帳號:guest(18.222.118.14)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳鑫錨
作者(外文):Chen, Hsin-Mao
論文名稱(中文):以流動觸媒法於直立管爐中製作單壁奈米碳管之最佳化分析及機制探討
指導教授(中文):戴念華
指導教授(外文):Tai, Nyan-Hwa
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:9631533
出版年(民國):98
畢業學年度:97
語文別:中文
論文頁數:103
中文關鍵詞:流動觸媒法單壁奈米碳管最佳化分析長條狀奈米碳管束
外文關鍵詞:floating catalyst methodsingle-walled carbon nanotubeoptimizationlong carbon nanotube strand
相關次數:
  • 推薦推薦:0
  • 點閱點閱:78
  • 評分評分:*****
  • 下載下載:19
  • 收藏收藏:0
本實驗在一直立熱壁式管爐中以流動觸媒法成長單壁奈米碳管絨球,依田口法L18直交表設計規劃實驗,取拉曼光譜之ID/IG比值做為單壁奈米碳管的品質因素,最後得到了一組最佳化參數;並由變異數分析得知於本製程中,爐管溫度對碳管品質的貢獻率最大,其次為催化劑腔體溫度,然而爐管內壓力的變化則對碳管的品質影響不大。以最佳化參數組合為條件,經驗證實驗成長之單壁奈米碳管,其ID/IG比值為0.02,與預測的最佳化結果十分接近。
接著利用此最佳化參數成長長條狀奈米碳管束,藉由數位相機觀察長條狀奈米碳管束的形成過程並加以記錄,以提出可能的成長模型。所成長之長條狀奈米碳管束其長度長於30 cm,寬度約為0.8 cm﹔由FE-SEM影像及Raman光譜可知其主要是由許多單壁奈米碳管束準直排列而形成。
In this work, we studied the optimization of the growth parameters for synthesizing high quality fluffy single-walled carbon nanotubes in a vertically hot-walled furnace using the floating catalyst method. Taguchi analytical method was used to set the processing parameters by L18 orthogonal array. The ID/IG ratios of the Raman spectrum was selected as the quality index of the as-synthesized SWCNTs, and the optimum condition of the seven parameters could be determined. Furthermore, the quantitated contribution of the processing parameters could be obtained by performing the analysis of variance (ANOVA). Although almost all the seven parameters affect the growth of SWCNTs, the reaction temperature and the sublimation temperature of ferrocene influence the quality most obviously. The furnace pressure seems to be of minor importance to the quality compared with the other factors. The SWCNT fluff synthesized using the optimized parameters achieved superior quality (the ID/IG ratio was 0.02), which was similar to the predicted results using the Taguchi method.
Moreover, we produced CNT long strand using the optimized parameters. In-situ observation was recorded with a digital camera to find a growth mechanism of the CNT long strand. The CNT long strand was longer than 30 cm with about 0.8 cm in width. FE-SEM and Raman spectrum revealed that it was mainly composed of single-walled CNT bundles with well alignment.
總目錄
頁次
摘要………………………………………………………………………I
英文摘要………………………………………………………………II
誌謝……………………………………………………………………III
總目錄…………………………………………………………………IV
表目錄…………………………………………………………………VII
圖目錄………………………………………………………………VIII
第一章 緒論……………………………………………………………1
1.1 簡介……………………………………………………………1
1.2 奈米碳管的結構與性質………………………………………2
1.3 奈米碳管的製程………………………………………………3
1.3.1 電弧放電法(arc-discharge)………………………………4
1.3.2 雷射剝蝕法(laser ablation) ……………………………4
1.3.3 化學氣相沉積法(chemical vapor deposition) ………5
1.4 田口分析法…………………………………………………6
1.5 研究動機…………………………………………………6
第二章 文獻回顧………………………………………………………15
2.1化學氣相沉積法製備奈米碳管………………………………15
2.1.1流動觸媒法………………………………………………15
2.1.2化學氣相沉積法製備單壁奈米碳管……………………17
2.1.2化學氣相沉積法製備雙壁奈米碳管……………………17
2.2催化劑顆粒大小對成長單壁奈米碳管的影響………………18
2.3奈米碳管的成長機制…………………………………………19
2.4田口分析法……………………………………………………22
2.5長條狀奈米碳管束……………………………………………25
第三章 研究方法與實驗步驟…………………………………………39
3.1 研究方法……………………………………………………39
3.2 實驗步驟……………………………………………………40
3.3 數據分析……………………………………………………41
3.3.1 變異數分析 (analysis of variance,ANOVA)…………41
3.3.2 最佳化預測………………………………………………43
3.4 實驗主要設備及分析儀器…………………………………43
3.4.1 垂直式CVD爐管系統…………………………………43
3.4.2 數位相機………………………………………………43
3.4.3 掃描式電子顯微鏡……………………………………44
3.4.4 拉曼光譜儀……………………………………………44
3.4.5 穿透式電子顯微鏡………………………………………46
第四章 結果與討論……………………………………………………52
4.1垂直式流動觸媒法成長單壁奈米碳管………………………52
4.1.1製程參數設計……………………………………………53
4.1.2拉曼光譜ID/IG值之田口法分析…………………………55
4.1.3變異數分析………………………………………………57
4.1.4因子交互作用分析………………………………………58
4.1.5最佳化參數確認實驗……………………………………58
4.1.6最佳化參數成長碳管之結構分析………………………60
4.2垂直式流動觸媒法成長長條狀奈米碳管束…………………61
4.2.1長條狀奈米碳管束之形成………………………………62
4.2.2長條狀奈米碳管束之形貌與結構分析…………………63
4.2.3長條狀奈米碳管束之成長模型…………………………64
第五章 結論……………………………………………………………97
第六章 參考文獻………………………………………………………99

表目錄
頁次
表2-1 不同反應溫度對雙壁奈米碳管產量的影響………………27
表3-1 單壁奈米碳管拉曼光譜各模式之相關波數表………………47
表4-1 實驗之控制因子及其水準表…………………………………66
表4-2拉曼分析ID/IG數據表…………………………………………66
表4-3 L18直交表、ID/IG ratio平均值及S/N ratio表………………67
表4-4製程參數S/N ratio回應表……………………………………67
表4-5變異數分析(ANOVA)表………………………………………68
表4-6因子A與B的交互作用表……………………………………68
表4-7因子A與F的交互作用表……………………………………68
表4-8因子B與F的交互作用表……………………………………68
表4-9最佳化參數組合表……………………………………………69

圖目錄
頁次
圖1-1四種不同碳結構圖 (a)鑽石 (b)C60 (c)石墨 (d)奈米碳管……8
圖1-2奈米碳管之三種不同結構圖……………………………………8
圖1-3奈米碳管向量結構圖……………………………………………9
圖1-4電弧放電法裝置示意圖…………………………………………10
圖1-5電弧放電法所得到奈米碳管之HRTEM影像…………………10
圖1-6雷射剝蝕法裝置圖………………………………………………11
圖1-7垂直雷射剝蝕法裝置圖…………………………………………11
圖1-8不同雷射源脈衝時間成長之單壁奈米碳管HRTEM影像……12
圖 1-9化學氣相沉積法裝置示意圖…………………………………13
圖 1-10流動觸媒法裝置示意圖………………………………………13
圖1-11化學氣相沉積法成長之單壁奈米碳管SEM及TEM影像
………………………………………………………………14
圖2-1流動觸媒法裝置示意圖………………………………………28
圖2-2賽吩莫耳分率對碳管直徑的影響……………………………28
圖2-3流動觸媒法成長之單壁奈米碳管TEM圖…………………29
圖2-4添加硫粉成長之雙壁奈米碳管TEM圖……………………30
圖2-5乙炔分壓對碳管產率的影響…………………………………30
圖2-6單壁奈米碳管的TEM圖……………………………………31
圖2-7單壁奈米碳管之拉曼光譜……………………………………31
圖2-8雙壁奈米碳管的TEM圖………………………………………32
圖2-9雙壁奈米碳管之拉曼光譜圖……………………………………32
圖2-10催化劑顆粒與碳管直徑的AFM影像分析圖…………………33
圖2-11單壁奈米碳管與催化劑顆粒直徑分布間的關係……………33
圖2-12 固-液-固 單壁奈米碳管成長機制示意圖…………………34
圖2-13碳經由催化劑擴散成長機制示意圖…………………………34
圖2-14碳經由催化劑表面擴散機制示意圖…………………………35圖2-15(A)底部成長機制示意圖 (B)頂端成長機制示意圖…………35
圖2-16奈米碳管頂端成長機制之成長示意圖………………………36
圖2-17 旋轉軸收集碳管示意圖……………………………………37
圖2-18 爐管內旋轉軸收集奈米碳管的示意圖………………………37
圖2-19 奈米碳管取用方式及應用……………………………………38
圖3-1垂直式爐管裝置示意圖……………………………………48
圖3-2 (a)垂直式爐管裝置圖 (b)液態碳源裝置圖……………………48
圖3-3爐管上方之玻璃視窗裝置圖…………………………………49
圖3-4 JEOL JSM 6500F場發射掃描式電子顯微鏡…………………49
圖3-5 LabRam HR800 微拉曼系統…………………………………50
圖3-6單壁奈米碳管之拉曼光譜……………………………………50
圖3-7 JEOL JEM-2010 穿透式電子顯微鏡…………………………51
圖4-1 爐管溫度1000℃成長之FESEM影像…………………………70
圖4-2 爐管溫度1050℃成長之FESEM影像…………………………70
圖4-3 參數因子回應圖………………………………………………70
圖4-4因子A與B的交互作用圖……………………………………71
圖4-5因子A與F的交互作用圖……………………………………71
圖4-6因子B與F的交互作用圖……………………………………71
圖4-7 最佳化製程反應前爐管內部之影像圖………………………72
圖4-8 最佳化製程不同時間點所拍攝的影像圖……………………72
圖4-9 最佳化製程不同持溫時間點所拍攝的影像圖………………72
圖4-10 最佳化製程結束,爐管內軸向不同高度之影像圖…………76
圖4-11 (a)單壁奈米碳管絨球沉積位置影像 (由爐管頂端往下拍攝) (b)最佳化製程成長之單壁奈米碳管絨球………………………………76
圖4-12單壁奈米碳管之FESEM影像 (a)低倍率 (b)高倍率………77
圖4-13單壁奈米碳管之Raman光譜圖………………………………77
圖4-14單壁奈米碳管之HRTEM影像………………………………78
圖4-15 長100 cm氧化鋁棒黏附於垂直爐管壁上的影像圖………81
圖4-16成長長條狀碳管不同時間點所拍攝的影像圖………………81
圖4-17 持溫10 min後爐管內部的影像………………………………83
圖4-18 氧化鋁棒斜放在垂直爐管中的影像圖………………………83
圖4-19 成長長條狀碳管不同時間點所拍攝的影像圖………………84
圖4-20 成長長條狀奈米碳管不同持溫時間點所拍攝的影像圖……85
圖4-21 持溫10 min後爐管內部的影像………………………………86
圖4-22 長35 cm氧化鋁棒黏附於上端垂直爐管壁上………………86
圖4-23 成長長條狀碳管不同時間點所拍攝的影像圖………………86
圖4-24 成長長條狀奈米碳管不同持溫時間點所拍攝的影像圖……88
圖4-25 持溫10 min後爐管內部的影像………………………………88
圖4-26 長35 cm氧化鋁棒黏附於下端垂直爐管壁上………………89
圖4-27成長碳管不同時間點所拍攝的影像圖………………………89
圖4-28 成長奈米碳管不同持溫時間點所拍攝的影像圖……………91
圖4-29 全長100 cm之氧化鋁棒(上端吸附之長條狀奈米碳管束與下端沉積之團狀奈米碳管)………………………………………………92
圖4-30 (a)長條狀奈米碳管束 (b)附著在氧化鋁棒上之奈米碳管束(c)長條狀奈米碳管束沿著軸向容易撕成許多細小管束……………93
圖4-31 (a)長條狀奈米碳管束全長約30~35 cm(b)氧化鋁棒底部的奈米碳管……………………………………………………………………93
圖4-32 (a)長條狀部分重量約36.5 mg (b)底部碳管重量約22.4 mg…94
圖4-33 (a)加入長35 cm氧化鋁棒所形成之碳管 (b)重量約49 mg……………………………………………………………………94
圖4-34 長條狀奈米碳管束之FESEM影像 (a)低倍率 (b)高倍率………………………………………………………………………94
圖4-35 長條狀奈米碳管束之FESEM影像 (a)低倍率 (b)高倍率………………………………………………………………………95
圖4-36 長條狀奈米碳管之Raman光譜圖 (a)全圖譜 (b)RBM mode……………………………………………………………………95
圖4-37圖4-37 氧化鋁棒底部團狀奈米碳管之FESEM影像
(a)低倍率 (b)高倍率…………………………………………………95
圖4-38 底部奈米碳管之Raman光譜圖 (a)全圖譜 (b)RBM mode……………………………………………………………………96
圖4-39 長條狀奈米碳管束之形成示意圖……………………………96
1. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, “C60: Buckminsterfullerence”, Nature, 318, pp162~163, (1985)
2. S. Iijima,“Helical microtubules of graphitic carbon”, Nature, 354, pp56~58, (1991)
3. Rice University: R.E. Smalley’s Group Home Page Image Gallery (http://cohesion.rice.edu/naturalsciences/smalley/emplibrary/allotropes.jpg)
4. M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, “Science of Fullerenes & Carbon Nanotubes”, San Diego: Academic Press, (1996)
5. M.S. Dresselhaus, G. Dresselhaus, R. Saito, “Physics of carbon nanotubes”, Carbon, 33, pp883~891, (1995)
6. N. Hanada, S. Sawada, A. Oshiyama, “New One-dimensional conductor microtubles”, Physical Review Letters, 68, pp1579~1581, (1992)
7. J. Mintmire, B. Dunlap, C. White, “Are Fullerene Tubles Metallic? ”, Physical Review Letters, 68, pp631~634, (1992)
8. R. Saito, M. Fujita, G. Dresselhaus, “Physical Properties of Carbon Nanotubes”, Imperial College, (1998)
9. B. Ranadeep, M. Bruce, A. Brett, “Parametric analysis of chirality families and diameter distributions in single-wall carbon nanotube production by the floating catalyst method”, Carbon, 46, pp907~922, (2008)
10. Y. Saito, S. Uemura, “Field emission from carbon nanotubes and its application to electron sources”, Carbon, 38, pp169~182, (2000)
11. S. Iijima, T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter”, Nature, 363, pp603~605, (1993)
12. T. Guo, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley, “Catalytic growth of single-walled nanotubes by laser vaporization”, Chemical Physics Letters, 243, pp49~54, (1995)
13. W.K. Master, E. Munoz, M.T. Martinez, A.M. Benito, G.F. de la Fuente, “Study of parameters important for the growth of single wall carbon nanotubes”, Optical Materials, 17, pp331~334, (2001)
14. M. Yudasaka, T. Ichihashi, T. Komatsu, S. Iijima, “Single-wall carbon nanotubes formed by a single laser-beam pulse”, Chemical Physics Letters, 299, pp91~96, (1999)
15. A.C. Dillon, P.A. Parilla, J.L. Alleman, J.D. Perkins, M.J. Heben, “Controlling single-wall nanotube diameters with variation in laser pulse power”, Chemical Physics Letters, 316, pp13~18, (2000)
16. H.M. Cheng, F. Li, G. Su, H.Y. Pan, L.L. He, X. Sun, M.S. Dresselhaus, “Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons”, Applied Physics Letters, 72, pp3282~3284, (1998)
17. C. Bower, W. Zhu, S.H. Jin and O. Zhou, “Plasma-induced alignment of carbon nanotubes”, Applied Physics Letters, 77, pp830~832, (2000)
18. M. Okai, T. Muneyoshi, T. Yaguchi, S. Sasaki, “Structure of carbon nanotubes grown by microwave-plasma-enhanced chemical vapor deposition”, Applied Physics Letters, 77, pp3468~3470, (2000)
19. Z.P. Huang, J.W. Xu, Z.F. Ren, J.H. Wang, M.P. Siegal, P.N. Provencio, “Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition”, Applied Physics Letters, 73, pp3845~3847, (1998)
20. G. Taguchi (Yuin Wu, technical editor for the English edition) , “Taguchi Methods / Design of Experiments”, Dearborn MI / ASI Press, Tokyo
21. H.J. Dai, A.G. Rinzler, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley, “Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide”, Chemical Physics Letters, 260, pp471~475, (1996)
22. J. Kong, A.M. Cassell, H.J. Dai, “Chemical vapor deposition of methane for single-walled carbon nanotubes”, Chemical Physics Letters, 292, pp567~574, (1998)
23. J.H. Hafner, M.J. Bronikowski, B.R. Azamian, P. Nikolaev, A.G. Rinzler, D.T. Colbert, K.A. Smith, R.E. Smalley, “Catalytic growth of single-wall carbon nanotubes from metal particles”, Chemical Physics Letters, 296, pp195~202, (1998)
24. R. Sen, A. Govindaraj, C.N.R. Rao, “Carbon nanotubes by the metallocene route”, Chemical Physics Letters, 267, pp276~280, (1997)
25. H.M. Cheng, F. Li, X. Sun, S.D.M. Brown, M.A. Pimenta, A. Marucci, G. Dresselhaus, M.S. Dresselhaus, “Bulk morphology and diameter distribution of single-walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons”, Chemical Physics Letters, 289, pp602~610, (1998)
26. L.J. Ci, J.Q. Wei, B.Q. Wei, J. Liang, C. Xu, D.H. Wu, “Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method”, Carbon, 39, pp329~335, (2001)
27. G.G. Tibbetts, C.A. Bernardo, D.W. Gorkiewicz, R.L. Alig, “Role of sulfur in the production of carbon fibers in the vapor phase”, Carbon, 32, pp569~576, (1994)
28. S.S. Xie, L. Song, L.J. Ci, Z.P. Zhou, X.Y. Dou, W.Y. Zhou, G. Wang, L.F. Sun, “Controllable preparation and properties of single-/double-walled carbon nanotubes”, Science and Technology of advanced materials, 6, pp725~735, (2005)
29. L.J. Ci, S.S. Xie, D.S. Tang, X.Q. Yan, Y.B. Li, Z.Q. Liu, X.O. Zou, W.Y. Zhou, G. Wang, “Controllable growth of single wall carbon nanotubes by pyrolizing acetylene on the floating iron catalysts”, Chemical Physics Letters, 349, pp191~195, (2001)
30. S. Bandow, S. Asaka, Y. Saito, A.M. Rao, L. Grigorian, E. Richter, P.C. Eklund, “Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes”, Physical Review Letters, 80, pp3779~3782, (1998)
31. J.S. Qiu, Y.L. An, Z.B. Zhao, Y.F. Li, Y. Zhou, “Catalytic synthesis of single-walled carbon nanotubes from coal gas by chemical vapor deposition method”, Fuel Processing Technology, 85, pp913, (2004)
32. M. Endo, H. Muramatsu, T. Hayashi, Y.A. Kim, M. Terrones, M.S. Dresselhaus, “Buckypaper from coaxial nanotubes”, Nature, 433, pp476, (2005)
33. S.C. Lyu, B.C. Liu, S.H. Lee, C.Y. Park, H.K. Kang, C.W. Yang, C.J. Lee, “Large-scale synthesis of high-quality double-walled carbon nanotubes by catalytic decomposition of n-Hexane”, Journal of Physical Chemistry B, 108, pp2192, (2004)
34. Z.P. Zhou, L.J. Ci, X.H. Chen, D.S. Tang, X.Q. Yan, D.F. Liu, Y.X. Liang, H.J. Yuan, W.Y. Zhou, G. Wang, S.S. Xie, “Controllable growth of double wall carbon nanotubes in a floating catalytic system”, Carbon, 41, pp337, (2003)
35. S.C. Lyu, B.C. Liu, C.J. Lee, “High-Quality Double-Walled Carbon Nanotubes Produced by Catalytic Decomposition of Benzene”, Chemistry of Materials, 15, pp3951, (2003)
36. B.C. Liu, S.C. Lyu, T.J. Lee, S.K. Choi, S.J. Eum, C.W. Yang, C.Y. Park, C.J. Lee, “Synthesis of single- and double-walled carbon nanotubes by catalytic decomposition of methane”, Chemical Physics Letters, 373, pp475, (2003)
37. Y. Kobayashi, H. Nakashima, D. Takagi, Y. Homma, “CVD growth of single-walled carbon nanotubes using size-controlled nanoparticle catalyst”, Thin Solid Films, 464-465, pp286, (2004)
38. S. Sun, H. Zeng, “Size-Controlled Synthesis of Magnetite Nanoparticles”, Journal of the American Chemical Society, 124, pp8204, (2002)
39. M. Endo, H.W. Kroto, “Formation of carbon nanofibers”, Journal of Physical Chemistry, 96, pp6941, (1992)
40. A. Gorbunov, O. Jost, W. Pompe, “Solid-liquid-solid growth mechanism of single-wall carbon nanotubes”, Carbon, 40, pp113, (2002)
41. R.T.K. Baker, J.J. Chludzinski, “Filamentous carbon growth on nickel-iron surfaces-the effect of various oxide additives”, Journal of Catalysis, 64, pp464, (1980)
42. A. Oberlin, M. Endo, T. Koyama, “Filamentous growth of carbon through benzene decomposition”, Journal of Crystal Growth, 32, pp335~349, (1976)
43. T. Baird, J.R. Fryer, B. Giant, “Carbon formation on iron and nickel foils by hydrocarbon pyrolysis-reactions at 700 degreesc”, Carbon, 12, pp591, (1974)
44. R.T.K. Baker, P.S. Harries, M. Dekker, “Chemistry and Physics of Carbon”, New York 83, (1978)
45. Y.J. Yoon, H.K. Baik, “Catalytic growth mechanism of carbon nanofibers through chemical vapor deposition”, Diamond and related materials, 10, pp1214~1217, (2001)
46. 李輝煌,「田口方法/品質設計的原理與實務」(Taguchi method/principles and practices of quality design),高立圖書有限公司,中華民國八十九年
47. H.W. Zhu, C.L. Xu, D.H. Wu, B.Q. Wei, R. Vajtai, P.M. Ajayan, “Direct Synthesis of Long Single-Walled Carbon Nanotube Strands”, Science, 296, pp884~886, (2002)
48. Z.W. Pan, S.S. Xie, B.H. Chang, C.Y. Wang, L. Lu, W. Liu, W. Y. Zhou, W. Z. Li, L. X. Qian, “Very long carbon nanotubes”, Nature, 394, pp631~632, (1998)
49. C. Liu, H.M. Cheng, H.T. Cong, F.Li, G. Su, B.L. Zhou, and M.S. Dresselhaus, “Synthesis of Macroscopically Long Ropes of Well-Aligned Single-Walled Carbon Nanotubes”, Advanced Materials, 12, pp1190~1192, (2000)
50. Y.L. Li, I.A. Kinloch, A.H. Windle, “Direct Spinning of Carbon Nanotube Fibers from Chemical Vapor Deposition Synthesis”, Science, 304, pp276~278, (2004)
51. 蘇朝墩,「品質工程」,中華民國品質學會,中華民國九十一年
52. M.S. Dresselhaus, G. Dresselhaus, A. Jorio, A.G. Souza Filho, R. Saito, “Raman spectroscopy on isolated single wall carbon nanotubes”, Carbon, 40, pp2043~2061, (2002)
53. 丁志華、戴寶通,「田口實驗計畫法簡介(1)(2) 」,毫微米通訊,第八卷,第四期,中華民國九十年
54. 梁家榮,「原位即時觀察單壁奈米碳管薄膜成長過程之研究」,國立清華大學材料科學工程研究所碩士論文,中華民國九十七年七月
55. Q.F. Liu, W.C. Ren, Z.G. Chen, B.L. Liu, B. Yu, F. Li, H.T. Cong, H.M. Cheng, “Direct synthesis of carbon nanotubes decorated with size-controllable Fe nanoparticles encapsulated by graphitic layers”, Carbon, 46, pp1417~1423, (2008)
56. Q.F. Liu, Z.G. Chen, B.L., W.C. Ren, F. Li, H.T. Cong, H.M. Cheng, “Synthesis of different magnetic carbon nanostructures by the pyrolysis of ferrocene at different sublimation temperatures”, Carbon, 46, pp1892~1902, (2008)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *