帳號:guest(18.222.164.228)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃筱涵
作者(外文):Huang, Hsiao-Han
論文名稱(中文):探討奈米金粒於小片段干擾核苷酸之傳輸載體製備及其應用
論文名稱(外文):Study of the Au Nano-Particles as the Delivery Carriers of siRNA and their Application
指導教授(中文):薛敬和
指導教授(外文):Hsiue, Ging-Ho
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:9630506
出版年(民國):98
畢業學年度:97
語文別:中文
論文頁數:85
中文關鍵詞:奈米金粒子小片段干擾核苷酸藥物傳輸基因治療
外文關鍵詞:Gold nanoparticlesiRNADrug deliveryGene therapy
相關次數:
  • 推薦推薦:0
  • 點閱點閱:999
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
根據奈米金粒子的高電位、生醫影像的特性,適用於癌症治療藥物輸送上,並利用基因藥物的發展達到癌細胞毒殺之目的。因奈米金粒子不同形態所反映的光學的性質不同,並為獲得較好藥物傳遞、生物相容性和細胞吞噬效果,本研究將探討球狀(spherical)、桿狀奈米金粒子(NR),及金納米粒子尺徑的不同。製備結果,經由UV光譜儀、SEM、TEM作金粒子的尺徑及大小測定,可得球狀奈米金分別尺徑為13、32、40 nm;以及桿狀奈米金分別徑長比為2、2.5、3。再由生物性電泳了解與金粒子作為VEGF siRNA結合橋樑的寡去氧核苷酸(ODN)結合情形;進一步發展為VEGF siRNA於HeLa cell的VEGF蛋白抑制情形,由蛋白質電泳與西方點墨法測試。最後再以細胞流式儀與共軛焦顯微鏡觀測細胞吞噬造成的細胞行為影響。並由結果發現VEGF siRNA確實可造成癌細胞趨向於凋亡之途徑。
致謝
摘要
Abstract
目錄
圖目錄
表目錄
一、 研究背景與動機
二、 文獻回顧
三、 實驗方法
3-1、實驗藥品
3-2、實驗裝置
3-3、實驗步驟說明
3-3-1、球型奈米金粒子之製備
3-3-2、桿狀奈米金粒子之製備
3-3-3、奈米金粒子之特性波長測試
3-3-4、奈米金粒子之型態觀察與尺徑測量
3-3-5、奈米金粒子之表面電位測試
3-3-6、細胞相容性檢測
3-3-7、Au-ODNs/siRNA基因載體之製備方法
3-3-8、Au-ODNs之集結作用評估
3-3-9、Au-ODNs/siRNA之細胞抑制效果鑑定
3-3-10、Au-ODNs/siRNA於細胞行為之觀察
3-3-11、Au-ODNs/siRNA於細胞行為之鑑定
四、 實驗結果與討論
4-1、奈米金粒子之特性波長測試
4-2、奈米金粒子之型態觀察與尺徑測量
4-3、奈米金粒子之表面電位測試結果
4-4、細胞相容性檢測
4-5、Au-ODNs之集結作用評估結果
4-6、Au-ODNs/siRNA之細胞抑制效果鑑定結果
4-7、Au-ODNs/siRNA於細胞行為之觀察結果
4-8、Au-ODNs/siRNA於細胞行為之鑑定結果
五、 結論
參考資料
附錄
[1] R. Duncan, The Dawning Era of Polymer Therapeutics, Nature Reviews, (2003) 2:347-360.
[2] V. P. Torchilin, Targeted Pharmaceutical Nanocarriers for Cancer Therapy and Imaging, The American Association of Pharmaceutical Scientists Journal, (2007) 9: E128-E147.
[3] B. Alberts, D. Bray, K. Hopkin, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Essential Cell Biology, 2nd ed., New York: Garland Publishing, 2004.
[4] V. Sokolova, M. Epple, Inorganic Nanoparticles as Carriers of Nucleic Acids into cell, Angewandte Chemie International Edition, (2008) 47:1382-1395.
[5] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, 2nd ed., New York: Garland Publishing, 1989.
[6] S. D. Conner, S. L. Schmid, Regulated Portals of Entry into the Cell, Nature, (2003) 422:37-44.
[7] W. F. Anderson, Human Gene Therapy, Science, (1992) 256:808-813.
[8] M. R. Blaese, K. W. Culver, D. A. Miller, C. S. Carter, T. Fleisher, M. Clerici, G. Shearer, L. Chang, Y. Chiang, P. Tolstoshev, J. J. Greenblatt, S. A. Rosenberg, H. Klein, M. Berger, C. A. Mullen, J. W. Ramsey, L. Muul, R. A. Morgan, W. F. Anderson, T Lymphocyte-Directed Gene Therapy for DNA SCID Initial Trial Results After 4 Years, Science, (1995) 270:475-480.
[9] S. Boeckle, E. Wagner, Optimizing Targeted Gene Delivery Chemical Modification of Viral Vectors and Synthesis of Artificial Virus Vectors Systems, The American Association of Pharmaceutical Scientists Journal, (2006) 8:E731-E742.
[10] C. Nichol, E. E. Kim, Molecular Imaging and Gene Therapy, The Journal of Nuclear Medicine, (2001) 42:1368-1374.
[11] Z. P. Xu, Q. H. Zeng, G. Q. Lu, A. B. Yu, Inorganic Nanoparticles as Carriers for Efficient Cellular Delivery, Chemical Engineering Science, (2006) 61:1027-1040.
[12] M. M. Amiji, Polymeric Gene Delivery: Principles and Applications, 1st ed., U.S.: CRC press, 2004.
[13] P. Lehn, S. Fabrega, N. Oudrhiri, J. Navarro, Gene Delivery Systems Bridging the Gap between Recombinant Viruses and Artificial Vectors, Advanced Drug Delivery Reviews, (1998) 30:5–11.
[14] Y. C. Tseng , S. Mozumdar , L. Huang, Lipid-based Systemic Delivery of siRNA, Advanced Drug Delivery Reviews, (2009) 61:721-731.
[15] T. Herringson, J. G. Altin, Convenient Targeting of Stealth siRNA-lipoplexes to Cells with Chelator Lipid-Anchored Molecules, Journal of Controlled Release, (2009) article in press.
[16] A. M. Al-Abd, S. H. Lee, S. H. Kim, J. H. Cha, T. G. Park, S. J. Lee, H. J. Kuh, Penetration and Efficacy of VEGF siRNA Using Polyelectrolyte Complex Micelles in a Human Solid Tumor Model In-Vitro, Journal of Controlled Release, (2009) 137:130–135.
[17] W. H. Kong, D. K. Sung, Y. H. Shim, K. H. Bae, P. Dubois, T. G. Park, J. H. Kim, S. W. Seo, Efficient Intracellular siRNA Delivery Strategy Through Rapid and Simple Two Step Mixing involving Noncovalent Post-PEGylation, Journal of Controlled Release, (2009) article in press.
[18] K. D. Fisher, K. Ulbrich, V. Subr, C. M. Ward, V. Mautner, D. Blakey, L. W. Seymour, A Versatile System for Receptor-Mediated Gene Delivery Permits Increased Entry of DNA into Target Cells Enhanced Delivery to the Nucleus and Elevated Rates of Transgene Expression, Gene Therapy, (2000) 7:1337–1343.
[19] M. E.H. El-Sayed, A. S. Hoffman, P. S. Stayton, Rational Design of Composition and Activity Correlations for pH-Sensitive and Glutathione-Reactive Polymer Therapeutics, Journal of Controlled Release, (2005) 101:47–58.
[20] C. C. Mello, Return to the RNAi World: Rethinking Gene Expression and Evolution (Nobel Lecture), Cell Death and Differentiation, (2007) 14:2013–2020.
[21] A. Z. Fire, Gene Silencing by Double-Stranded RNA (Nobel Lecture) , Angewandte Chemie International Edition, (2007) 46:6966–6984.
[22] E. Fattal, A. Bochot, State of the Art and Perspectives for the Delivery of Antisense Oligonucleotides and siRNA, International Journal of Pharmaceutics, (2008) 364:237–248.
[23] K. Gao, L. Huang, Nonviral Methods for siRNA Delivery, Molecular Pharmaceutics, (2009) 6:651–658.
[24] J. Mei, Y. Gao, L. Zhang, X. Cai, Z. Qian, H. Huang, W. Huang, VEGF-siRNA Silencing Induces Apoptosis, Inhibits Proliferation and Suppresses Vasculoenic Mimicry in Osteosarcoma in Vitro , Experimental oncology, (2008) 30:29-34.
[25] J. Rossant, L. Howard, Signaling Pathways in Vascular Development, Annual Review of Cell and Developmental Biology, (2002) 18:541–73.
[26] E. Raskopf, A. Vogt, T. Sauerbruch, V. Schmitz, siRNA Targeting VEGF Inhibits Hepatocellular Carcinoma Growth and Tumor Angiogenesis In Vivo, Journal of Hepatology, (2008) 49:977-984.
[27] N. Murata, Y. Takashima, K. Toyoshima, M.Yamamoto, H.Okada, Anti-Tumor Effects of Anti-VEGF siRNA Encapsulated with PLGA Microspheres in Mice, Journal of Controlled Release, (2008) 126:246-254.
[28] S. Nie, Y. Xing, G. J. Kim, J. W. Simons, Nanotechnology Applications in Cancer, Annual Review of Biomedical Engineering, (2007) 9: 257-288.
[29] B. D. Chithrani, A. A. Ghazani, W. C. W. Chan, Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells, Nano Letters, (2006) 6:662-668.
[30] W. Cai, T. Gao, H. Hong, J. Sun, Applications of Gold Nanoparticles in Cancer Nanotechnology, Nanotechnology, Science and Applications, (2008) 1:17–32.
[31] N. M. Joseph, P. K. Sharma, Nanoparticle Drug Delivery System for Cancer Therapy, Asian Journal of Pharmaceutics, (2009) 2:139-140.
[32] N. R. Jana, L. Gearheart, C. J. Murphy, Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods, The Journal of Physical Chemistry B, (2001) 105, 4065-4067.
[33] Z. Wei, F. P. Zamborini, Directly Monitoring the Growth of Gold Nanoparticle Seeds into Gold Nanorods, Langmuir, (2004) 20:11301-11304.
[34] C. J. Johnson, E. Dujardin, S. A. Davis, C. J. Murphy, S. Mann, Growth and Form of Gold Nanorods Prepared by Seed-Mediated, Surfactant-Directed Synthesis, Journal of Materials Chemistry, (2002) 12; 1765–1770.
[35] P. L. Gai, M. A. Harmer, Surface Atomic Defect Structures and Growth of Gold Nanorods, Nano Letters, (2002) 2:771-774.
[36] B. Nikoobakht, M. A. El-Sayed, Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method, Chemistry of Materials, (2003) 15:1957-1962.
[37] C. Wang, J. Irudayaraj, Gold Nanorod Probes for the Detection of Multiple Pathogens, Small, (2008) 4:2204-2208.
[38] R. G. Shimmin, A. B. Schoch, P. V. Braun, Polymer Size and Concentration Effects on the Size of Au Capped by Polymeric Thiols, Langmuir, (2004) 20:5613-5620.
[39] T. B. Huff, M. N. Hansen, Y. Zhao, J. X. Cheng, A. Wei, Controlling the Cellular Uptake of Gold Nanorods, Langmuir, (2007) 23:1596-1599.
[40] J. S. Lee, J. J. Green, K. T. Love, J. Sunshine, R. Langer, D. G. Anderson, Gold, Poly(β-amino ester) Nanoparticles for Small Interfering RNA Delivery, Nano Letters, (2009) 9: 2402-2406.
[41] R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, M. J. Natan, Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates, Science, (1995)267:1629-1632.
[42] E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, M. D. Wyatt, Gold Nanoparticles Are Taken Up by Human Cells but Do Not Cause Acute Cytotoxicity, Small, (2005) 1: 325-327.
[43] A. Kohut, A. Voronov, W. Peukert, Organization of Functionalized Gold Nanoparticles by Controlled Protein Interactions, Particle & Particle Systems Characterization, (2005) 22: 329–335.
[44] C. M. Goodman, C. D. McCusker, T. Yilmaz, V. M. Rotello, Toxicity of Gold Nanoparticles Functionalized with Cationic and Anionic Side Chains, Bioconjugate Chemistry, (2004) 15: 897-900.
[45] S. H. Lee, K. H. Bae, S. H. Kim, K. R. Lee, T. G. Park, Amine- Functionalized Gold Nanoparticles as Non-Cytotoxic and Efficient Intracellular siRNA Delivery Carriers, International Journal of Pharmaceutics, (2008) 364: 94-101.
[46] D. Philip, Synthesis and Spectroscopic Characterization of Gold Nanoparticles, Spectrochimica Acta Part A , (2008) 71:80–85.
[47] J. Lin, Z. Guo, Surface Attraction and Chemistry of Gold Nanoparticles, Presented on The Class of Applications of Nanomaterials (MatE 297), Department of Chemical and Materials Engineering San Jose State University
[48] M. O. Sullivan, J. Green, T. Przybycien, Development of a Novel Gene Delivery Scaffold Utilizing Colloidal Gold–Polyethylenimine Conjugates for DNA Condensation, Gene Therapy (2003) 10:1882–1890.
[49] C. Novo, A. M. Funston, P. Mulvaney, Direct Observation of Chemical Reactions on Single Gold Nanocrystals Using Surface Plasmon Spectroscopy, Nature Nanotechnology, (2008) 3:598-602.
[50] J. J. Storhoff, A. D. Lucas, V. Garimella, Y. P. Bao, U. R. Müller, Homogeneous Detection of Unamplified Genomic DNA Sequences based on Colorimetric Scatter of Gold Nanoparticle Probes, Nature Biotechnology, (2004) 22:883-887.
[51] L. Gotloib, A. Shostak, Endocytosis and Transcytosis of Albumin Gold Through Mice Peritoneal Mesothelium, Kidney International, (1995) 47: 1274—1284
[52] F. Kim, J. H. Song, P. Yang, Photochemical Synthesis of Gold Nanorods, Journal of the American Chemical Society, (2002) 124: 14316-14317.
[53] S. Link, M. A. El-Sayed, Spectroscopic Determination of the Melting Energy of a Gold Nanorod, Journal of Chemical Physics, (2001) 114: 2362-2368.
[54] Y. S. S. Chang, C. L. Lee, C. R. C. Wang, Gold Nanorods: Electrochemical Synthesis and Optical Properties, The Journal of Physical Chemistry B, (1997) 101: 6661-6664.
[55] Jinxin Gao, Christopher M. Bender, Catherine J. Murphy, Dependence of the Gold Nanorod Aspect Ratio on the Nature of the Directing Surfactant in Aqueous Solution, Langmuir, (2003) 19:9065-9070.
[56] C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, T. Li, Anisotropic Metal Nanoparticles: Synthesis, Assembly, and Optical Applications, The Journal of Physical Chemistry B, (2005) 109: 13857-13870.
[57] T. K. Sau, C. J. Murphy, Seeded High Yield Synthesis of Short Au Nanorods in Aqueous Solution, Langmuir, (2004) 20: 6414-6420.
[58] T. B. Huff, L. Tong, Y. Zhao, M. N. Hansen, J. X. Cheng, A. Wei, Hyperthermic Effects of Gola Nanorods on Tumor Cells, Nanomedicine, (2007) 2:125-132.
[59] X. Kou, S. Zhang, C. K. Tsung, M. H. Yeung, Q. Shi, G. D. Stucky, L. Sun, J. Wang, C. Yan, Growth of Gold Nanorods and Bipyramids Using CTEAB Surfactant, The Journal of Physical Chemistry B, (2006) 110: 16377-16383.
[60] Y. Wang, S. Guo, H. Chen, E. Wang, Facile Fabrication of Large Area of Aggregated Gold Nanorods Film for Efficient Surface-Enhanced Raman Scattering, Journal of Colloid and Interface Science, (2008) 318:82–87.
[61] J. L. Li, L. Wang, X. Y. Liu, Z. P. Zhang, H. C. Guo, W. M. Liu, S. H. Tang, In Vitro Cancer Cell Imaging and Therapy Using Transferrin-Conjugated Gold Nanoparticles, Cancer Letters, (2009)274:319-326.
[62] T. S. Hauck, A. A. Ghazani, W. C. W. Chan, Assessing the Effect of Surface Chemistry on Gold Nanorod Uptake, Toxicity, and Gene Expression in Mammalian Cells, Small, (2008), 4:153-159.
[63] V. Milacic, Q. P. Dou, The Tumor Proteasome as a Novel Target for Gold(III) Complexes: Implications for Breast Cancer Therapy, Coordination Chemistry Reviews, (2009) 253:1649-1660.
[64] Danielle K. Smith, Brian A. Korgel, The Importance of the CTAB Surfactant on the Colloidal Seed-Mediated Synthesis of Gold Nanorods, Langmuir, (2008) 24:644-649.
(此全文限內部瀏覽)
電子全文
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *