帳號:guest(3.145.93.221)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳嬿羽
作者(外文):Chen, Yan-Yu
論文名稱(中文):使用第一原理精確計算Ar-CF4及CF4-CF4分子間勢能函數
論文名稱(外文):Accurate ab Initio Intermolecular Potentials for Ar-CF4 and CF4-CF4
指導教授(中文):張榮語
指導教授(外文):Chang, Rong-Yeu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:9630751
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:77
中文關鍵詞:第一原理分子間勢能基因演算法虛擬粒子勢能參數基底函數
相關次數:
  • 推薦推薦:0
  • 點閱點閱:343
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文的目的是探討使用不同的量子化學計算方法及不同的基底函數,比較計算分子間勢能的精確度。本篇論文使用的計算方法為MP2及CCSD(T),基底函數使用aug-cc-pVXZ (X= D, T, Q),其中最重要的是將計算加入Bond Function,比較有加入及沒加入Bond Function的計算結果,以證明使用Bond Function不僅能在較低的理論層級或較少的基底函數下仍可得到精準的計算結果,並且節省大量的時間。在計算的分子為氬與四氟化碳的分子間勢能的結果可驗證我們所要證明使用Bond Function可提升計算品質及減少計算時間。因此在計算四氟化碳與四氟化碳的分子間勢能時加入Bond Function。

在開始計算前,首先要先建立分子的結構,並改變分子間距離來進行計算。使用GAUSSIAN03計算得到結果並整理完後,再將計算所得到的數據與Buckingham Potential進行擬合,找出勢能參數,方可將使用量子化學計算結果應用在分子動力模擬。其中我們使用C++撰寫一個使用將非線性轉線性的方法來尋找適合的參數的程式,並且使用基因演算法優化先前的方法所找到的勢能參數。
The purpose of this research is to investigate the accuracy of the intermolecular potential energies, which were calculated with different quantum chemistry methods and basis sets. The quantum chemistry methods that were used in this research are MP2 and CCSD(T), and the basis sets are aug-cc-pVXZ (X= D, T, Q). The most important part of the calculating methods is to add bond function in the calculations, and therefore by comparing the results between calculations with and without bond function, this research proved that with the use of bond function in the calculation, we can improve the calculating results. In other words, even if we used lower theory levels or decreased the number of basis sets in the calculations, we can still acquire accurate results, and therefore save a large amount of time. By calculating the intermolecular potentials between argon and CF4, we may confirm the advantages of the use of bond function we have mentioned above. Hence, the bond function is also added when calculating the intermolecular potentials between CF4 and CF4.

Before the calculation started, the orientations of the molecules need to be built. Then, we calculated the intermolecular potential energies with different distances between molecules. The software we use to do the calculation is GAUSSIAN03. The results, which were based on different quantum chemistry methods and basis sets, were then compared and discussed. The calculated results were fitted with Buckingham Potential and the parameters of the Buckingham Potential were found by a program, which is built by C++ and based on an algorithm that is to transform a non-linear function into a linear one. The gene algorithm was used to improve the parameters we acquired by the previous program.
謝誌 II
摘要 III
Abstract IV
目錄 V
圖目錄 VII
表目錄 IX
第一章 緒論 1
1.1 前言 1
1.2 量子化學計算軟體—GAUSSIAN 4
1.3 研究動機 6
1.3.1 研究背景 6
1.3.2 自組裝單分子層 7
1.3.3 四氟化碳 (CF4) 8
第二章 研究方法 10
2.1 第一原理計算方法 11
2.1.1 Hartree-Fock Method 11
2.1.2 Møller–Plesset Perturbation Theory 17
2.1.3 Coupled Cluster Method 20
2.2 基底函數組 22
2.3 Basis Set Superposition Error及Counterpoise Method 27
2.4 Bond Function 29
2.5 Complete Basis Set Limit 30
2.6 分子計算的構型及理論 31
2.6.1 氬與四氟化碳 31
2.6.2 四氟化碳與四氟化碳 32
2.7 方程式的擬合 34
2.7.1 非線性轉線性擬合法 34
2.7.2 基因演算法 39
第三章 文獻回顧 41
3.1 甲烷與甲烷之分子間勢能的計算 41
3.2 氬與四氟化碳之分子間勢能的計算 44
3.3 惰性氣體與甲烷之分子間勢能的計算 48
第四章 結果與討論 52
4.1 氬與四氟化碳的分子間勢能 52
4.2 四氟化碳與四氟化碳的分子間勢能 64
第五章 結論與未來展望 73
Reference 74
1. 姚珩, 量子力學導論. 1994 光敏書局.
2. Cohen, S.R., R. Naaman, and J. Sagiv, Translational energy transfer from molecules and atoms to adsorbed organic monolayers of long-chain amphiphiles. Physical Review Letters, 1987. 58(Copyright (C) 2009 The American Physical Society): p. 1208.
3. Bosio, S.B.M. and W.L. Hase, Energy transfer in rare gas collisions with self-assembled monolayers. The Journal of Chemical Physics, 1997. 107: p. 10.
4. Yan, T., W.L. Hase, and J.R. Barker, Identifying trapping desorption in gas-surface scattering. Chemical Physics Letters, 2000. 329(1-2): p. 84-91.
5. Shuler, S.F., G.M. Davis, and J.R. Morris, Energy transfer in rare gas collisions with hydroxyl- and methyl-terminated self-assembled monolayers. The Journal of Chemical Physics, 2002. 116.
6. Ferguson, M.K., et al., Influence of Buried Hydrogen-Bonding Groups within Monolayer Films on Gas-Surface Energy Exchange and Accommodation. Physical Review Letters, 2004. 92(Copyright (C) 2009 The American Physical Society): p. 073201.
7. Alexander, W.A. and D. Troya. Theoretical Study of the Ar-, Kr-, and Xe-CH4, -CF4 Intermolecular Potential-Energy. J. Phys. Chem. A 2006 [cited 110; 10834-10843].
8. Mary E. Saecher , S.T.G., Daniel V. Kowalski, Machenzie E. King, and Gilbert M. Nathanson, Molecular Beam Scattering from Liquid Surfaces Science, 1991. 252: p. 1421.
9. Nathanson, M.E.K.a.G.M., Probing the microscopic corrugation of liquid surfaces with gas-liquid collisions. Physical Review Letters, 1993. 70.
10. K. D. Gibson, N.I., and S. J. Sibener Experiments and simulations of Ar scattering from an ordered 1-decanethiol–Au(111) monolayer. The Journal of Chemical Physics, 2003. 119.
11. Morris, B.S.D.a.J.R., Packing density and structure effects on energy-transfer dynamics in argon collisions with organic monolayers. The Journal of Chemical Physics, 2005. 122.
12. B. Scott Day, J.R.M., and Diego Troya Classical trajectory study of collisions of Ar with alkanethiolate self-assembled monolayers: Potential-energy surface effects on dynamics. The Journal of Chemical Physics, 2005. 122.
13. Crooks, V.C.a.R.M., Dendrimer-Encapsulated Pd Nanoparticles as Fluorous Phase-Soluble Catalysts. Journal of the American Chemical Society, 2000. 122.
14. U. Gross, G.P.a.S.R., Fluorocarbons as blood substitutes: critical solution temperatures of some perfluorocarbons and their mixtures Journal of Fluorine Chemistry, 1993. 61(1-2).
15. M. R. Morris, D.E.R., Jr. , B. E. Winger, R. G. Cooks, T. Ast and C. E. D. Chidsey, Ion/surface collisions at functionalized self-assembled monolayer surfaces International Journal of Mass Spectrometry and Ion Processes, 1992. 122.
16. Futrell, J.L.a.J.H., Energy transfer in collisions of peptide ions with surfaces. The Journal of Chemical Physics, 2003. 119: p. 3413.
17. Seiji Tsuzuki, T.U.a.K.T., Intermolecular interaction potentials of methane and ethylene dimers calculated with the Møller–Plesset, coupled cluster and density functional methods Chemical Physics Letters, 1998. 287(1-2).
18. A. D. Buckingham, P.W.F., Jeremy M. Hutson, Theoretical studies of van der Waals molecules and intermolecular forces. Chemical Reviews, 1988. 88.
19. J Sponer, P.H.-C.P.L., MP2 and CCSD (T) study on hydrogen bonding, aromatic stacking and nonaromatic stacking. Chemical Physics Letters, 1997. 267.
20. Seiji Tsuzuki, T.U.a.K.T., Basis set effects on the intermolecular interaction of hydrocarbon molecules obtained by an ab initio molecular orbital method: evaluation of dispersion energy Journal of Molecular Structure: THEOCHEM, 1994. 307.
21. Seiji Tsuzuki, K.T., Basis set effects on the intermolecular interaction energies of methane dimers obtained by the Moeller-Plesset perturbation theory calculation. J. Phys. Chem., 1991. 95.
22. 胡維平, 量子化學計算. 2009, 國立中正大學 化學暨生物化學系.
23. Chr. Møller, M.S.P., Note on an Approximation Treatment for Many-Electron Systems. Physical Review, 1934. 46: p. 5.
24. Angela K. Wilson, D.E.W., Kirk A. Peterson, and Thom H. Dunning Gaussian basis sets for use in correlated molecular calculations. IX. The atoms gallium through krypton. The Journal of Chemical Physics, 1999. 110.
25. Boys, S.F. and B. F., Mol. Phys., 1970. 19.
26. Tao, F.-M., Ab initio calculation of the interaction potential for the krypton dimer: The use of bond function basis sets. The Journal of Chemical Physics, 1999. 111(6): p. 2407-2413.
27. F-M., T., Bond functions, basis set superposition errors and other practical issues with ab initio calculations of intermolecular potentials. International Reviews in Physical Chemistry, 2001. 20: p. 27.
28. Fu-Ming Tao, Z.L.a.Y.-K.P., An accurate ab initio potential energy surface of He---H2O. Chemical Physics Letters, 1996. 255.
29. Fu-Ming, T., Notes on the use of bond functions for ab initio intermolecular energy calculations. Vol. 367. 1996, New York: Elsevier Science.
30. Tao, F.-M., The counterpoise method and bond functions in molecular dissociation energy calculations Chemical Physics Letters, 1993. 206(5-6): p. 560-564.
31. Tao, F.-M., The use of midbond functions for ab initio calculations of the asymmetric potentials of He-Ne and He-Ar. The Journal of Chemical Physics, 1993. 98.
32. Tao, F.-M., On the use of bond functions in molecular calculations. The Journal of Chemical Physics, 1993. 98.
33. Tao, F.-M., Ab initio potential energy curves and binding energies of Ar2 and Mg2 Mol. Phys., 1994. 81.
34. Tao, F.-M., Accurate ab initio potential energy surfaces of Ar–HF, Ar–H2O, and Ar–NH3. The Journal of Chemical Physics, 1994. 101.
35. Tao, F.-M., Ab initio potential energy surface for the HCl dimer. The Journal of Chemical Physics, 1995. 103.
36. Tao, F.-M., Ab initio search for the equilibrium structure of the ammonia dimer. The Journal of Chemical Physics, 1993. 99.
37. Peterson, K.A., D.E. Woon, and J.T.H. Dunning, Benchmark calculations with correlated molecular wave functions. IV. The classical barrier height of the H+H[sub 2] --> H[sub 2]+H reaction. The Journal of Chemical Physics, 1994. 100(10): p. 7410-7415.
38. Halkier, A., et al., Basis-set convergence in correlated calculations on Ne, N2, and H2O. Chemical Physics Letters, 1998. 286(3-4): p. 243-252.
39. Frisch, M.J.T., G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A. Gaussian 03, Revision C.02; Gaussian, Inc.: Wallingford, CT, 2004.
40. Vayner, G., et al., Ab Initio and Analytic Intermolecular Potentials for Ar-CF4. J. Phys. Chem. A, 2006. 110: p. 5.
41. Seiji Tsuzuki, T.U., Kazutoshi Tanabe, A new ab initio based model potential for methane. Chemical Physics Letters, 1998. 287.
42. Seiji Tsuzuki, T.U., Kazutoshi Tanabe, Satoru Kuwajima, Refinement of Nonbonding Interaction Potential Parameters for Methane on the Basis of the Pair Potential Obtained by MP3/6-311G(3d,3p)-Level ab Initio Molecular Orbital Calculations: The Anisotropy of H/H Interaction. The Journal of Physical Chemistry, 1994. 98.
43. East, A.L.L. and W.D. Allen, The heat of formation of NCO. The Journal of Chemical Physics, 1993. 99(6): p. 4638-4650.
44. Csaszar, A.G., W.D. Allen, and H.F. Schaefer Iii, In pursuit of the ab initio limit for conformational energy prototypes. The Journal of Chemical Physics, 1998. 108(23): p. 9751-9764.
45. Stuart Russell, P.N., Artificial Intelligence: A Modern Approach (2nd Edition). 2002 Prentice Hall.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *