, 205. 
(8) (a) Shaik, S. J. Comput. Chem. 2007, 28, 51. (b) Lewis, G. N. J. Am. Chem. Soc. 1916, 38, 762.
(9) Cotton, F. A.; Murillo, C. A.; Walton, R. A. Multiple Bonds Between Metal Atoms, Third Edition, Springer, New York, 2005.
(10) Kauffman, G. B. Coordination Chemistry Reviews 1973, 9, 339.; 1974, 12, 105.; 1975, 15, 1. 
(11) (a) Cotton, F. A.; Curtis, N. F.; Harris, C. B.; Johnson, B. F. G.; Lippard, S. J.; Mague, J. T.; Robinson, W. R.; Wood, S. J. Science, 1964, 145, 1305. (b) Cotton, F. A.; Harris, C. B. Inorg. Chem. 1965, 4, 334.
(12) Lawton, D.; Mason, R. J. Am. Chem. Soc. 1965, 87, 921.
(13) Cotton, R. A.; Murillo, C. A.; Walton, R. A., Multiple Bonds Between Metal Atoms, 3rd ed., Springer, New York, 1999.
(14) (a) Cotton, F. A. Q. Rev. Chem. Soc. 1966, 20, 397. (b) Cotton, F. A. J. Chem. Soc., 1983, 60, 173.
(15) (a) Roos, B. O.; Borin, A. C.; Gagliardi, L. Angew. Chem. Int. Ed. 2007, 46, 1469. (b) Kuendig, E. P.; Moskovits, M.; Ozin, G. A. Nature (London) 1975, 254, 503. (c) Klotzbuecher, W.; Ozin, G. A. Inorg. Chem. 1977, 16, 984. (d) Gupta, S. K.; Atkins, R. M.; Gingerich, K. A. Inorg. Chem. 1978, 17, 3211. (e) Efremov, Y. M.; Samoilova, A. N.; Kozhukhovskii, V. B.; Gurvich, L. V. J. Mol. Spectrosc. 1978, 73, 430. (f) W. Weltner, J.; Zee, R. J. V. Annu. Rev. Phys. Chem. 1984, 35, 291. (g) Morse, M. D. Chemical Reviews (Washington, DC, United States) 1986, 86, 1049. (h) Xiao, Z. L.; Hauge, R. H.; Margrave, J. L. J. Phys. Chem. B 1992, 96, 636. (i) Casey, S. M.; Villalta, P. W.; Bengali, A. A.; Cheng, C. L.; Dick, J. P.; Fenn, P. T.; Leopold, D. G. J. Am. Chem. Soc. 1991, 113, 6688. (j) Casey, S. M.; Leopold, D. G. J. Phys. Chem. B 1993, 97, 816. (k) Casey, S. M.; Leopold, D. G. Chem. Phys. Lett. 1993, 201, 205. (l) Chisholm, M. H. Chem. Rev. 2005, 105, 2949. (m) Kant, A.; Strauss, B. H. J. Chem. Phys. 1966, 45, 3161. (n) Kraus, D.; Lorenz, M.; Bondybey, V. E. PhysChemComm 2001, 4, 44. (o) Xu, B.; Li, Q.-S.; Xie, Y.; King, R. B.; Schaefer III, H. F. J. Chem. Theory Comput. 2010, 6, 735.
(16) Dedieu, A.; Albright, T. A.; Hoffmann, R. J. Am. Chem. Soc. 1979, 101, 3141.
(17) (a) Davidson, P. J.; Lappert, M. F. J. Chem. Soc. Chem. Commun. 1973, 317. (b) Goldberg, D. E.; Harris, D. H.; Lappert, M. F.; Thomas, K. M. J. Chem. Soc. Chem. Commun. 1976, 261. (c) Goldberg, D. E.; Hitchcock, P. B.; Lappert, M. F.; Thomas, K. M.; Fjeldberg, T.; Haaland, A.; Schilling, B. E. R. J. Chem. Soc. Dalton Trans. 1986, 2387. (d) West, R.; Fink, M. J.; Michl, J. Science 1981, 214, 1343. (e) Brook, A. G.; Abdesaken, F.; Gutekunst, B.; Gutekunst, G.; Kallury, R. K. J. Chem. Soc. Chem. Commun. 1981, 191. (f) Sekiguchi, A.; Kinjo, R.; Ichinohe, M. Science 2004, 305, 1755.
(18) (a) Su, J.; Li, X.-W.; Crittendon, C.; Robinson, G. H. J. Am. Chem. Soc. 1997, 119, 5471. (b) Wang, Y.; Robinson, G. H. Organometallics 2007, 26, 2.
(19) (a) Twamley, B.; Sofield, C. D.; Olmstead, M. M.; Power, P. P. J. Am. Chem. Soc. 1999, 121, 3357. (b) Pu, L.; Twanley, B.; Power, P. P.; J. Am. Chem. Soc. 2000, 122, 3524. (c) Stender, M.; Phillips, A. D.; Wright, R. J.; Power, P. P. Angew. Chem. Int. Ed. 2002, 41, 1785. (d) Pu, L.; Phillips, A. D.; Richards, A. F.; Stender, M.; Simons, R. S.; Olmstead, M. S.; Power, P. P. J. Am. Chem. Soc. 2003, 125, 11626. (e) Hardman, N. J.; Wright, R. J.; Phillips, A. D.; Power, P. P. J. Am. Chem. Soc. 2003, 125, 2667. (f) Wright, R. J.; Brynda, M.; Power, P. P. Angew. Chem. Int. Ed. 2006, 45, 5953.
(20) Landis, C. R.; Weinhold, F. J. Am. Chem. Soc. 2006, 128, 7335.
(21) Nguyen, T.; Sutton, A. D.; Brynda, M.; Fettinger, J. C.; Long, G. J.; Power, P. P. Science, 2005, 310, 844.
(22) (a) Frenking, G. Science 2005, 310, 796. (b) Brynda, M.; Gagliardi, L.; Widmark, P.-O.; Power, P. P.; Roos, B. O. A Angew. Chem. Int. Ed. 2006, 45, 3804. (c) Landis, C. R.; Weinhold, F. J. Am. Chem. Soc. 2006, 128, 7335. (d) Radius, U.; Breher, F. Angew. Chem. Int. Ed. 2006, 45, 3006. (e) Weinhold, F.; Landis, C. R. Science 2007, 316, 61. (f) Roos, B. O.; Borin, A. C.; Gagliardi, L. Angew. Chem. Int. Ed. 2007, 46, 1469.
(23) (a) Wolf, R.; Ni, C.; Nguyen, T.; Brynda, M.; Long, G. J.; Sutton, A. D.; Fischer, R. C.; Fettinger, J. C.; Hellman, M.; Pu, L.; Power, P. P. Inorg. Chem. 2007, 46, 11277. (b) Weinhold, F.; Landis, C. R. Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective; Cambridge University Press: UK/New York, 2005. (c) Gagliardi, L.; Roos, B. O. Nature (London) 2005, 433, 848. (d) Landis, C. R.; Weinhold, F. J. Am. Chem. Soc. 2006, 128, 7335. (e) Weinhold, F.; Landis, C. R. Science 2007, 316, 61. (f) Merino, G.; Donald, K. J.; D'Acchioli, J. S.; Hoffmann, R. J. Am. Chem. Soc. 2007, 129, 15295.
(24) Tsai, Y.-C.; Lin, Y.-M.; Yu, J.-S. K.; Hwang, J.-K. J. Am. Chem. Soc. 2006, 128, 13980.
(25) (a) Tsai, Y.-C.; Hsu, C.-W.; Yu, J.-S.K.; Lee, G.-H.; Wang, Y.; Kuo, T.-S. Angew. Chem. Int. Ed. 2008, 47, 7250. (b) Hsu, C.-W.; Yu, J.-S. K.; Yen, C.-H.; Lee, G.-H.; Wang, Y.; Tsai, Y.-C. Angew. Chem. Int. Ed. 2008, 47, 9933. (c) Noor, A.; Glatz, G.; Müller, R.; Kaupp, M.; Demeshko, S.; Kempe, R. Z. Anorg. Allg. Chem. 2009, 635, 1149. (d) Noor, A.; Wagner, F. R.; Kempe, R. Angew. Chem. Int. Ed. 2008, 47, 7246. (e) Tsai, Y.-C.; Chen, H.-Z.; Chang, C.-C.; Yu, J.-S. K.; Lee, G.-H.; Wang, Y.; Kuo, T.-S. J. Am. Chem. Soc. 2009, 131, 12534.
(26) (a) Resa, I.; Carmona, E.; Gutierrez-Puebla, E.; Monge, A. Science, 2004, 305, 1136. (b) Parkin, G. Science, 2004, 305, 117. (c) Kerridge, D. H. J. Chem. Soc. A 1967, 1122. (d) Greene, T. M.; Brown, W.; Andrews, L.; Downs, A. J.; Chertihin, G. V.; Runeberg, N.; Pyykko, P. J. Phys. Chem. 1995, 99, 7925. (e) Wang, X.; Andrews, L. J. Phys. Chem. A 2004, 108, 11006. (f) Rittner, F.; Seidel, A.; Boddenberg, B. Microporous Mesoporous Mater. 1998, 24, 127. (g) Seff, K.; Zhen, S.; Bae, D. J. Phys. Chem. B 2000, 109, 13840. (h) Seff, K. J.Phys. Chem. B 2005, 109, 13840. (i) Tian, Y.; Li, G. D.; Chen, J. S. J. Am. Chem. Soc. 2003, 125, 6622. (j) Carmona, E.; Galindo, A. Angew. Chem. Int. Ed. 2008, 47, 6526.
(27) (a) Bravo-Zhivotovskii, D.; Yuzefovich, M.; Bendikov, M.; Klinkhammer, K.; Apeloig, Y. Angew. Chem. Int. Ed. 1999, 38, 1100. (b) Dorm, E. Chem. Commun. 1971, 466. (c) Pascal, P. Traite de Chimie Minerale, Vol. VIII, Masson et Cie, Eds. Paris, 1933. (d) Breitinger, D. K. in Comprehensive Coordination Chemistry II, Vol. 6 (Eds.: J. A. McCleverty, T. J. Meyer), Elsevier, Amsterdam, 2004. (e) Frank, W.; Dincher, B. Z. Naturforsch. B 1987, 42, 828.  
(28) (a) Corbett, J. D.; McMullan, R. K. J. Am. Chem. Soc. 1956, 78, 2906. (b) Corbett, J. D.; von Winbush, S.; Alberts, F. C. J. Am. Chem. Soc. 1957, 79, 3020. (c) Corbett, J. D.; Burkhard W. J.; Druding, L. F. J. Am. Chem. Soc. 1961, 83, 76. (d) Corbett, J. D. Inorg. Chem. 1962, 1, 700. (e) Munday, T. C. F.; Corbett, J. D. Inorg. Chem. 1966, 5, 1263. (f) Potts, R. A.; Barnes, R. D.; Corbett, J. D. Inorg. Chem. 1968, 7, 2558. (g) Faggiani, R. et al., Chem. Commun. 1986, 517. (h) Staffel, T.; Meyer, G. Z. Anorg. Allg. Chem. 1987, 548, 45.
(29) (a) Reger, D. L.; Mason, S. S. J. Am. Chem. Soc. 1993, 115, 10406. (b) Zhu, Z.; Fischer, R. C.; Fettinger, J. C.; Rivard, E.; Brynda, M.; Power, P. P. J. Am. Chem. Soc. 2006, 128, 15068. (c) Zhou, B.; Denning , M. S.; Chapman, T. A. D.; Mcgrady, J. E.; Goicoechea, J. M. Chem. Commun. 2009, 7221.
(30) (a) Twamley, B.; Sofield, C. D.; Omlstead, M. M.; Power, P. P. J. Am. Chem. Soc. 1999, 121, 3357. (b) Su, J.; Li, X.-W.; Crittendon, R. C.; Robinson, G. H. J. Am.Chem. Soc. 1997, 119, 5471. (c) Li, X.-W.; Xie, Y.; Schreiner, P. R.; Gripper, K. D.; Chrittendon, R. C.; Campana, C. F.; Schaefer, H. F.; Robinson, G. H. Organometallics 1996, 15, 3798. (d) Li, X.-W.; Pennington, W. T.; Robinson, G. H. J. Am. Chem. Soc. 1995, 117, 7578.
(31) (a) Wang, Y.; Quillian, B.; Yang, X.-J.; Wei, P.; Chen, Z.; Wannere, C. S.; Schleyer, P. v. R.; Robinson, G. H. J. Am. Chem. Soc. 2005, 127, 7672. (b) Yang, X.-J.’ Quillian, B.; Wang, Y.; Wei, P.; Robinson, G. H. Organometallics 2004, 23, 5119. (c) Su, J.; Li, X.-W.; Crittendon, R. C.; Campana, C. F.; Robinson, G. H. Organometallics 1997, 16, 4511.
(32) (a) del Rio, D.; Galindo, A.; Resa, I.; Carmona, E. Angew. Chem. Int. Ed. 2005, 44, 1244. (b) Grirrane, A.; Resa, I.; Rodriguez, A.; Carmona, E.; Alvarez, R. A. J. Am. Chem. Soc. 2007, 129, 693. (c) Wang, Y.; Quillian, B.; Wei, P.; Wang, H.; Yang, X.-J.; Wie, Y.; King, R. B.; Schleyer, P. v. R.; Schaefer III, H. F.; Robinson, G. H. J. Am. Chem. Soc. 2005, 127, 11944. (d) Zhu, Z. Wright, R. J.; Wright, R. J.; Olmstead, M. M.; Rivard, E.; Brynda, M.; Power, P. P. Angew. Chem. Int. Ed. 2006, 45, 5807. (e) Tsai, Y.-C.; Lu, D.-Y.; Lin, Y.-M.; Hwang, J.-K.; Yu, J.-S. K. Chem. Commun. 2007, 4125. (f) Fedushkin, I. L.; Skatova, A. A.; Ketkov, S. Y.; Eremenko, O. V. Angew. Chem. Int. Ed. 2007, 46, 4302. (g) Yang, X.-J.; Yu, J.; Liu, Y.; Xie, Y.; Schaefer, H. F.; Liang, Y.; Wu, B. Chem. Commun. 2007, 2363. (h) Yu, J.; Yang, X.-J.; Liu, Y.; Pu, Z.; Li, Q.-S.; Xie, Y.; Schaefer, H. F.; Wu, B. Organometallics 2008, 27, 5800.
(33) (a) Cadenbach, T.; Bollermann, T.; Gemel, C.; Fernandez, I.; Hopffgarten, M. v.; Frenking, G.; Fischer, R. A. Angew. Chem. Int. Ed. 2008, 47, 9105. (b) Kays, D. L.; Aldridge, S. Angew. Chem. Int. Ed. 2009, 48, 4109.
(34) (a) Guo, J.-C.; Li, J.-G. J. Mol. Struct. (THEOCHEM) 2010, 942, 43. (b) Li, Q.-S.; Xu, Y. J. Phys. Chem. A 2006, 110, 11898. (c) Kress, J. W. J. Phys. Chem. A 2005, 109, 7757. (d) Philpott, M. R.; Kawazoe, Y. Chem. Phys.2006, 327, 283. (e) Liu, Z.-Z.; Tian, W.-Q.; Feng, J.-K.; Zhang, G.; Li, W.-Q.; Cui, Y.-H.; Sun, C.-C. Eur. J. Inorg. Chem. 2006, 2808. (f) del Rio, D.; Galindo, A.; Resa, I.; Carmona, E. Angew. Cehm. Int. Ed. 2005, 44, 1244. (g) Pandey, K. K. J. Mol. Struct. (THEOCHEM) 2007, 823, 59. (h) Zhou, J.; Xiao, F.; Liu, Z.-P.; Fan, K.-N. J. Mol. Struct. (THEOCHEM) 2007, 808, 163. (i) Philpott, M. R.; Kawazoe, Y. Chem. Phys. 2007, 333, 201. (j) Pandey, K. K. J. Organomet. Chem. 2007, 692, 1058. (k) Philpott, M. R.; Kawazoe, Y. J. Mol. Struct. (THEOCHEM) 2007, 776, 113. (l) Kan, Y. J. Mol. Struct. 2007, 805, 127. (m) Velazquez A.; Fernandez, I.; Frenking, G.; Merino, G. Organometallics, 2007, 26, 4731. (n) Hepperle, S. S.; Wang, Y. A. J. Phys. Chem. A 2008, 112, 9621. (o) He, N.; Xie, H.-B.; Ding, Y.-H. J. Phys. Chem. A 2008, 112, 12463. (p) Rio, D. D.; Resa, I.; Rodriguez, A.; Sanchez, L.; Koppe, R.; Downs, A. J; Tang, C. Y.; Crmona, E. J. Phys. Chem. A. 2008, 112, 10516. (q) Philpott, M. R.; Kawazoe, Y. J. Phys. Chem. A 2008, 112, 2034. (s) Zhang, X.; Li, Q.-S.; Xie, Y.; King, R. B.; Schaefer III, H. F. J. Mol. Struct. 2008, 890, 184.
(35) Yang, P.; Yang, X.-J.; Yu, J.; Liu, Y.; Zhang, C.; Deng, Y.-H.; Wu, B. Dalton Trans. 2009, 5773.
(36) Bravo-Zhivotovskii, D.; Yuzefovich, M.; Bendikov, M.; Klinkhammer, K.; Apeloig, Y. Angew. Chem. Int. Ed. 1999, 38, 1100.
(37) (a) Chai, J.; Zhu, H.; Stuckl, A. C.; Roesky, H. W.; Magull, J.; Bencini, A.; Caneschi, A.; Gatteschi, D. J. Am. Chem. Soc. 2005, 127, 9201. (b) Sorace, L.; Golze, C.; Gatteschi, D.; Bencini, A.; Roesky, H. W.; Chai, J.; Stuckl, A. C. Inorg. Chem. 2006, 45, 395.
(38) Cotton, F. A.; Wikinson, E.; Murillo, C. A.; Bochmann, M. Advanced Inorganic Chemistry, 6th ed.; John Wiley & Sons: New York, 1999; pp 1302-1304.
(39) (a) Velazquez, A.; Fernandez, I.; Frenking, G.; Merino, G. Organometallics 2007, 26, 4731. (b) Li, Q. S.; Xu, Y. J. Chem. Phys. A. 2006, 110, 11898. (c) Xie, Y.; Schaefer III, H. F.; Jemmis, E. D. Chem. Phys. Lett. 2005, 402, 414. (d) Westerhausen, M. et al., Chem. Eur. J. 2007, 13, 6292.
(40) (a) Green, S. P.; Jones, C.; Stasch, A. Science 2007, 318, 1754. (b) Westerhausen, M. Angew. Chem. Int. Ed. 2008, 47, 2185.
(41) Hill, M. S.; Hitchcock, P. B.; Pongtavornpinyo, R. Science 2006, 311, 1904.
(42) (a) Padwa, A. et al., J. Org. Chem. 1991, 56, 3271. (b) Uemura, S. et al., Org. Lett. 2003, 5, 2619. (c) Stoltz, B. M. et al., J. Am. Chem. Soc. 2002, 124, 12426. (d) Aggarwal, V. K. Angew. Chem. Int. Ed. 2001, 40, 1430.
(43) (a) Nishibayashi, Y.; Yamanashi, M.; Wakiji, I.; Hidai, M. Angew. Chem. Int. Ed. 2000, 39, 2909. (b) Nishibayashi, Y.; Wakiji, I.; Hidai, M. J. Am. Chem. Soc. 2000, 122, 11019. (c) Nishibayashi, Y.; Wakiji, I.; Ishii, Y.; Uemura, S.; Hidai, M. J. Am. Chem. Soc. 2001, 123, 3393. (d) Nishibayashi, Y.; Inada, Y.; Hidai, M.; Uemura, S. J. Am. Chem. Soc. 2002, 124, 7900. (e) Nishibayashi, Y.; Yoshikawa, M.; Inada, Y.; Hidai, M.; Uemura, S. J. Am. Chem. Soc. 2002, 124, 11846. (f) Inada, Y.; Nishibayashi, Y.; Hidai, M.; Uemura, S. J. Am. Chem. Soc. 2002, 124, 15172. (g) Nishibayashi, Y.; Inada, Y.; Hidai, M.; Uemura, S. J. Am. Chem. Soc. 2003, 125, 6060. (h) Nishibayashi, Y.; Yoshikawa, M.; Inada, Y.; Hidai, M.; Uemura, S. J. Am. Chem. Soc. 2003, 126, 16066.
(44) (a) Extended Linear Chain Compounds, Vol. 1-3 (Ed.: Miller, J. S.), Plenum, New York, 1982. (b) Roth, S. in One-Dimensional Metals, VCH, New York, 1995. (c) Chisholm, M. H.; Patmore, N. J. Acc. Chem. Res. 2007, 40, 19. (d) Barrios, L. A.; Aguila, D.; Roubeau, O.; Gamez, P.; Ribas-Arino, J.; Teat, S. J.; Aromi, G. Chem. Eur. J. 2009, 15, 11235. (e) Bera, J. K.; Dunbar, K. R. Angew. Chem. Int. Ed. 2002, 41, 4453. (f) Ruffer, T.; Ohashi, M.; Shima, A.; Mizomoto, H.; Kaneda, Y.; Mashima, K. J. Am. Chem. Soc. 2004, 126, 12244. (g) Tatsumi, Y.; Murahashi, T.; Okada, M.; Ogoshi, S.; Kurosawa, H. Chem. Commun. 2008, 477. (h) Takemura, Y.; Takenaka, H.; Nakajima, T.; Tanase, T. Angew. Chem. Int. Ed. 2009, 48, 2157.
(45) (a) Berry, J. F.; Cotton, F. A.; Daniels, L. M.; Murilo, C. A. J. Am. Chem. Soc. 2002, 124, 3212. (b) Berry, J. F.; Cotton, F. A.; Murillo, C. A. Organometallics 2004, 23, 2503. (c) Berry, J. F.; Cotton, F. A.; Lei, P.; Lu, T.; Murillo, C. A. Inorg. Chem. 2003, 42, 3534. (d) Lin, S.-Y.; Chen, I.-W. P.; Chen, C.-H.; Hsieh, M.-H.; Yeh, C.-Y.; Lin, T.-W.; Chen, Y.-H.; Peng, S.-M. J. Phys. Chem. B 2004, 108, 959. (e) Chen, I.-W. P.; Fu, M.-D.; Tseng, W.-H.; Yu, J.-Y.; Wu, S.-H.; Ku, C.-J.; Chen. C.-H.; Peng, S.-M. Angew. Chem. Int. Ed. 2006, 45, 5814. (f) Chae, D.-H.; Berry, J. F.; Jung, S.; Cotton, F. A.; Murillo, C. A.; Yao, Z. Nano Lett. 2006, 6, 165. (g) Shih, K.-N.; Huang, M.-J.; Liu, H.-C.; Fu, M.-D.; Kuo, C.-K.; Huang, C.-G.; Lee, G.-H.; Chen, C.-H.; Peng, S.-M. Chem. Commun. 2010, 46, 1338. (h) Tsai, T.-W.; Huang, Q.-R.; Peng, S.-M.; Jin, B.-Y. J. Phys. Chem. C 2010, 114, 3641. (i) Geprgoev, V. P.; McGrady, J. E. Inorg. Chem. 2010, 49, 5591.
(46) (a) Berry, J. F. Struct. Bonding (Berlin) 2010, 136, 1. (b) Yeh, C.-Y.; Wang, C.-C.; Chen, Y.-H.; Peng, S.-M. in Redox Systems Under Nano-Space Control, (Ed.: Hirao, T.), Springer, Heidelberg, 2006, pp. 85-115. (c) Peng, S.-M. et al. J. Am. Chem. Soc. 2008, 130, 10090.
(47) Ismayilov, R. H.; Wang, W.-Z.; Lee, G.-H.; Yeh, C.-Y.; Hua, S.-A.; Song, Y.; Rohmer, M.-M.; Benard, M.; Peng, S.-M. Angew. Chem. Int. Ed. 2011, 50, 2045.
(48) 顏君旭, 國立清華大學化學研究所碩士論文, 2009.
(49) (a) Allen, A. D.; Naito, S. Can. J. Chem. 1981, 54, 2948. (b) Cotton, F. A.; Najjar, R. C. Inorg. Chem. 1981, 20, 2716. (c) Mass, E. T., Jr.; McCarley, R. E. Inorg. Chem., 1973, 12, 1096. (d)Templeton, J. L.; McCarley, R. E. Inorg. Chem. 1978, 17, 2293. (e) Cotton, F. A.; Diebold, M. P.; Roth, W. J. J. Am. Chem. Soc. 1987, 109, 5506. (f) Cotton, F. A.; Hall, W. T. Inorg. Chem. 1980, 19, 2354. (g) Cotton, F. A.; Matonic, J. H.; Murillo, C. A. J. Am. Chem. Soc. 1997, 119, 7889. (h) Sattelberger, A. P.; Wilson, R. B., Jr.; Huffman, J. C. J. Am. Chem. Soc. 1980, 102, 7111. (i) Cotton, F. A.; Diebold, M. P.; Roth, W. J. J. Am. Chem. Soc. 1986, 108, 3538. (j) Cotton, F. A.; Diebold, M. P.; Roth, W. Inorg. Chem. 1985, 24, 3589. (k) Ting, C.; Messerle, L. J. Am. Chem. Soc. 1989, 111, 3449. (l) Sattelberger, A. P.; Wilson, R. B., Jr.; Huffman, J. C. Inorg. Chem. 1982, 21, 2392. (m) Cotton, F. A.; Shang, M. Inorg. Chim. Acta 1994, 227, 181. (n) Babaian-Kibala, E.; Cotton, F. A. Inorg. Chim. Acta. 1990, 171, 71. (o) Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Wang, X. J. Am. Chem. Soc. 1996, 118, 4830. (p) Cotton, F. A.; Feng, X.; Gutlich, P.; Kohlhaas, T.; Lu, J.; Shang, M. Inorg. Chem. 1994, 33, 3055. (q) Mata, J. D. L.; Gomez, M.; Gomez-Sal, P.; Royo, P. Inorg. Chem. 1993, 32, 5454. (r) Cotton, F. A.; Roth, W. J. Inorg. Chem. 1983, 22, 268. (s) Cotton, F. A.; Falvello, L. R.; Najjar, R. C. Inorg. Chem. 1983, 22, 375. (t) Gilletti, P. F.; Young, V. G.; Brown, T. M. Inorg. Chem. 1989, 28, 4034.
(50) (a) LaPointe, R. E.; Wolczanski, P. T.; Mitchell, J. F. J. Am. Chem. Soc. 1986, 108, 6382. (b) Sattelberger, A. P.; Wilson, R. B., Jr.; Huffman, J. C. Inorg. Chem. 1982, 21, 4179. (c) Luetkens, M. L., Jr.; Elcesser. W. L.; Huffman, J. C.; Sattelberger, A. P. Inorg. Chem. 1984, 23, 1718. (d) Miller, R. L.; Toreki, R.; LaPointe, R. E.; Wolczanski, P. T.; Van Duyne, G. D.; Roe, D. C. J. Am. Chem. Soc. 1993, 115, 5570. (e) Horwitz, C. P.; Shriver, D. F. Adv. Organomet. Chem. 1984, 23, 219. (f) Bradley, J. S. Adv. Organomet. Chem. 1983, 22, 1. (g) Tachikawa, M.; Muetterties, E. L. Prog. Inorg. Chem. 1981, 28, 203. (h) Kahn, B. E.; Rieke, R. D. Chem. Rew. 1988, 88, 733. (i) Shiver, D. F.; Sailor, M. J. Acc. Chem. Res. 1988, 21, 374. (j) Fei, P.; Khan, M. A.; Nicholas, L. M. J. Am. Chem. Soc. 1992, 114, 6579. (k) Belmonte, P.; Schrock, R. R.; Churchill, M. R.; Youngs W. J. J. Am. Chem. Soc. 1980, 102, 2858. (l) Floriani, C. et al. J. Am. Chem. Soc. 1998, 120, 3379; 1999, 121, 743. (m) Kawaguchi, H. et al. Angew. Chem. Int. Ed. 2007, 46, 8778.
(51) (a) Crabtree, R. H. Activation and Functionalization of Alkanes; Hill, C. L., Ed.; John Wiley: New York, 1989; p 79. (b) Bishop, P. T.; Dilworth, J. R.; Nicholson, T.; Zubieta, J. A. J. Chem. Soc., Chem. Commun. 1986, 1123. (c) Yu, J. S.; Felter, L.; Potyen, M. C.; Clark, J. R.; Visciglio, V. M.; Fanwick, P. E.; Rothwell, I. P. Organometallics 1996, 15, 4443. (d) Bromberg, S. E.; Yang, H.; Asplund, M. C.; Lian, T.; Mcnamara, B. K.; Kotz, K. T.; Yeston, J. S.; Wilkens, M.; Frei, H.; Bergman, R G.; Harris, C. B. Science 1997, 278, 260.
(52) (a) Bonanno, J. B.; Henry, T. P.; Neithamer, D. R.; Wolczanski, P. T.; Lobkovsky, E. B. J. Am. Chem. Soc. 1996, 118, 5132. (b) Kleckley, T. S.; Bennett, J. L.; Wolczanski, P. T.; Lobkowski, E. B. J. Am. Chem. Soc. 1997, 119, 247. (c) Gray, S. D.; Weller, K. J.; Bruck, M. A.; Briggs, P. M.; Wigley, D. E. J. Am. Chem. Soc. 1995, 117, 10678. (d) Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Wang, X. Inorg. Chem. 1997, 36, 896. (e) Weller, K. J.; Filippov, I.; Briggs, P. M.; Wigley, D. E. Organometallics 1998, 17, 322.
(53) (a) Steffey, B. D.; Chamberlain, L. R.; Chesnut, R. W.; Chebi, D. E.; Fanwick, P. E.; Rothwell, I. P. Organometallics 1989, 8, 1419. (b) Chamberlain, L. R.; Kerschner, J.; Rothwell, A. P.; Rothwell, I. P.; Huffman, J. C. J. Am. Chem. Soc. 1987, 109, 6471. (c) Chamberlain, L. R.; Rothwell, A. P.; Rothwell, I. P. J. Am. Chem. Soc. 1984, 106, 1847. (d) Chamberlain, L. R.; Keddington, J.; Rothwell, I. P.; Huffman, J. C. Organometallics 1982, 1, 1538. (e) Chamberlain, L. R.; Rothwell, I. P.; Huffman, J. C. J. Am. Chem. Soc. 1986, 108, 1502. (f) Schaller, C. P.; Wolczanski, P. T. Inorg. Chem. 1993, 32, 131. (g) Chamberlain, L. R.; Rothwell, I. P. J. Am. Chem. Soc. 1983, 105, 1665. (h) Chamberlain, L. R.; Rothwell, I. P.; Huffman, J. C. J. Am. Chem. Soc, 1982, 104, 7338. (i) Ballard, K. R.; Gardiner, I. M.; Wigley, D. E. J. Am. Chem. Soc. 1989, 111, 2159.
(54) (a) Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Wang, X. Inorg. Chem. 1997, 36, 896. (b) Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Wang, X. Inorg. Chem. 2001, 36, 896.
(55) (a) Cotton, F. A.; Matonic, J. H.; Murillo, C. A. J. Am. Chem. Soc. 1997, 119, 7889. (b) Cotton, F. A.; Matonic, J. H.; Murillo, C. A. J. Am. Chem. Soc. 1998, 120, 6047.
(56) (a) Caselli, A.; Solari, E.; Scopelliti, R.; Floriani, C. J. Am. Chem. Soc. 2000, 122, 538. (b) Zanotti-Gerosa, A.; Solari, E.; Giannini, L.; Floriani, C.; Chiesi-Villa, A.; Rizzoli, C. J. Am. Chem. Soc. 1998, 120, 437. (c) Caselli, A.; Solari, E.; Scopelliti, R.; Floriani, C. J. Am. Chem. Soc. 1999, 121, 8296. (d) Caselli, A.; Solari, E.; Scopelliti, R.; Floriani, C.; Re, N.; Rizzoli, C.; Chiesi-Villa, A. J. Am. Chem. Soc. 2000, 122, 3652. (e) Floriani, C.; Solari, E.; Franceschi, F.; Scopelliti, R.; Belanzoni, P.; Rosi, M. Chem. Eur. J. 2001, 7, 3052.
(57) Cotton, F. A.; Hilland, E. A.; Murillo, C. A. J. Am. Chem. Soc. 2003, 125, 2026.
(58) 王柏揚, 國立清華大學化學研究所碩士論文, 2005.
(59) (a) 呂端晏, 國立清華大學化學研究所碩士論文, 2005. (b) Bardaji, M.; Laguna, A. J. Chem. Educ. 1999, 76, 201.
(60) Bai, S.-D.; Guo, J.-P.; Liu, D. S. Dalton Trans. 2006, 2244.
(61) (a) Seyferth, D. Organometallics 2001, 20, 2940. (b) Frankland, E. J. Chem. Soc. 1850, 2, 263.
(62) (a) Knocehl, P.; Almena Perea, J. J.; Jones, P. Tetrahedron 1998, 54, 8275. (b) Boudier, A.; Bromm, L. O.; Lotz, M.; Knochel, P. Angew. Chem. Int. Ed. 2000, 39, 4414. (c) Eberhardt, R.; Allmendinger, M.; Zintl, M.; Troll, C.; Luinstra, G. A.; Reiger, B. Macromol. Chem. Phys. 2004, 205, 42. (d) Duchateau, R.; van Meerendonk, W. J.; Huijser, S.; Staal B. B. P.; van Schildt, M. A.; Gerritsen, G.; Meetsma, A.; Knoing, C. E.; Kemmere, M. F.; Keurentjes, J. T. F. Organometallics, 2007, 26, 4204. (e) Inoue, S.; Koinuma, H.; Tsuruta, T. J. Polym. Sci. Part C: Polym. Lett. 1969, 7, 287. (f) Kobayashi, M.; Inoue, S.; Tsuruta, T. J. Polym. Sci. Polym. Chem. Ed. 1973, 11, 2383. (g) Luinstra, G. Polym. Rev. 2008, 48, 192. (h) Sarazin, Y.; Schormann, M.; Bochmann, M. Organometallics 2004, 23, 3296. (i) The Chemistry of Organozinc Compounds, ed, Z. Rappoport and I. Marek, Wiley, Chichester, UK, 2006. (j) Coates, G. W.; Moore, D. R. Angew. Chem., Int. Ed., 2004, 43, 6618. (k) Sugimoto, H. Inoue, S. J. Polym. Sci., Part A: Polym. Chem., 2004, 42, 5561. 7 (l) Kennedy, A. R.; Klett, J.; Mulvey, R. E.; Wright, D. S. Science, 2009, 326, 706; (m) Armstrong, D. R.; Clegg, W.; Dale, S. H.; Hevia, E.; Hogg, L. M.; Honeyman G. W.; Mulvey, R. E. Angew. Chem., Int. Ed., 2006, 45, 3775.
(63) (a) Schuchmann, D.; Westphal, U.; Schulz, S.; Florke, U.; Blaser, D.; Boese, R. Angew. Chem. Int. Ed. 2009, 48, 807. (b) Schulz, S.; Schuchmann, D.; Krossing, I.; Hmmel, D.; Blaser, D.; Boese, R. Angew. Chem. Int. Ed. 2009, 48, 5748. (c) Bollermann, T.; Freitag, K.; Gemel, C.; Seidel, R. W.; von Hopffgarten, M.; Frenking, G.; Fischer, R. A. Angew. Chem. Int. Ed. 2011, 50, 772.
(64) (a) Schulz, S.; Schuchmann, D.; Westphal, U.; Bolte, M. Organometallics 2009, 28, 1590. (b) Schulz, S.; Gondzik, S.; Schuchmann, D.; Westphal, U.; Dobrzycki, L.; Roese, R.; Harder, S. Chem. Commun. 2010, 49, 7757. (c) Nayek, H. P.; Luhl, A.; Schulz, S.; Koppe, R.; Roesky, P. W. Chem. Eur. J. 2011, 17, 1773. (d) Gondzik, S.; Blaser, D.; Wolper, C.; Schulz, S. Chem. Eur. J. 2010, 16, 13599.
(65) Fedushkin, I. L.; Eremenko, O. V.; Skatova, A. A.; Piskunov, A. V.; Fukin, G. K.; Ketkov, S. Y. Organometallics 2009, 28, 3863.
(66) Carrasco, M.; Peloso, R.; Rodriguez, A.; Alvarez, E.; Maya, C.; Carmona, E. Chem. Eur. J. 2010, 16, 9754.
(67) (a) Schulz, S.; Gondzik, S.; Schuchmann, D.; Westphal, U.; Dobrzycki, L.; Boese, R.; Harder, S. Chem. Commun. 2010, 46, 7757. (b) Liu, Y.; Li, S.; Yang, X.-J.; Yang, P.; Gao, J.; Xia, Y.; Wu, B. Organometallics 2009, 28, 5270. (c) Grirrane, A.; Resa, I.; Rodriguez, A.; Carmona, E. Coord. Chem. Rev. 2008, 252, 1532.
(68) (a) Niu, S.; Hall, M. B. Chem. Rev. 2000, 100, 353. (b) Koga, K.; Morokuma, K. Chem. Rev. 1991, 91, 823. (c) Ziegler, T. Chem. Rev. 1991, 91, 651.
(69) Chai, J.; Zhu, H.; Ma, Q.; Roesky, H. W.; Schmidt, H.-G.; Noltemeyer, M. Eur. J. Inorg. Chem. 2004, 4807.
(70) (a) Bradley, D. C.; Hursthouse, M. B.; Malik, K. M. A.; Moseler, R. Transition Met. Chem. 1978, 3, 253. (b) Murray, B. D.; Power, P. P. Inorg. Chem. 1984, 23, 4584.
(71) (a) Adams, R. D.; Kwon, Q.-S.; Smith, M. D. Inorg. Chem. 2001, 40, 5322. (b) Adams, R. D.; Kwon, Q.-S.; Smith, M. D. Inorg. Chem. 2002, 41, 5525.
(72) Bianchi, R.; Gervasio, G.; Marabello, D. Inorg. Chem. 2000, 39, 2360.
(73) Nayak, S. K.; Rao, B. K.; Jena, P. J. Phys. Condens. Matter 1998, 10, 10863.
(74) (a) Huber, K. P.; Herzberg, G. Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules (Van Nostrand, New York, 1979). (b) Engelke, F.; Ennen, G.; Meiwes, K. H. Chem. Phys. 1982, 66, 391. (c) Martin, F.; Crozet, P.; Ross, A. J.; Aubert-Frecon, M.; Kowalczyk, P.; Jasrzebski, W.; Pashov, A. J. Chem. Phys. 2001, 115, 4118. (d) Staanum, P.; Pashov, A.; Kncckel, H.; Tiemann, E. Phys. Rev. A 2007, 75, 042513. (e) Ghanmi, C.; Berriche, H.; Ben Ouada, H. J. Mol. Spectrosc. 2006, 235, 158. (f) Zaitsevskii, Z. Phys. Rev. A 2001, 052504. (g) Docenko, O.; Tamanis, M.; Ferber, R.; Pashov, A.; Kncckel, H.; Tiemann, E. Eur. Phys. J. D 2004, 31, 205. (h) Ross, A. J.; Effantin, C.; Crozet, P.; Boursey, E. J. Phys. B 1990, 23, L247. (i) Fellow, C. E.; Gutterres, R. F.; Campos, A. P. C.; Vergs, J.; Amiot, C. J. Mol. Spectrosc. 1999, 197, 19. (j) Raab, M.; Honing, G.; Demtroder, W.; Vidal, C. R. J. Chem. Phys. 1982, 76, 4370.
(75) Liu, Y.; Li, S.; Yang, X.-J.; Yang, P.; Wu, B. J. Am. Chem. Soc. 2009, 131, 4210.
(76) Kreisel, K. A.; Yap, G. P. A.; Dmitrenko, O.; Landis, C. R.; Theopold, K. H. J. Am. Chem. Soc. 2007, 129, 14162.
(77) Lu, D.-Y.; Yu, J.-S. K.; Kuo, T.-S.; Lee, G.-H.; Wang, Y.; Tsai, Y.-C. Angew. Chem. Int. Ed. 2011, 50, 7611.
(78) Zhu, Z.; Brynda, M.; Wright, R. J.; Fischer, R. C.; Merrill, W. A.; Rivard, E.; Wolf, R.; Fettinger, J. C.; Olmstead, M. M.; Power, P. P. J. Am. Chem. Soc. 2007, 129, 10847.
(79) Zhu, Z.; Fettinger, J. C.; Olmstead, M. M.; Power, P. P. Organometallics 2009, 28, 2091.
(80) Puling, L. The Nature of the Chemical Bond (Cornell Univ. Press, lthaca, NY, ed. 3, 1960), chap. 7.
(81) (a) Schumann, H.; Gottfriedsen, J.; Dechert, S.; Girgsdies, F. Z. Anorg. Allg. Chem. 2000, 626, 747. (b) Tang, Y.; Felix, A. M.; Boro, B. J.; Zakharov, L. N.; Rheingold, A. L.; Kemp, R. A. Polyhedron 2005, 24, 1093. (c) Margraf, G.; Lerner, H.-W.; Bolte, M.; Wagner, M. Z. Anorg. Allg. Chem. 2004, 630, 217. (d) Rees, W. S.; Green, D. M.; Hesse, W. Polyhedron 1992, 11, 1697.
(82) Martin, E.; Clegg, W.; Harrington, R. W.; Hughes, D. L.; Hursthouse, M. B.; Male, L.; Lancaster, S. J. Polyhedron 2010, 29, 405.
(83) (a) Barr, D.; Edwards, A. J.; Raithby, P. R.; Rennie, M.-A.; Verhorevoort, K.; Wright, D. S. J. Chem. Soc., Chem. Commun. 1994, 1627. (b) Blake, A. J.; Lewis, W.; McMaster, J.; Moorhouse. R. S.; Moxey, G. J.; Kays, D. L. Dalton Trans. 2011, 40, 1641.
(84) Pyykko, P.; Atsumi, M. Chem. Eur. J. 2009, 15, 186.
(85) Grotjhn, D. B.; Pesch, T. C.; Brewster, M. A.; Ziurys, L. M. J. Am. Chem. Soc. 2000, 122, 4735.
(86) (a) Budzelaar, P. H. M.; Boersma, J. ; Van der Kerk, G. J. M. J. Organomet. Chem. 1980, 202, C71. (b) Budzelaar, P. H. M.; Boersma, J.; Van der Kerk, G. J. M.; Spek, A. L.; Duisenberg, A. J. Inorg. Chem. 1982, 21, 3777. (c) Budzelaar, P. H. M.; Boersma, J.; Van der Kerk, G. J. M. Angew. Chem. 1983, 95, 335. (d) Budzelaar, P. H. M.; Den Haan, K. H.; Boersma, J.; Van der Kerk, G. M.; Spek, A. L. Organometallics 1984, 3, 156. (e) Budzelaar, P. M.; Van der Zeijden, A. A. H.; Boersma, J.; Van der Kerk, G. J. M.; Spek, A. L.; Duisenberg, A. J. M. Organometallics 1984, 3, 159. (f) Budzelaar, P. H. M.; Boersma, J.; Van der Kerk, G. J. M.; Spek, A. L.; Duisenberg, A. J. M. J. Organomet. Chem. 1985, 287, C13. (g) Budzelaar, P. H. M.; Boersma, J.; Van der Kerk, G. J. M.; Spek, A. L.; Duisenberg, A. J. M. Organometallics 1985, 4, 680. (h) Fischer, B.; Boersma, J.; Van Koten, G.; Spek, A. L. N. J. Chem. 1988, 12, 613. (i) Fischer, B.; Kleijn, H.; Boersma, J.; Van Koten, G.; Spek, A. L. Organometallics 1989, 8, 920. (j) Fryzuk, M. D.; McConville, D. H.; Rettig, S. J. Organometallics 1990, 9, 1359. (k) Fryzuk, M. D.; McConville, D. H.; Rettig, S. J. Organometallics 1993, 12, 2152. (l) Ohashi, M.; Matsubara, K.; Iizuka, T.; Suzuki, H. Angew. Chem., Int. Ed. 2003, 42, 937. (m) Ohashi, M.; Matsubara, K.; Suzuki, H. Organometallics 2007, 26, 2330, and references therein. (n) Wang, Y.; Quillian, B.; Wannere, C. S.; Wei, P.; Schleyer, P. v. R.; Robinson, G. H. Organometallics 2007, 26, 3054. (o) Fafard, C. M.; Chen, C.-H.; Foxman, B. M.; Ozerov, O. V. Chem. Comm. 2007, 4465. (p) Crotty, D. E.; Corey, E. R.; Anderson, T. J.; Glick, M. D.; Oliver, J. R. Inorg. Chem. 1977, 16, 920. (q) Crotty, D. E.; Anderson, T. J.; Glick, M. D.; Oliver, J. R. Inorg. Chem. 1977, 16, 2346. (r) Burlitch, J. M.; Ferrari, A. Inorg. Chem. 1970, 9, 563. (s) Denis, J. S.; Butler, W.; Glick, M. D.; Oliver, J. P. J. Am. Chem. Soc. 1974, 96, 5427. (t) Wright, C. A.; Shapley, J. R. Inorg. Chem. 2001, 40, 6338. (u) Enders, M.; Kohl, G.; Pritzkow, H. Organometallics 2002, 21, 1111. (v) Cadenbach, T.; Bollermann, T.; Gemel, C.; Fernandez, I.; Hopffgarten, von M.; Frenking, G.; Fischer, R. A. Angew. Chem. Int. Ed. 2008, 47, 9105. (w) Cadenbach, T.; Bollermann, T.; Gemel, C.; Tombul, M.; Fernandez, I.; Hopffgarten, von M.; Frenking, G.; Fischer, R. A. J. Am. Chem. Soc. 2009, 131, 16063.
(87) (a) Schmidt, S. et al. Organometallics 2010, 29, 6097. (b) Godfrey, S. M. et al. Inorg. Chim. Acta. 1999, 292, 213. (c) Roesky, S. A. et al. Eur. J. Inorg. Chem. 2001, 1613.
(88) Mindiola, D. J. Acc. Chem. Res. 2006, 39, 813.
(89) (a) Schrock, R. R. J. Chem. Soc., Dalton Trans. 2001, 2541. (b) Schrock, R. R. Chem. Rev. 2002, 102, 145.
(90) http://nobelprize.org/chemistry/laureates/2005/index.html
(91) Gallo, S. C. E.; Caselli, A.; Ragaini, F.; Fantauzzi, S.; Piangiolino, C. Coord. Chem. Rev. 2006, 250, 1234.
(92) (a) Burns, C. J. et al. Organometallics, 1999, 18, 2587. (b) Muller, P.; Fruit, C. Chem. Rev. 2003, 103, 2905. (c) Davies, H. M. L.; Long, M. S. Angew. Chem. Int. Ed. 2005, 44, 3518. (d) Dauban, P.; Dodd, R. H. Synlett 2003, 11, 1571. (e) Halfen, J. A. Curr. Org. Chem. 2005, 9, 657. (f) Cenini, S.; Gallo, E.; Caselli, A.; Ragaini, F.; Fantauzzi, S.; Piangiolino, C. Coord. Chem. Rev. 2006, 250, 1234. (g) Compain, P.; Toumieux, S. “Catalytic intramolecular C-H aminations: a powerful tool for the synthesis of various heterocyclic systems,” in Targets in Heterocyclic Systems; Attanasi, O. A.; Spineli, D., Eds; Italian Society of Chemistry: Rome, 2007. (h) Davies, H. M. L.; Manning, J. R. Nature 2008, 451, 417. (i) Von Zezschwitz, P. Nachr. Chem. 2008, 56, 897. (j) Collet, F.; Dodd, R. H.; Dauban, P. Chem. Commun. 2009, 5061. (k) Fantauzzi, S.; Caselli, A.; Gallo, E. Dalton Trans. 2009, 5434.
(93) (a) Breslow, R.; Gellman, S. H. Chem. Commun. 1982, 1400. (b) Katsuki, T. Synlett 2003, 281. (c) Nishikori, H.; Katsuki, T Tetrahedron Lett, 1996, 37, 9245. (d) Noda, K.; Hosoya, N.; Irie, R.; Ito, Y.; Katsuki, T. Synlett, 1993, 469. (e) Lai, T.-S.; Kwong, H.-L.; Che, C.-M.; Peng, S.-M. Chem. Commun. 1997, 2373. (f) Simonato, J.-P.; Pecaut, J.; Scheidt, R.; Marchon, J.-C. Chem. Commun. 1999, 989. (g) Du Bois, J.; Tomooka, C. S.; Hong, J.; Carreira, E. M. J. Am. Chem. Soc. 1997, 119, 3179. (h) Yu, S.-Q.; Huang, J.-S.; Zhu, N.; Che, C.-M. Org. Lett. 2000, 2, 2233. (i) Yang, J.; Weinberg, R.; Breslow, R. Chem. Commun. 2000, 531. (j) Kohmura, Y.; Katsuki, T. Tetrahedron Lett. 2001, 42, 3339.
(94) (a) Muller, P.; Fruit, C. Chem. Rev. 2003, 103, 2905. (b) Halfen, J. A. Curr. Org. Chem. 2005, 9, 657. (c) Tanner, D. Angew. Chem. Int. Ed. Engl. 1994, 33, 599. (d) Osborn, H. M. I.; Sweeney, J. Tetrahedron: Assymetry 1997, 8, 1693. (e) Sweeney, J. B. Chem. Soc. Rev. 2003, 31, 247. (f) Risse, J.; Scopelliti, R.; Severin, K. Organometallics 2011, 30, 3412.
(95) 林冠銘, 國立清華大學化學研究所碩士論文, 2008.
(96) (a) Trogler, W. C. et al. J. Am. Chem. Soc. 1981, 103, 192. (b) Andersen, R. A. et al. Organometallics 1993, 12, 2741. (c) Begman, R. G. et al. J. Am. Chem. Soc. 1995, 117, 974. (d) Hursthouse, M. B. et al. J. Chem. Soc., Dalton, Trans. 1996, 3771. (e) Weidenbruch, M. et al. J. Organomet. Chem. 1999, 579, 280 (f) Power, P. P. et al. Chem. Commun. 2001, 1184. (g) Ziller, J. W. et al. Inorg. Chem. 2005, 44, 468. (h) Noltemeyer, M. et al. Angew. Chem. Int. Ed. 2000, 39, 4531. (i) Riordan, C. G. et al. Inorg. Chem. 2008, 47, 1889. (j) Lopez, J. A. et al. Inorg. Chem. 2008, 47, 10220. (k) Gade, L. H. et al. Angew. Chem. Int. Ed. 2009, 48, 2152. (l) Holland, D. C. et al. Inorg, Chem. 2009, 48, 4828. (m) Tsai, Y. C. et al. New. J. Chem. 2010, 34, 1737.
(97) (a) Trogler, W. C.; Johnson, C. E.; Ellis, D. E. Inorg. Chem. 1981, 20, 980. (b) Gross, M. E.; Trogler, W. C.; Ibers, J. A. J. Am. Chem. Soc. 1981, 103, 192. (c) Johnson, C. E.; Trogler, W. C. J. Am. Chem. Soc. 1981, 103, 6252. (d) Gross, M. E.; Trogler, W. C.; Ibers, J. A. Organometallics 1982, 1, 732. (e) Overbosch, P.; Van Koten, G.; Overbeek, O. Inorg. Chem. 1982, 21, 2373.
(98) Chang, C.-Y.; Johnson, C. E.; Richmond, T. G.; Chen, Y.-T.; Trogler, W. C.; Basolo, F. Inorg. Chem. 1981, 20, 3167.
(99) (a) Gross, M. E.; Trogler, W. C. J. Organomet. Chem. 1981, 209, 407. (b) Gross, M. E.; Johnson, C. E.; Maroney, M. J.; Trogler, W. C. Inorg. Chem. 1984, 23, 2968.
(100) Maroney, M. J.; Trogler, W. C. J. Am. Chem. Soc. 1984, 106, 4144.
(101) (a) Lee, S. W.; Trogler, W. C. J. Am. Chem. Soc. 1990, 9, 1470. (b) Overbosch, P.; Van Koten, G.; Spek, A. L.; Roelofsen, G.; Duisenberg, A. J. M. Inorg. Chem. 1982, 21, 3908.
(102) Cowley, R. E.; Bill, E.; Neese, F.; Brennessel, W. W.; Holland, P. L. Inorg. Chem. 2009, 48, 4828.
(103) (a) Tani, H.; Oguni, N. J. Polym. Sci. Part B 1969, 7, 769. (b) Oguni, N.; Tani, H. J. Polym. Sci. 1973, 11, 573. (c) Darensbourg, D. J.; Holtcamp, M. W. Coord. Chem. Rev. 2004, 153, 155.
(104) (a) Westerhausen, M.; Bollwein, T.; Pfitzner, A.; Nilges, T.; Deiseroth, H.-J. Inorg. Chem. Acta 2001, 312, 239. (b) Olmstead, M. M.; Grigsby, W. J.; Chacon, D. R.; Hascall, T.; Power, P. P. Inorg. Chem. Acta 1996, 251, 273. (c) Putzer, M. A.; Dashti-Mommertz, A.; Neumuller, B.; Dehnicke, K. Z. Anorg. Allg. Chem. 1998, 624, 263. (d) Davidson, M. G.; Elilio, D.; Less, S. L.; Martin, A.; Raithby, P. R.; Snaith, R; Wright, D. S. Organometallics 1993, 12, 1.
(105) (a) Westerhausen, M.; Kneifel, A. N.; Kalisch, A. Angew. Chem. Int. Ed. 2005, 44, 96. (b) Bond, A. D.; Hopkins, A. D.; Rothenberger, A.; Wolf, R.; Woods, A. D.; Wright, D. S. Organometallics 2001, 20, 4454. (c) Choujaa, H.; Cosham, S. D.; Johnson, A. L.; Kafka, G. R.; Mahon, M. F.; Masters, S. L.; Molloy, K. C.; Rankin, D. W. H.; Robertson, H. E.; Wann, D. A. Inorg. Chem. 2009, 48, 2289. (d) Ackermann, H.; Weller, F.; Neumuller, B.; Dehnicke, K. Z. Anorg. Allg. Chem. 1999, 625, 147. (e) Armstrong, A. F.; Chivers, T.; Krahn, M.; Parvez, M. Can. J. Chem. 2005, 83, 1768.
(106) (a) Doedens, R. J. Chem. Commun. 1968, 1271. (b) Dekker, M.; Knox, G. R. Chem. Commun. 1967, 1243. (c) Mock, M. T.; Popescu, C. V.; Yap, G. P. A.; Dougherty, W. G.; Riordan, C. G. Inorg. Chem. 2008, 47, 1889. (d) Hardmann, N. J.; Power, P. P. Chem. Commun. 2001, 1184. (e) Zhu, H.; Yang, Z.; Magull, J.; Roesky, H. W.; Schmidt, H.-G.; Noltemeyer, M. Organometallics 2005, 24, 6420.
(107) (a) Meyer, K. E.; Walsh, P. J.; Bergman, R. G. J. Am. Chem.Soc. 1995, 117, 974. (b) Gehrmann, T.; Fillol, J. L.; Wadepohl, H.; Gade, L. H. Angew. Chem. Int. Ed. 2009, 48, 2152.
(108) (a) Michelman, R. I.; Bergman, R. G.; Andersen, R. A. Organometallics 1993, 12, 2741. (b)Cowley, R. E.; Bill, E.; Neese, F.; Brennessel, W. W.; Holland, P. L. Inorg. Chem. 2009, 48, 4828.
(109) Cowley, R. E.; Deyonker, N. J.; Eckert, N. A.; Cundari, T. R.; DeBeer, S.; Bill, E.; Ottenwaelder, X.; Flaschenriem, C.; Holland, P. L. Inorg. Chem. 2010, 49, 6172.
(110) (a) Berson, F. R. The High Nitrogen Compounds, Wiley: New York, 1984. (b) Nuyken, O.; Scherer, C.; Baindl, A.; Brenner, A. R.; Dahn, U.; Gartner, R.; Kaiser-Rohrich, S.; Kollefrath, R.; Matusche, P.; Voit, B. Prog. Polym. Sci. 1997, 22, 93. (c) Hofmann, K. A.; Hock, H. Chem. Ber. 1911, 44, 2946. (d) Mackay, D.; McIntyre, D. D.; Taylor, N. J. J. Org. Chem. 1982, 47, 532. (e) Fitchett, C. M.; Richardson, C.; Steel, P. J. Org. Biomol. Chem. 2005, 3, 498.
(111) (a) Butler, R. N.; Garvin, V. C. J. Chem. Res., Synop. 1982, 183. (b) Baindl, A.; Nuyken, O.; Scherer, C.; Voit, B. Polym. Prepr. 1996, 37, 605. (c) Nuyken, O.; Scherer, C.; Voit, B. Macromol. Chem. Phys. 1996, 197, 1101. (d) Stasko, A.; Erentova, K.; Rapta, P.; Nuyken, O.; Voit, B. Magn. Reson. Chem. 1998, 36, 13. (e) Horwitz, J. P. Grakauskas, V. A. J. Am. Chem. Soc. 1957, 79, 1249. (f) Theilacker, W.; Fintelmann, E.-C. Chem. Ber. 1958, 91, 1597.
(112) (a) Cowley, R. E.; Elhaik, J.; Eckert, N. A.; Brennessel, W. W.; Bill, E.; Holland, P. L. (b) Bonyhady, S. J.; Green, S. P.; Jones, C.; Nembenna, S.; Stasch, A. Angew. Chem. Int. Ed. 2009, 48, 2973.
(113) (a) Wang, S.-B.; Yang, G.-M.; Liao, D.-Z.; Li, L.-C. Inorg. Chem. 2004, 43, 852. (b) Vicente, R. et al. Inorg. Chem. 1999, 38, 5716. (c) Limburg, J.; Vrettos, J. S.; Crabtree, R. H.; Brudvig, G. W.; de Paula, J. C.; Hassan, A.; Barra, A.-L.; Duboc-Toia, C.; Collomb, M.-N. Inorg. Chem. 2001, 40, 1698. (d) Mantel, C.; Hassan, A. K.; Jacques, P. C.; Deronzier, A.; Collomb, M.-N.; Duboc-Toia, C. J. Am. Chem. Soc. 2003, 125, 12337.
(114) (a) 張智捷, 國立清華大學化學研究所碩士論文, 2009 (b)吳佩芳, 國立清華大學化學研究所碩士論文, 2010. (c) 謝昀蓁, 國立清華大學化學研究所碩士論文, 2010. (d) 劉士呈, 國立清華大學化學研究所碩士論文, 2010. (e) 林怡慶, 國立清華大學化學研究所碩士論文, 2011. (f) 陳思玟, 國立清華大學化學研究所碩士論文, 2011.
(115) 黃于倫, 國立清華大學化學研究所碩士論文, 2008.
(116) (a) Cotton, F. A.; Niswander, R. H.; Sekutowski, J. C. Inorg. Chem. 1978. 17, 3541. (b) Edema, J. J. H.; Gambraotta, S.; Meetsma, A.; Spek, A. L.; Smeets, W. J. J.; Chiang, M. Y. J. Chem. Soc. Dalton Trans. 1993, 789. (c) Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Pascual, I. Inorg. Chem.Commun. 1998, 1, 1. (d) Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Pascual, I.; Zhou, H.-C. J. Am. Chem. Soc. 1999, 121, 6856. (e) Cotton, F. A.; Daniels, L. M.; Lei, P.; Murillo, C. A.; Wang, X. Inorg. Chem. 2001, 40, 2778. (f) Clerac, R.; Cotton, F. A.; Jeffery, S. P.; Murillo, C. A.; Wang, X. Dalton Trans. 2003, 3022.
(117) 許家瑋, 國立清華大學化學研究所碩士論文, 2008.
(118) (a) Cotton, F. A.; Ralvello, L. R.; Han, S.; Wang, W. Inorg. Chem. 1983, 22, 4106. (b) Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Pascual, I.; Zhou, H.-C. J. AM. Chem. Soc. 1999, 121, 6856. (c) Majumdar, M.; Patra, S. K.; Kannan, M.; Dunbar, K. R.; Bera, J. K. Inorg. Chem. 2008, 47, 2212.
(119) (a) Chisholm, M.; Macomtosh, A. M. Chem. Rev. 2005, 105, 2949. (b) Chisholm, M. H.; Clark, D. L.; Folting, K.; Huffman, J. C.; Hampden-Smith, M. J. Am. Chem. Soc. 1987, 109, 7750. (c) Chisholm, M. H.; Folting, K.; Hammond, C. E.; Hampden-Smith, M. J.; Moodley, K. G. J. Am. Chem. Soc. 1989, 111, 5300. (d) Chisholm, M. H.; Errington, R. J.; Folting, K.; Huffman, J. C. J. Am. Chem. Soc. 1982, 104, 2025. (e) Chisholm, M. H.; Clark, D. L.; Errington, R. J.; Folting, K.; Huffman, J. C. Inorg. Chem. 1988, 27, 2071. (f) Haupt, H. J.; Florke, U.; Schnieder, H. Acta. Cryst. 1991, C47, 2304.
(120) (a) Cotton, F. A.; Shang, M. J. Am. Chem. Soc. 1988, 110, 7719.(b) Babaian-Kibala, E.; Cotton, F. A. Acta. Cryst. 1991, C47, 1716. (c) Cotton, F. A.; Shang, M. J. Cluster Sci. 1994, 5, 467. (d) Tayebani, M.; Aharonian, G.; Feghali, K.; Gambarotta, S.; Yap, G. P. A. Inorg. Chem. 2001, 40, 2442.
(121) (a) Araya, M. A.; Cotton, F. A.; Matonic, J. H.; Murillo, C. A. Inorg. Chem. 1995, 34, 5424. (b) Guggloz, E.; Ziegler, M. L.; Biersack, H.; Herrmann, W. A. J. Organomet. Chem. 1980, 194, 317. (c) Luetkens, M. L.; Huffman, J. C.; Sattelberger, A. P. J. Am. Chem. Soc. 1983, 105, 4474. (d) Coffindaffer, T. W.; Rothwell, I. P.; Folting, K.; Huffman, J. C.; Streib, W. E. J. Chem. Soc., Chem. Commun. 1985, 1519. (e) Tayebani, M.; Kasani, A.; Feghali, K.; Gambarotta, S.; Bensimon, C. Chem. Commun. 1997, 2001.
(122) Cotton, F. A.; Diebold, M. P.; Roth, W. J. J. Am. Chem. Soc. 1987, 109, 5506.
(123) (a) Kakeya, M.; Fujihara, T.; Nagasawa, A. Acta. Cryst. 2006, E62, m553. (b) Babarian-Kibala, E.; Cotton, F. A.; Shang, M. Acta. Cryst. 1991, C47, 1617. (c) Cotton, F. A.; Duraj, S. A.; Roth, W. J. Acta. Cryst. 1985, C41, 878. (d) Canich, J. A. M.; Cotton, F. A. Inorg. Chem. 1987, 26, 3473. (e) Cotton, F. A.; Shang, M. Inorg. Chem. 1993, 32, 969. (f) Cotton, F. A.; Feng, X.; Gutlich, P.; Kohlhaas, T.; Lu, J.; Shang, M. Inorg. Chem. 1994, 33, 3055. (g) Kakeya, M.; Fujihara, T.; Kasaya, T.; Nagasawa, A. Organometallics 2006, 25, 4131. (h) Canich, J. A. M.; Cotton, F. A.; Falvello, L. R.; Puraj, S. A. Inorg. Chim. Acta. 1988, 143, 185.
(124) (a) Cotton, F. A.; Roth, W. J. Inorg. Chim. Acta. 1983, 71, 175. (b) Riley, P. N.; Clark, J. R.; Fanwick, P. E.; Rothwell, I. P. Inorg. Chim. Acta. 1999, 288, 35. (c) Kakaya, M.; Fujihara, Y.; Nagasawa, A. Acta. Cryst. 2004, E60, m893. (d) Cotton, F. A.; Roth, W. J. Inorg. Chem. 1983, 22, 3654. (e) Cotton, F. A.; Duraj, S. A.; Falvello, L. R.; Roth, W. J. Inorg. Chem. 1985, 24, 4389. (f) Canich, J. A. M.; Cotton, F. A. Inorg. Chem. 1987, 26, 4236. (g) Babarian-Kibala, E.; Cotton, F. A.; Kibala, P. A. Inorg. Chem. 1990, 29, 4002.
(125) (a) Ghosh, M.; Sproules, S.; Weyhermuller, T.; Wieghardt, K. Inorg. Chem. 2008, 47, 5963. (b) van Koten, G.; Vrieze, K. Adv. Organomet. Chem. 1982, 21, 151. (c) Richter, S.; Daul, C.; von Zelewsky, A. Inorg. Chem. 1976, 15, 943. (d) Corvaja, C.; Pasimeni, L. Chem. Phys. Lett. 1976, 39, 261. (e) Hanson, G. R.; Henderson, M. J.; Hitchcock, P. B.; Rastonc, C. L.; Cloke, F. G. N. J. Chem. Soc., Chem. Commun. 1989, 1002. (f) Cloke, F. G. N.; Dalby, C. I.; Henderson, M. J.; Hitchcock, P. B.; Kennard, C. H. L.; Lamb, R. N.; Raston, C. L. J. Chem. Soc., Chem. Commun. 1990, 1394. (g) Cardiner, M. G.; Hanson, G. R.; Henderson, M. J.; Lee, F. C.; Raston, C. L. Inorg. Chem. 1994, 33, 2456. (h) Rijnberg, E.; Richter, B.; Thiele, K.-H.; Boersma, J.; Veldman, N.; Spek, A. L.; van Koten, G. Inorg. Chem. 1998, 37, 56. (i) Neumann, B.; Stammler, H.-G.; Thomas Pott, P. J. Organometallics 2001, 20, 1965. (j) Baker, R. J.; Farley, R. D.; Mills, D. P.; Kloth, M.; Murphy, D. M.; Jones, C. Chem. Eur. J. 2005, 11, 2972. (k) Pott, T.; Kaim, W.; Schoeller, W. W.; Neumann, B.; Stammler, A.; Stammler, H.-G.; Wanner, M.; Jutzi, P. Organometallics 2002, 21, 3169. (l) Armstrong, A. F.; Tuononen, H. M. Dalton Trans 2006, 1885. (m) Armstrong, A. F.; Tuononen, H. M. Inorg. Chem. 2005, 44, 8277.
(126) (a) Vis-ciglio, V. M.; Fanwick, P. E.; Rothwell, I. P. Inorg. Chim. Acta 1993, 211, 203. (b) Berno, P.; Gambarotta, S. Organometallics 1995, 14, 2159.
(127) (a) Mashima, K. et al. Organometallics 1999, 18, 1471. (b) Scholz, J. et al. Polyhedron 2002, 21, 305. (c) Hubert-Pfalzgraf, L. G.; Zaki, A. Acta. Cryst. 1993, C49, 1609. (d) Bunker, M. J. et al. J. Organomet. Chem. 1980, 192, C6.
(128) (a) Cotton, F. A. Chem. Soc. Rev. 1983, 12, 35. (b) Chisholm, M. H.; Macintosh, A. M. Chem. Rev. 2005, 105, 2949. (c) Phillips, D. L.; Che, C.-M.; Leung, K. H.; Mao, Z.; Tse, M.-C. Coord. Chem. Rev. 2005, 249, 1476. (d) Grodzicki, A.; Lakomska, I.; Piszczek, P.; Szymanska, I.; Szlyk, E. Coord. Chem. Rev. 2005, 249, 2232. (e)Filatov, A. S.; Petrukina, M. A. Coord. Chem. Rev. 2010, 254, 2234.
(129) (a) Pyykko, P. Chem. Rev. 1997, 97, 597. (b) Pyykko, P. Angew. Chem. Int. Ed. 2004, 43, 4412. (c) Balch, A. L. Gold Bull. 2004, 37, 45. (c) Leznoff, D. B.; Lefebvre, J. Gold. Bull. 2005, 38, 47. (d) Sculfort, S.; Croizat, P.; Messaoudi, A.; Benard, M.; Rohmer, M.-M.; Welter, R.; Braunstein, P. Angew. Chem. Int. Ed. 2009, 48, 9663.
(130) (a) Beck, J.; Strahle, J. Angew. Chem. Int. Ed. Engl. 1985, 24, 409. (b) Pyrka, G. J.; El-Mekki, M.; Pinkerton, A. A. J. Chem. Soc,. Chem. Commun. 1991, 84. (c) Clerac, R.; Cotton, F. A.; Daniels, L. M.; Gu, J.; Murillo, C. A.; Zhou, H.-C. Inorg. Chem. 2000, 39, 4488. (d) Chan, Z.-K.; Wu, Y.-Y.; Chen, J.-D.; Yeh, C.-Y.; Wang, C.-C.; Tsai, Y. F.; Wang, J.-C. Dalton Trans. 2005, 985. (e) Takemura, Y.; Nakajima, T.; Tanase, T. Dalton Trans. 2009, 10231. (f) Sugiura, T.; Yoshikawa, H.; Awaga, K. Inorg. Chem. 2006, 45, 7584. (g) Sevryugina, Y.; Petrukhina, M. A. Eur. J. Inorg. Chem. 2008, 219. (h) Hietsoi, O.; Dubceac, C.; Filatov, A. S.; Petrukhina, M. A. Chem. Commun. 2011, 47, 6939. (g) Sugiura, T.; Yoshikawa, H.; Awaga, K. Inorg. Chem. 2006, 45, 7584.
(131) 楊凡陞, 國立清華大學化學研究所碩士論文, 2010.
(132) Bondi, A. J. Phys. Chem. 1964, 68, 441.
(133) (a) Merz, Jr., K. M.; Hoffmann, R. Inorg. Chem. 1988, 27, 2120. (b) Chie, C.-M.; Mao, Z.; Miskowski, V. M.; Tse, M.-C.; Chan, C.-K.; Cheung, K.-K.; Phillips, D. L.; Leung, K.-H. Angew. Chem. Int. Ed. 2000, 39, 4084.
(134) (a) Harvey, P. D.; Gray, H. B. J. Am. Chem. Soc. 1988, 110, 2145. (b) Che, C.-M.; Kwong, H.-L.; Yam, V. W.-W.; Cho, K. C. J. Chem. Soc., Chem. Commun. 1989, 885. (c) King, C.; Wang, J.-C.; Khan, M. N. I.; Fackler, J. P., Jr. Inorg. Chem. 1989, 28, 2145. (d) Perreault, D.; Drouin, M.; Michel, A.; Miskowski, V. M.; Schaefer, W. P.; Harvey, P. D. Inorg. Chem. 1992, 31, 695. (e) Fu, W.-F.; Chan, K.-C.; Miskowski, V. M.; Che, C.-M. Angew. Chem., Int. Ed. 1999, 38, 2783. (f) Leung, K.-H.; Phillips, D. L.; Tse, M.-C.; Che, C.-M.; Miskowski, V. M. J. Am. Chem. Soc. 1999, 121, 4799. (g) Che, C.-M.; Mao, Z.; Miskowski, V. M.; Tse, M.-C.; Chan, C.-K.; Cheung, K.-K.; Phillips, D. L.; Leung, K.-H. Angew. Chem., Int. Ed. 2000, 39, 4084. (h) Che, C.-M.; Tse, M.-C.; Chan, M. C. W.; Cheung, K.-K.; Phillips, D. L.; Leung, K.-H. J. Am. Chem. Soc. 2000, 122, 2464. (i) RawashdehOmary, M. A.; Omary, M. A.; Patterson, H. H.; Fackler, J. P., Jr. J. Am. Chem. Soc. 2001, 123, 11237. (j) Fu, W.-F.; Chan, K.-C.; Cheung, K.-K.; Che, C.-M. Chem.Eur. J. 2001, 7, 4656. (k) Zhang, H.-X.; Che, C.-M. Chem.Eur. J. 2001, 7, 4887.
(135) Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Schooler, P. J. Chem. Soc., Dalton Trans. 2000, 2007.
(136) Nijhuis, C. A.; Jellema, E.; Sciarone, T. J. J.; Meetsma, A.; Budzelaar, P. H. M.; Hessen, B. Eur. J. Inorg. Chem. 2005, 2089.
(137) Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Schooler, P. Dalton Trans. 2000, 2001.
(138) (a) Roberts, R. M. J. Org. Chem. 1949, 14, 277. (b) Cole, M. L.; Davies, A. J.; Jones, C.; Junk, P. C. J. Organomet. Chem. 2004, 689, 3093.
(139) Fujie, Y.; Hanaki, N. Jpn. Kokai Tokkyo Koho 2004, 17.
(140) Abrams, M. B.; Scott, B. L.; Baker, R. T. Organometallics 2000, 19, 4944.
(141) Hill, M. S.; Hitchcock, P. B. Organometallics 2002, 21, 3258.
(142) Griffin; Calvert, R. J.; Curtin, A. H.; Newell, N. J.; Golding, R. D.; Thomas, B., inventor; 1998 May 26. United States Patent 5,756,510.
(143) Podall, H.; Foster, W. E.; Giraitis, A. P. J. Org. Chem. 1958, 23, 82.
(144) Roskamp, E. J.; Pedersen, S. F. J. Am. Chem. Soc. 1987, 109, 6551.
(145) (a) Evans, D. F. Journal of the Chemical Society (Resumed) 1959, 2003. (b) Evans, D. F.; Fazakerley, G. V.; Phillips, R. F. Journal of the Chemical Society A: Inorganic, Physical, Theoretical 1971, 1931.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *