帳號:guest(3.133.117.63)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):邱宗文
作者(外文):Chiou, Tzung-Wen
論文名稱(中文):鎳-硫錯合物之小分子活化之研究
論文名稱(外文):Small Molecules Activation by Ni(III)-Thiolate Complexes
指導教授(中文):廖文峯
指導教授(外文):Liaw, Wen-Feng
口試委員(中文):蔡易州
洪政雄
王朝諺
王雲銘
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學系
學號:9623817
出版年(民國):100
畢業學年度:100
語文別:英文
論文頁數:139
中文關鍵詞:小分子活化
外文關鍵詞:Small Molecule ActivationNickel
相關次數:
  • 推薦推薦:0
  • 點閱點閱:279
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
Complexes [PPN][NiIII(OR)(P(C6H3-3-SiMe3-2-S)3)] (R = OPh (1), OMe (3)),
obtaining from reactions of complexes [PPN][NiIII(Cl)(P(C6H3-3-SiMe3-2-S)3)] and 1
with 3 equiv of [Na][OPh] and 1 equiv of [n-Bu4N][OMe] in THF-MeCN and
THF-MeOH, respectively, are good precursors to synthesize the other NiIII complexes
[PPN][NiIII(L)(P(C6H3-3-SiMe3-2-S)3)] (L = SPh (2), StBu (4), S(CH2)2SH (5),
SC6H4-o-OH (6), SSSMe (7), SeSeMe (8), CCPh (9)), characterized by UV-vis,
electron paramagnetic resonance (EPR), cyclic voltammetry (CV), and single-crystal
X-ray diffraction.
Complex 3 triggers coordination and activation of CO2 to yield the thermally
stable complex [PPN][Ni(κ1-OCO)(P(C6H3-3-SiMe3-2-S)3)] (10), upon CO2 bubbled
into the THF solution of complex 3 at ambient temperature. The electronic structure
of complex 3 was identified as a separated system of NiIII and OCO radical,
characterized by X-ray absorption and EPR spectra. Reactions of complex 10 and
[PPN][NiIII(NCO)(P(C6H3-3-SiMe3-2-S)3)] (11) with TMSCl producing free CO2 and
TMS-NCO, respectively, identified the cores of M-OCO and M-NCO. In addition,
reaction of complex 10 and 11 with excess CS2, produce complexes
[PPN][NiIII(NCS)(P(C6H3-3-SiMe3-2-S)3)] (13) and [PPN][Ni(OCS)(P(C6H3-3-
SiMe3-2-S)3)] (14), respectively, an unprecedented metal-complex containing κ1-OCS
ligand.
Complex [PPN][NiIII(NO2)P(C6H3-3-SiMe3-2-SH)3] (15), synthesized from NO
gas purging into THF solution of complex 3 via the mechanism of NO
disproportionation reaction, could activate S8 to lead to the known bridging complex
[PPN]2[(NiIII(P(C6H3-3-SiMe3-2-SH)3))2(S8)] by the pathway 2NO2- + S8 → 2NO2 + S82-.
錯合物[PPN][NiIII(Cl)(P(C6H3-3-SiMe3-2-S)3)] 與[PPN][NiIII(OPh)(P(C6H3-3-
SiMe3-2-S)3)] (1) 分別加入三當量的[Na][OPh] 及一當量的[n-Bu4N][OMe] 在
THF-MeCN 及THF-MeOH 混合溶液中反應, 依序可得到錯合物1 及
[PPN][NiIII(OMe)(P(C6H3-3-SiMe3-2-S)3)] (3)。此兩以氧為配位基的錯合物為有效
的前驅物,可進而合成其他鎳三價錯合物[PPN][NiIII(L)(P(C6H3-3-SiMe3-2-S)3)] (L
= SPh (2), StBu (4), S(CH2)2SH (5), SC6H4-o-OH (6), SSSMe (7), SeSeMe (8), CCPh
(9)),並且以多種光譜技術(紫外-可見光光譜、電子順磁共振光譜及單晶X 光繞
射分析)及循環伏安法鑑定之。
在室溫下,將二氧化碳導入溶有錯合物3 的THF 溶液中,錯合物3 能引發
二氧化碳配位在鎳金屬上且活化之,進而得到一熱穩定的錯合物[PPN][Ni-
(κ1-OCO)(P(C6H3-3-SiMe3-2-S)3)] (10)。藉由X 光吸收光譜及電子順磁共振光譜的
分析,錯合物10 為一鎳三價中心配位著被還原的二氧化碳自由基陰離子(carbon
dioxide radical anion)。錯合物10 及[PPN][NiIII(NCO)(P(C6H3-3-SiMe3-2-S)3)] (11)
可與三甲基氯矽烷(TMSCl)反應,分別釋放出二氧化碳及異氰酸三甲基矽酯
(TMS-NCO),由此可以區別出金屬離子配位著二氧化碳及異氰酸根兩者的不同
之處。此外,過量的二硫化碳可將錯合物10 及11 分別轉換成錯合物
[PPN][NiIII(NCS)(P(C6H3-3-SiMe3-2-S)3)] (13) and [PPN][Ni(OCS)(P(C6H3-3-
SiMe3-2-S)3)] (14)。其中,氧硫化碳(OCS)以立接模式(end-on)配位在鎳離子上的
錯合物14 為一新發現。
過量的一氧化氮氣體通入溶有錯合物3 的THF 溶液,經自身氧化還原反應
可得到具有亞硝酸根配位的錯合物[PPN][NiIII(NO2)P(C6H3-3-SiMe3-2-SH)3]
(15)。錯合物15 可與硫粉反應生成已知的帶負二價之八硫鍊雙核錯合物
[PPN]2[(NiIII(P(C6H3-3-SiMe3-2-SH)3))2(S8)],推測其反應機構為三價鎳氧化亞硝
酸根獲得電子進而還原硫粉。
Table of Contents
Abstract…………………………………………………..…...…..i
摘要…………………………………………………………....……ii
Table of Contents………………………………..………..…..iii
List of Tables………………………….………..…………..….vi
List of Figures………………………………….…………..…viii
Chapter I. Introduction………..……………...…….…..…..1
1-1. Insight into small molecules………….…….......…..1
1-2. Carbon dioxide (CO2)………………………..…………..…1
1-2-1. The Nature and Applications of Carbon Dioxide…...2
1-2-2. Biological Enzymes about Carbon Dioxide………….…5
1-2-3. Reactions and Activations of Carbon Dioxide……...7
1-3. Nitrous oxide (N2O)………………………….…………….15
1-4. Carbon monoxide (CO)……………………….………………19
1-5. Carbon disulfide (CS2)…………………………………….22
Chapter II. Experimental Section………………………………25
General Procedures…………………………………………………25
Preparation of [PPN][Ni(OC6H5)P(C6H3-3-SiMe3-2-S)3] (1)………...……...…......................................26
Preparation of [PPN][Ni(SC6H5)P(C6H3-3-SiMe3-2-S)3] (2)………...……...…......................................26
Preparation of [PPN][Ni(OCH3)P(C6H3-3-SiMe3-2-S)3] (3)……………......…......................................27
Reaction of [PPN][Ni(Cl)(P(C6H3-3-SiMe3-2-S)3)] and [Na][OCH3]…......…........................................27
Reaction of Complex 1 and [(CH3)4N][OH] in THF-CH3OH……28
Preparation of [PPN][Ni(StBu)((P(C6H3-3-SiMe3-2-S)3)] (4)…………......……......................................28
Preparation of [PPN][Ni(S(CH2)2SH)((P(C6H3-3-SiMe3-2-S)3)] (5)……..……...........................................29
Preparation of [PPN][Ni(SC6H4-o-OH)((P(C6H3-3-SiMe3-2-S)3)] (6)…..…...…..........................................29
Reaction of [PPN][Ni(OPh)(P(C6H3-3-SiMe3-2-S)3)] (1) and
1,2-benzene- dithiol………………………………………………29
Preparation of [PPN][Ni(SSSMe)(P(C6H3-3-SiMe3-2-S)3)] (7)…………..…............................................30
Preparation of [PPN][Ni(SeSeMe)(P(C6H3-3-SiMe3-2-S)3)] (8)……………..…..........................................30
Preparation of [PPN][Ni(CCPh)(P(C6H3-3-SiMe3-2-S)3)] (9)…………...…...…......................................30
Preparation of [PPN][Ni(κ1-OCO)(P(C6H3-3-SiMe3-2-S)3)] (10)…………................................................31
Preparation of [PPN][Ni(NCO)(P(C6H3-3-SiMe3-2-S)3)] (11)…………..…...….......................................31
Reaction of [PPN][Ni(OCO)(P(C6H3-3-SiMe3-2-S)3)] (10) and TMSCl……….............................................32
Reaction of [PPN][Ni(NCO)(P(C6H3-3-SiMe3-2-S)3)] (11) and TMSCl…..….............................................33
Reaction of Complex 1 and CO2 in THF-MeCN………………….33
Reaction of Complex [PPN][NiIII(SEt)(P(C6H3-3-SiMe3-2-S)3)] and CO2 in THF-MeCN……………………………………….......33
Preparation of [PPN][Ni(N3)(P(C6H3-3-SiMe3-2-S)3)] (12)……………..…..…......................................34
Thermolysis of THF-MeCN solution of complex 12……………34
Preparation of [PPN][Ni(NCS)(P(C6H3-3-SiMe3-2-S)3)] (13)…………..…..…........................................34
Reaction of Complex 12 and CS2 in THF-MeCN…………………34
Reaction of Complex 10 and CS2 in THF……………………….35
Preparation of [PPN][Ni(OCS)(P(C6H3-3-SiMe3-2-S)3)] (14)……………...….........................................35
Preparation of [PPN][Ni(NO2)(P(C6H3-3-SiMe3-2-S)3)] (15)…………..….….........................................35
Reaction of Complex 15 and S8 in THF-MeCN………………….36
Preparation of [PPN][CS2] (16)…………………………………36
EPR and Effective Magnetic Moment Measurements……………37
Crystallography…………………………………………………….37
X-ray Absorption Measurements………………………………….38
Chapter III. Results and Discussion………………………….55
3-1. Synthesis, Characterization and Reactivity of Different Liganting Mode [PPN][NiIII(L)(P(o-C6H3-3-SiMe3-2-S)3)] Complexes……………..……….......................55
3-1-1. Synthesis and Characterization of Complexes [PPN][NiIII(L)(P(o-C6H3-3-SiMe3-2-S)3)] (L = OPh, OMe and SPh)……………………………..................................55
3-1-2. Synthesis and Characterization of Complexes [PPN][NiIII(L)(P(o-C6H3-3-SiMe3-2-S)3)] (L = StBu, S(CH2)2SH, and SPh)………..…………................................64
3-1-3. Synthesis and Characterization of Complexes [PPN][NiIII(L)(P(o-C6H3-3-SiMe3-2-S)3)] (L = SSSMe and SeSeMe)……………..………………...............................72
3-2. Reactivity of Nickel (III) Complexes toward Small Molecule………....…...................................83
3-2-1. Reaction of [PPN][NiIII(OCH3)(P(C6H3-3-SiMe3-2-S)3)] and CO2................................................83
3-2-2. The electronic structure of [PPN][Ni(OCO)(P(C6H3-3-SiMe3-2-S)3)]…………………………………................91
3-2-3. Reactivity of complex [PPN][Ni(OCO)(P(C6H3-3-SiMe3-2-S)3)]…...............................................100
3-2-4. Reactivity of complexes [PPN][Ni(OCO)(P(C6H3-3-SiMe3-2-S)3)] and [PPN][Ni(NCO)(P(C6H3-3-SiMe3-2-S)3)] with CS2
…………..............................................105
3-2-5. Reactivity of complex [PPN][Ni(OCH3)(P(C6H3-3-SiMe3-2-S)3)] with NO…………………………………………….....117
3-2-6. Reactivity of complex [PPN][NiIII(NO2)(P(C6H3-3-SiMe3-2-S)3)] (15)………………………………………………120
Chapter IV. Conclusion…………………………………………127
References…………………………………………………………131
References

1. Falkowski, P.; Scholes, R. J.; Boyle, E.; Canadell, J.; CanÞeld, D.; Elser, J.; Gruber, N.; Hibbard, K.; Högberg, P.; Linder, S.; Mackenzie, F. T.; Moore III, B.; Pedersen, T.; Rosenthal, Y.; Seitzinger, S.; Smetacek, V.; Steffen, W. Science 2000, 290, 291-296.
2. Jessop, P. G.; Ikariya, T.; Noyori, R. Chem. Rev. 1995, 95, 259-272.
3. Aresta, M.; Quaranta, E.; Tommasi, I.; Giannoccaro, P.; Ciccarese, A. Gazz. Chim. Ital. 1995, 125, 509-538.
4. Liger-Belair, G.; Prost, E.; Parmentier, M.; Jeandet, P.; Nuzillard, J.-M. J. Agric. Food Chem. 2003, 51, 7560-7563.
5. Lide, D. R. Handbook of Chemistry and Physics, CRC Press, Inc., Boca Raton, FL, USA, 74th edn, pp. 1993–1994.
6. Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365-2387.
7. Aresta, M.; Dibenedetto, A. Dalton Trans. 2007, 2975-2992.
8. Pacheco, M. A.; Marshall, C. L. Energy & Fuels 1997, 11, 2-29.
9. Tundo, P.; Selva, M. Acc. Chem. Res. 2002, 35, 706-716.
10. Fukuoka, S. Producing polycarbonate, in Green and clean innovations, Chem. Ind. 6 October 1997, p. 757.
11. Fukuoka, S.; Kawamura, M.; Komiya, K.; Tojo, M.; Hachiya, H.; Hasegawa, K.; Aminaka, M.; Okamoto, H.; Fukawad, I.; Konnog, S. Green Chem. 2003, 5, 497-507.
12. Nomura, R.; Hasegawa, Y.; Ishimoto, M.; Toyosaki, T.; Matsuda, H. J. Org. Chem. 1992, 57, 7339-7342.
13. Sclafani, A.; Palmisano, L.; Farneti, G. Chem. Commun. 1997, 529-530.
14. Meldrum, N. M.; Roughton, F. J. Nature 1933, 80, 113.
15. Parkin, G. Chem. Rev. 2004, 104, 699-768.
16. Looney, A.; Han, R.; McNeill, K.; Parkin, G. J. Am. Chem. Soc. 1993, 115, 4690-4697.
17. Cleland, W. W.; Andrews, T. J.; Gutteridge, S.; Hartman, F. C.; Lorimer, G. H. Chem. Rev. 1998, 98, 549-562.
18. Mauser, H.; King, W. A.; Gready, J. E.; Andrews, T. J. J. Am. Chem. Soc. 2001, 123, 10821-10829.
19. Dobbek, H.; Gremer, L.; Kiefersauer, R.; Huber, R.; Meyer, O. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 15971-15976.
20. Dobbek, H.; Svetlitchnyi, V.; Gremer, L.; Huber, R.; Meyer, O. Science 2001, 293, 1281-1285.
21. Jeoung, J.-H.; Dobbek, H. Science 2007, 318, 1461-1464.
22. Allen, O. R.; Dalgarno, S. J.; Field, L. D.; Jensen, P.; Turnbull, A. J.; Willis, A. C. Organometallics 2008, 27, 2092-2098.
23. Jana, A.; Ghoshal, D.; Roesky, H. W.; Objartel, I.; Schwab, G.; Stalke, D. J. Am. Chem. Soc. 2009, 131, 1288-1293.
24. Yin, S.-F.; Maruyama, J.; Yamashita, T.; Shimada, S. Angew. Chem. Int. Ed. 2008, 47, 6590-6593.
25. Kersting, B. Angew. Chem. Int. Ed. 2001, 40, 2988-3990.
26. Darensbourg, D. J. Chem. Rev. 2007, 107, 2388-2410.
27. Rankin, M. A.; Cummins, C. C. J. Am. Chem. Soc. 2010, 132, 10021-10023.
28. Silvia, J. S.; Cummins, C. C. J. Am. Chem. Soc. 2010, 132, 2169-2171.
29. Gibson, D. H. Chem. Rev. 1996, 26, 2063-2095.
30. Aresta, M.; Nobile, C. F.; Albano, V. G.; Forni, E.; Manassero, M. J. Chem. Soc., Chem. Commun. 1975, 636-637.
31. Yeung, C. S.; Dong, V. M. J. Am. Chem. Soc. 2008, 130, 7826-7827.
32. Calabrese, J. C.; Herskovitz, T.; Kinney, J. B. J. Am. Chem. Soc. 1983, 105, 5914-5915.
33. Castro-Rodriguez, I.; Nakai, H.; Zakharov, L. N.; Rheingold, A. L.; Meyer, K. Science 2004, 305, 1757-1759.
34. Lee, C. H.; Laitar, D. S.; Mueller, P.; Sadighi, J. P. J. Am. Chem. Soc. 2007, 129, 13802-13803.
35. Gao, G; Li, F.; Xu, L.; Liu, X.; Yang, Y. J. Am. Chem. Soc. 2008, 130, 10838-10839.
36. Lu, C. C.; Saouma, C. T.; Day, M. W.; Peters, J. C. J. Am. Chem. Soc. 2007, 129, 4-5.
37. Castro-Rodriguez, I.; Meyer, K. J. Am. Chem. Soc. 2005, 127, 11242-11243.
38. Angamuthu, R.; Byers, P.; Lutz, M.; Spek, A. L.; Bouwnman, E. Science 2010, 327, 313-315.
39. Riduan, S. N.; Zhang, Y.; Ying, J. Y. Angew. Chem. Int. Ed. 2009, 48, 3322-3325.
40. Ravishankara, A. R.; Daniel, J. S.; Portmann, R.W. Science 2009, 326, 123 – 125.
41. Duce, R. A.; LaRoche, J.; Altieri, K.; Arrigo, K. R.; Baker, A. R.; Capone, D. G.; Cornell, S.; Dentener, F.; Galloway, J.; Ganeshram, R. S.; Geider, R. J.; Jickells, T.; Kuypers, M. M.; Langlois, R.; Liss, P. S.; Liu, S. M.; Middelburg, J. J.; Moore, C. M.; Nickovic, S.; Oschlies, A.; Pedersen, T.; Prospero, J.; Schlitzer, R.; Seitzinger, S.; Sorensen, L. L.; Uematsu, M.; Ulloa, O.; Voss, M.; Ward, B.; Zamora, L. Science 2008, 320, 893-897.
42. Tolman, W. B. Angew. Chem. Int. Ed. 2010, 49, 1018–1024.
43. D. K. B_hme, H. Schwarz, Angew. Chem. Int. Ed. 2005, 44, 2336–2354.
44. Chen, P.; Gorelsky, S. I.; Ghosh, S.; Solomen, E. I. Angew. Chem. Int. Ed. 2004, 43, 4132–4140.
45. Ghosh, S.; Gorelsky, S. I.; George, S. D.; Chan, J. M.; Cabrito, I.; Dooley, D. M.; Moura, J. J. G.; Moura, I.; Solomon, E. I. J. Am. Chem. Soc. 2007, 129, 3955-3965.
46. Solomon, E. I.; Sarangi, R.; Woertink, J. S.; Augustine, A. J.; Yoon, J.; Ghosh, S. Acc. Chem. Res. 2007, 40, 581-591.
47. Groves, J. T.; Roman, J. S. J. Am. Chem. Soc. 1995, 117, 5594-5595.
48. Pamplin, C. B.; Ma, E. S. F.; Safari, N.; Rettig, S. J.; James, B. R. J. Am. Chem. Soc. 2001, 123, 8596-8597.
49. Miller, T. M.; Grassian, V. H. J. Am. Chem. Soc. 1995, 117, 10969-10975.
50. Stirling, A. J. Am. Chem. Soc. 2002, 124, 4058-4067.
51. Tsai, Y.-C.; Wang, P.-Y.; Lin, K.-M.; Chen, S.-A.; Chen, J.-M. Chem. Commun. 2008, 205-207.
52. Rondinelli, F.; Russo, N.; Toscano, M. Inorg. Chem. 2007, 46, 7489-7493.
53. Yu, H.; Jia, G.; Lin, Z. Organometallics 2009, 28, 1158-1164.
54. Wang, Y.; Wang, Q.; Geng, Z.; Si, Y.; Zhang, J.; Li, H.; Zhang, Q. Chem. Phys. Lett. 2008, 460, 13-17.
55. Alikhani, M. E.; Michelini, M. D. C.; Russo, N.; Silvi, B. J. Phys. Chem. A 2008, 112, 12966-12974.
56. Jin, X.; Wang, G.; Zhou, M. J. Phys. Chem. A 2006, 110, 8017-8022.
57. Wang, G.; Jin, X.; Chen, M. Zhou, M. Chem. Phys. Lett. 2006, 420, 130-134.
58. Bottomley, F.; Lin, I. J. B.; Mukaida, M. J. Am. Chem. Soc. 1980, 102, 5238-5242.
59. Vaughan, G. A.; Rupert, P. B.; Hillhouse, G. L. J. Am. Chem. Soc. 1987, 109, 5538-5539.
60. Vaughan, G. A.; Hillhouse, G. L.; Lum, R. T.; Buchwald, S. L.; Rheingold, A. L. J. Am. Chem. Soc. 1988, 110, 7215-7217.
61. Matsunaga, P. T.; Hillhouse, G. L. J. Am. Chem. Soc. 1993, 115, 2075-2077.
62. Laplaza, C. E.; Odom, A. L.; Davis, W. M.; Cummins, C. C. J. Am. Chem. Soc. 1995, 117, 4999-5000.
63. Johnson, A. R.; Davis, W. M.; Cummins, C. C.; Serron, S.; Nolan, S. P.; Musaev, D. G.; Morokuma, K. J. Am. Chem. Soc. 1998, 120, 2071-2085.
64. Cherry, J. F.; Johnson, A. R.; Baraldo, L. M.; Tsai, Y. C.; Cummins, C. C.; Kryatov, S. V.; Rybak-Akimova, E. V.; Capps, K. B.; Hoff, C. D.; Haar, C. M.; Nolan, S. P. J. Am. Chem. Soc. 2001, 123, 7271-7286.
65. Vaughan, G. A.; Sofield, C. D.; Hillhouse, G. L. J. Am. Chem. Soc. 1989, 111, 5491-5493.
66. Otten, E.; Neu, R. C.; Stephan, D.W. J. Am. Chem. Soc. 2009, 131, 9918-9919.
67. Neu, R. C.; Otten, E.; Stephan, D. W. Angew. Chem. Int. Ed. 2009, 48, 9709-9712.
68. Piro, N. A.; Lichterman, M. F.; Harman, W. H.; Chang, C. J. J. Am. Chem. Soc. 2011, 133, 2108-2111.
69. Miessler, G. L.; Tarr, D. A. Inorganic Chemistry, Pearson Prentice Hall, Upper Saddle River, N.J., 3rd edition, pp. 470.
70. Crabtree, R. H. The Organometallic Chemistry of the Transition Metals, John Wiley & Sons, Inc., Hoboken, New Jersey, 4th edn, pp. 87-96.
71. Günzler, H.; Gremlich, H.-U. IR spectroscopy: An Introduction, WILEY-VCH Verlag GmbH, Weinheim, 4th edn, pp. 17.
72. Monillas, W. H.; Yap, G. P. A.; MacAdams, L. A.; Theopold, K. H. J. Am. Chem. Soc. 2007, 129, 8090-8091.
73. Hou, H.; Rheingold, A. L.; Kubiak, C. P. Organometallics 2005, 24, 231-233.
74. Seitz, G.; Imming, P. Chem. Rev. 1992, 92, 1227-1260.
75. Nudelman, N. S.; Doctorovich, F.; Amorin, G. Tetrahedron Lett. 1990, 31, 2533-2536.
76. Silvestri, G.; Gambino, S.; Filardo, G.; Guainazzi, M.; Ercoli, R. Gazz. Chim. Ital. 1972, 102, 818-821.
77. Silvestri, G.; Gambino, S.; Filardo, G.; Spadaro, G.; Palmisano, L. Electrochim. Acta 1978, 23, 413-417.
78. Evans, W. J.; Grate, J. W.; Hughes, L. A.; Zhang, H. J. Am. Chem. Soc. 1985, 107, 3728-3730.
79. Evans, W. J.; Lee, D. S.; Ziller, J. W.; Kaltsoyannis, N. J. Am. Chem. Soc. 2006, 128, 14176-14184.
80. Summerscales, O. T.; Geoffrey, F.; Cloke, N.; Hitchcock, P. B.; Green, J. C.; Hazari, N. Science 2006, 311, 829-831.
81. Summerscales, O. T.; Geoffrey, F.; Cloke, N.; Hitchcock, P. B.; Green, J. C.; Hazari, N. J. Am. Chem. Soc. 2006, 128, 9602-9603.
82. Frey, A. S.; Geoffrey, F.; Cloke, N.; Hitchcock, P. B.; Day, I. J.; Green, J. C.; Aitken, G. J. Am. Chem. Soc. 2008, 130, 13816-13817.
83. Arnold, P. L.; Tumer, Z. R.; Bellabarba, R. M.; Tooze, R. P. Chem. Sci. 2011, 2, 77-79.
84. Mansell, S. M.; Kaltsoyannis, N.; Arnold, P. L. J. Am. Chem. Soc. 2011, 133, 9036-9051.
85. Foye, W. O. J. Chem. Educ. 1969, 46, 841-845.
86. Gandhi, T.; Jagirdar, B. R. Inorg. Chem. 2005, 44, 1118-1124.
87. Huber, H.; Ozin, G. A.; Power, W. J. Inorg. Chem. 1977, 16, 2234-2237.
88. Leoni, P.; Chiaradonna, G.; Pasquali, M.; Marchetti, F. Inorg. Chem. 1999, 38, 253-259.
89. Anderson, J. S.; Iluc, V. M.; Hillhouse, G. L. Inorg. Chem. 2010, 49, 10203-10207.
90. Bianchini, C.; Mealli, C.; Meli, A.; Sabat, M. Inorg. Chem. 1984, 23, 4125-4127.
91. Lam, O. P.; Heinemann, F. W.; Meyer, K. Angew. Chem. Int. Ed. 2011, 50, 5965-5968.
92. Goebbert, D. J.; Wende, T.; Jiang, L.; Meijer, G.; Sanov, A.; Asmis, K. R. J. Phys. Chem. Lett. 2010, 1, 2465-2469.
93. Block, E.; Ofori-Okai, G.; Zubieta, J. J. Am. Chem. Soc. 1989, 111, 2327-2329.
94. Liaw, W.-F.; Horng, Y.-C.; Ou, D.-S.; Ching, C.-Y.; Lee, G.-H.; Peng, S.-M. J. Am. Chem. Soc. 1997, 119, 9299-9300.
95. Lee, C.-M.; Chen, C.-H.; Ke, S.-C.; Lee, G.-H.; Liaw, W.-F. J. Am. Chem. Soc. 2004, 126, 8406-8412.
96. Chen, C.-H.; Lee, G.-H.; Liaw, W.-F. Inorg. Chem. 2006, 45, 2307-2316.
97. Lee, C.-M.; Chuang, Y.-L.; Chiang, C.-Y.; Lee, G.-H.; Liaw, W.-F. Inorg. Chem. 2006, 45, 10895-10904.
98. Lee, C.-M.; Chiou, T.-W.; Chen, H.-H.; Chiang, C.-Y.; Kuo, T.-S.; Liaw, W.-F. Inorg. Chem. 2007, 46, 8913-8923.
99. Hsieh, C.-H.; Hsu, I-J.; Lee, C.-M.; Ke, S.-C.; Wang, T.-Y.; Lee, G.-H.; Wang, Y.; Chen, J.-M.; Lee, J.-F.; Liaw, W.-F. Inorg. Chem. 2003, 42, 3925-3933.
100. Udpa, K. N.; Barker, S. Polyhedron 1987, 6, 627-631.
101. Bain, G. A.; Berry, J. F. J. Chem. Educ. 2008, 85, 532-536.
102. Sheldrick, G. M. SADABS, Siemens Area Detector Absorption Correction Program; University of Göttingen: Göttingen, Germany, 1996.
103. Sheldrick, G. M. SHELXTL, Program for Crystal Structure Determination; Siemens Analytical X-ray Instruments Inc.: Madison, WI, 1994.
104. (a) Hikichi, S.; Yoshizawa, M.; Sasakura, Y.; Akita, M.; Moro-oka, Y. J. Am. Chem. Soc. 1998, 120, 10567–10568. (b) Shiren, K.; Ogo, S.; Fujinami, S.; Hayashi, H.; Suzuki, M.; Uehara, A.; Watanabe, Y.; Moro-oka, Y. J. Am. Chem. Soc. 2000, 122, 254–262. (c) Mandimutsira, B. S.; Yamarik, J. L.; Brunold, T. C.; Gu, W.; Cramer, S. P.; Riordan, C. G. J. Am. Chem. Soc. 2001, 123, 9194–9195.
105. (a) Davidson, G.; Choudhury, S. B.; Gu, Z.; Bose, K.; Roseboom, W.; Albracht, S. P. J.; Maroney, M. J. Biochemistry 2000, 39, 7468–7479. (b) Gu, Z.; Dong, J.; Allan, C. B.; Choudhury, S. B.; Franco, R.; Moura, J. J. G.; Moura, I.; LeGall, J.; Przybyla, A. E.; Roseboom, W.; Albracht, S. P. J.; Axley, M. J.; Scott, R. A.; Maroney, M. J. J. Am. Chem. Soc. 1996, 118, 11155–11165. (c) Carepo, M.; Tierney, D. L.; Brondino, C. D.; Yang, T. C.; Pamplona, A.; Telser, J.; Moura, I.; Moura, J. J. G.; Hoffman, B. M. J. Am. Chem. Soc. 2002, 124, 281–286.
106. (a) Shaver, A.; McCall, J. M.; Bird, P. H.; Ansarl, N. Organometallics 1983, 2, 1894-1896. (b) Shaver, A.; Plouffe, P.-Y. Inorg. Chem. 1994, 33, 4327-4333.
107. (a) Rogers, R. D.; Veracini, C. A.; Vitali, D. Inorg. Chem. 1983, 22, 1797-1804. (b) Huang, K.-C.; Tsai, Y.-C.; Lee, G.-H.; Peng, S.-M.; Shieh, M.-H. Inorg. Chem. 1997, 36, 4421-4425. (c) Hatemata, S.; Sugiyama, H.; Sasaki, S.; Matsumoto, K. Inorg. Chem. 2002, 41, 6006-6012.
108. (a) Nicolet, Y.; Amara, P.; Mouesca, J.-M.; Fontecilla-Camps, J. C. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 14867–14871. (b) Bamford, V. A.; Bruno, S.; Rasmussen, T.; Appia-Ayme, C.; Cheesman, M.R.; Berks, M. C.;Hemmings, A. M. EMBO J. 2002, 5599–5610. (c) Ollagnier-de-Choudens, S.; Mulliez, E.; Fontecave, M. FEBS Lett. 2002, 532, 465–468. (d) Dey, A. Inorg. Chem. 2011, 50, 397-399. (e) Dey, A. Indian J. Chem. 2011, 50A, 498-502. (f) Mulhearn, D. C.; Bachrach, S. M. J. Am. Chem. Soc. 1996, 118, 9415-9421.
109. Huang, D.; Holm, R. H. J. Am. Chem. Soc. 2010, 132, 4693-4701.
110. Evans, W. J.; Seibel, C. A.; Ziller, J. W. Inorg. Chem. 1998, 37, 770-776.
111. (a) Castro-Rodriguez, I.; Nakai, H.; Meyer, K. Angew. Chem. Int. Ed. 2006, 45, 2389-2392. (b) Chang, C.-C.; Liao, M.-C.; Chang, T.-H.; Peng, S.-M.; Lee, G.-H. Angew. Chem. Int. Ed. 2005, 44, 7418-7420. (c) Phull, H.; Alberti, D.; Korobkov, I.; Gambarotta, S.; Budzelaar, P. H. M. Angew. Chem. Int. Ed. 2006, 45, 5331-5334. (d) Shulman, R. G.; Yafet, Y.; Eisenberger, P.; Blumberg, W. E. Proc. Natl Acad. Sci. USA 1976, 73, 1384–1388.
112. (a) Lunsford, J. H.; Jayne, J. P. J. Phys. Chem. 1965, 69, 2182-2184. (b) Sogabe, K.; Hasegawa, A.; Yamada, Y.; Miura, M. B. Chem. Soc. Jpn. 1972, 45, 3362-3366.
113. Edlund, O.; Sohma, J.; Sogabe, K. B. Chem. Soc. Jpn. 1974, 47, 3163-3164.
114. Kauffman, K. L.; Culp, J. T.; Allen, A. J.; Espinal, L.; Ng, W. W.; Brown, T. D.; Goodman, A.; Bernardo, M. P.; Pancoast, R. J.;Chirdon, D.; Matranga, C. Angew. Chem. Int. Ed. 2011, 50, ASAP.
115. Koppenol, W. H.; Rush, J. D. J. Phys. Chem. 1987, 91, 4429-4430.
116. Berry, J. F.; Bill, E.; Bothe, E.; George, S. D.; Mienert, B.; Neese, F.; Wieghardt, K. Science 2006, 312, 1937-1940.
117. Gerbino, D. C.; Hevia, E.; Morales, D.; Clemente, M. E. N.; Pérez, J.; Riera, L.; Riera, V.; Miguel, D. Chem. Commun. 2003, 328-329.
118. Ferm, R. J. Chem. Rev. 1957, 57, 621-640.
119. Franz, K. J.; Lippard, S. J. J. Am. Chem. Soc. 1998, 120, 9034-9040.
120. Kamyabi, M. A.; Asgari, Z.; Monfared, H. H. J. Solid State Electronchem. 2010, 14, 1547-1553.
121. Gutsev, G. L.; Bartlett, R. J.; Compton, R. N. J. Chem. Phys. 1998, 108, 6756-6762.
122. Breitzer, J. G.; Chou, J.-H.; Rauchfuss, T. B. Inorg. Chem. 1998, 37, 2080-2082.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *