帳號:guest(52.15.70.191)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝明穎
論文名稱(中文):以熱蒸鍍法製備摻雜錫之氧化銦奈米線及其光電性質研究
論文名稱(外文):Study on the Synthesis, Optical and Electrical Properties of Tin-Doped Indium Oxide Nanowires by Thermal Evaporation Method
指導教授(中文):林樹均
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:9631536
出版年(民國):98
畢業學年度:97
語文別:中文
論文頁數:86
中文關鍵詞:氧化銦錫奈米線熱蒸鍍法
相關次數:
  • 推薦推薦:0
  • 點閱點閱:350
  • 評分評分:*****
  • 下載下載:7
  • 收藏收藏:0
本實驗以純銦及純錫粉末作為來源粉末,並使用高溫水平爐管為加熱源,通入Ar (90%) + H2 (10%)為載氣,成功藉由熱蒸鍍法在鍍金之矽基板上成長得到均勻且高密度的氧化銦錫奈米線。實驗結果顯示,高溫段為600°C的三段持溫製程為目前的最佳製程條件,且在接近來源粉末的高溫區,能得到較低溫區更高密度且均勻的奈米線。藉由GIAXRD與TEM的繞射點及高解析影像分析,可確認600°C及650°C製程所得之氧化銦錫奈米線為單晶的氧化銦結構。本實驗的奈米線析出機制為VLS機制,奈米線體為摻雜少量錫之氧化銦,奈米線末端有催化顆粒,其成分由金、銦、錫、氧所組成。本實驗製程所得之氧化銦錫奈米線的電阻率約在103 μΩ等級,符合導體的電性標準。在光譜分析部分,氧化銦錫奈米線對可見光的穿透率約為50 ∼ 60%,並在375 nm及585 nm波長位置有兩個吸收峰值,分別是由氧化銦錫本身的能隙及表面的氧空缺所造成。
目錄
一、前言 1
二、文獻回顧 2
2-1 一維(1-D)奈米結構之定義與發展 2
2-2 奈米線的合成方法 3
2-3 奈米線的成長機制 10
2-4 氧化銦錫奈米線 16
2-4-1 氧化銦錫奈米線的製備 16
2-4-2 氧化銦錫結構 16
2-4-3 氧化銦錫電學性質 17
2-4-4 氧化銦錫光學性質 18
2-4-5 氧化銦錫的應用 19
三、實驗方法 22
3-1 實驗流程 22
3-1-1 銦錫混合粉末配置 22
3-1-2 濺鍍薄膜的製備 23
3-1-3 奈米線的合成 23
3-2奈米線結構分析、成分分析與性質量測 28
3-2-1 場發射掃描式電子顯微鏡 28
3-2-2 穿透式電子顯微鏡 29
3-2-3 能量散射光譜儀 29
3-2-4 低掠角X-ray繞射儀 30
3-2-5 聚焦離子束與電子束顯微系統 30
3-2-6 半導體參數量測儀 31
3-2-7 陰極射線激發螢光光譜 31
3-2-8 紫外光-可見光光譜儀 32
四、結果與討論 33
4-1 製程溫度對成長奈米線的影響 33
4-2 沈積位置對成長奈米線的影響 39
4-3 奈米線微結構分析與成分分析 43
4-4 奈米線成長機制的探討 52
4-4-1 金膜對成長奈米線的影響 52
4-4-2 三段持溫過程對成長奈米線的影響 53
4-4-3 氧化銦錫奈米線析出機制探討 54
4-5 奈米線的電性量測 64
4-6 奈米線的CL光譜分析 73
4-7 奈米線的透光性質量測 76
五、結論 80
六、未來研究方向 82
七、參考文獻 83
參考文獻
1. H. S. Nalwa (ed.), “Handbook of Nanostructured Materials and Nanotechnology”, Academic Press (2000).
2. V. M. Shalaev and M. Moskovits (eds.), “Nanostructured Materials: Clusters, Composites, and Thin Films”, American Chemical Society, Washington, DC, (1997).
3. A. S. Edelstein and R. C. Cammarata (eds.), “Nanomaterials: Synthesis, Properties and Applications”, Institute of Physics, UK, (1996).
4. M. G. Bawendi, M. L. Steigerwald, L. E. Brus, “The Quantum-Mechanics of Larger Semiconductor Clusters”, Annual Review of Physical Chemistry, 41 (1990) 477.
5. S. Iijima, “Helical Microtubules of Graphitic Carbon”, Nature, 354 (1991) 56.
6. Y. Qin, X. Wang, and Z. L. Wang, “Microfibre-Nanowire Hybrid Structure for Energy Scavenging”, Nature, 451 (2008) 809.
7. C. R. Martin, “Nanomaterials: A Membrane-Based Synthetic Approach”, Science, 266 (1994) 1961.
8. C. G. Wu, and T. Bein, “Conducting Carbon Wires in Ordered, Nanometer-Sized Channels”, Science, 266 (1994) 1013.
9. B. Gates, Y. Wu, Y. Yin, P. Yang, and Y. Xia, “Single-Crystalline Nanowires of Ag2Se Can Be Synthesized by Templating against Nanowires of Trigonal Se”, Journal of the American Chemical Society, 123 (2001) 11500.
10. B. Gates, Y. Yin, and Y. Xia, “A Solution-Phase Approach to the Synthesis of Uniform Nanowires of Crystalline Selenium with Lateral Dimensions in the Range of 10-30 nm”, Journal of the American Chemical Society, 122 (2000) 12582.
11. S. T. Lee, N. Wang, and C. S. Lee, “Semiconductor Nanowires: Synthesis, Structure and Properties”, Materials Science and Engineering A, 286 (2000) 16.
12. N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, I. Bello, and S. T. Lee, “Si Nanowires Grown from Silicon Oxide”, Chemical Physics Letters, 299 (1999) 237.
13. D. B. Yu, D. B. Wang, W. C. Yu, and Y. T. Qian, “Synthesis of ITO Nanowires and Nanorods with Corundum Structure by a Co-Precipitation-Anneal Method”, Materials Letters, 58 (2003) 84.
14. X. S. Peng, G. W. Meng, X. F. Wang, Y. W. Wang, J. Zhang, X. Liu,
and L. D. Zhang, “Synthesis of Oxygen-Deficient Indium-Tin-Oxide (ITO) Nanofibers, Chemistry of Materials”, 14 (2002) 4490.
15. Y Q Chen, J Jiang, B Wang, and J G Hou, “Synthesis of Tin-Doped Indium Oxide Nanowires by Self-Catalytic VLS Growth”, Journal of Physics D: Applied Physics, 37 (2004) 3319.
16. S. Y. Li, C. Y. Lee, P. Lin, and T. Y. Tseng, “Low Temperature Synthesized Sn Doped Indium Oxide Nanowires”, Nanotechnology, 16 (2005) 451.
17. Q. Wan, M. Wei, D. Zhi, J. L. MacManus-Driscoll, and M. G. Blamire, “Epitaxial Growth of Vertically Aligned and Branched Single-Crystalline Tin-Doped Indium Oxide Nanowire Arrays”, Advanced Materials, 18 (2006) 234.
18. G. W. Sears, “A Growth Mechanism for Mercury Whiskers”, Acta Metallurgica, 3 (1955) 361.
19. Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of Semiconducting Oxides”, Science, 291 (2001) 1947.
20. R. S. Wagner, and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth”, Applied Physics Letters, 4 (1964) 89.
21. R. S. Wagner, W. C. Ellis, K. A. Jackson, and S.M. Arnold, “Study of the Filamentary Growth of Silicon Crystals from the Vapor”, Journal of Applied Physics, 35 (1964) 2993.
22. A. P. Levitt, “Whisker Technology”, Wiley–Interscience, New York, (1970).
23. Y. Wu, and P. Yang, “Direct Observation of Vapor-Liquid-Solid Nanowire Growth”, Journal of the American Chemical Society, 123 (2001) 3165.
24. Joint Committee on Powder Diffraction Standards (JCPDS), Card no.06–0416
25. http://hi.baidu.com/gskbs/blog/item/21a4f21b9373ded6ac6e7521.html
26. H. Binczycka, M. Uhrmacher, M. L. Elidrissi–Moubtassim, J. C. Jumas, and P. Schaaf, “Hyperfine Interactions and Site Occupancy in Sn-Doped In2O3 (ITO) ”, Physica Status solidi (b), 242 (2005) 1100.
27. G. Frank, H. Köstlin, and A. Rabenau, “X-Ray and Optical Measurements in the In2O3-SnO2 System”, Physica Status Solidi (a), 52 (1979) 231.
28. R. B. H. Tahar, T. Ban, Y. Ohya, and Y. Takahashi, “Tin Doped Indium Oxide Thin Films: Electrical Properties”, Journal of Applied Physics, 83 (1998) 2631.
29. L. Gupta, A. Mansingh and P. K. Srivastava, “Band Gap Narrowing and the Band Structure of Tin-Doped Indium Oxide Films”, Thin Solid Films, 176 (1989) 33.
30. J. C. Manifacier, “Thin Metallic Oxides as Transparent Conductors”, Thin Solid Films, 90 (1982) 297.
31. C. G. Granqvist and A. Hultaker, “Transparent and Conducting ITO Films: New Developments and Applications”, Thin Solid Films, 411 (2002) 1.
32. X. Y. Xue, Y. J. Chen, Y. G. Liu, S. L. Shi, Y. G. Wang, and T. H. Wang, “Synthesis and Ethanol Sensing Properties of Indium-Doped Tin Oxide Nanowires”, Applied Physics Letters, 88 (2006) 201907.
33. ASM Metals Handbook, Vol 03 Alloy Phase Diagrams.
34. 莊惠芳, “氧化銦錫奈米線製備及單根奈米線電性研究”, 國立清華大學工程與系統科學研究所, 2006.
35. H. B. Michaelson, “The Work Function of the Elements and Its Periodicity”, Journal of Applied Physics, 48 (1977) 4729.
36. E. Centurioni and D. Iencinella, “Role of Front Contact Work Function on Amorphous Silicon/Crystalline Silicon Heterojunction Solar Cell Performance”, IEEE ELECTRON DEVICE LETTERS, 24 (2003) 177
37. 周佳賢,“高熱穩定性的鎳/銀鋁合金薄膜應用在p 型氮化鎵之歐姆接觸”, 國立中央大學化學工程與材料工程研究所, 2006.
38. D. Lin, H. Wu, R. Zhang and W. Pan, “Preparation and Electrical Properties of Electrospun Tin-Doped Indium Oxide Nanowires”, Nanotechnology, 18 (2007) 465301.
39. Q. Wan, Z. T. Song, S. L. Feng and T. H. Wang, “Single-Crystalline Tin-Doped Indium Oxide Whiskers: Synthesis and Characterization”, Applied Physics Letters, 85 (2004) 20.
40. Y. B. Li, Y. Bando, D. Golberg, “Single Crystalline In2O3 Nanotubes Filled with In”, Advanced Materials, 15 (2003) 7.
41. Q. Wan, E. N. Dattoli, W. Y. Fung, W. Guo, Y. B. Chen, X. Q. Pan, and W. Lu, “High-Performance Transparent Conducting Oxide Nanowires”, Nano Letters., 6 (2006) 2909.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *