帳號:guest(3.129.70.74)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):賴德洋
作者(外文):Lai, Te-Yang
論文名稱(中文):高品質氧化釓和氧化釔奈米薄膜於氮化鎵基板之研究
論文名稱(外文):High quality nano thick Gd2O3 and Y2O3 films on GaN
指導教授(中文):洪銘輝
郭瑞年
指導教授(外文):Hong, Ming-Hwei
Kwo, Ray-Nien
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:9631545
出版年(民國):98
畢業學年度:97
語文別:英文
論文頁數:71
中文關鍵詞:分子束磊晶X光繞射氧化釓氧化釔氮化鎵六方晶單斜晶
外文關鍵詞:MBEXRDGd2O3Y2O3GaNHexagonalMonoclinic
相關次數:
  • 推薦推薦:0
  • 點閱點閱:451
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
經由分子束磊晶技術,高品質氧化釓和氧化釔奈米薄膜成功地磊晶在(0001)h晶面的氮化鎵基板上。儘管晶格之間存在15-17%的不匹配,氧化釓和氧化釔磊晶薄膜仍保有非常佳的均勻性和良好的結晶性。
磊晶成長過程中,利用臨場反射式高能電子繞射的圖形,有助於了解表面結構和型態。並且,使用同步輻射高亮度、高解析度之光源進行X光繞射、X光反射率的實驗,可有效地深入研究超薄磊晶氧化物薄膜之結構特性。此外藉由C-V和J-E的特性曲線去探討磊晶薄膜之電性特徵。
在分子束磊晶沉積氧化釓和氧化釔初期,磊晶薄膜具有六重對稱之六方晶結構,薄膜之(0001)h平面與(0001)h晶向之氮化鎵基板相同,同時在平面上則維持[11-20]h//氮化鎵[11-20]h的結晶方向關係。隨氧化物薄膜厚度增加,六方晶相轉換成單斜晶相,而主要的結晶平面由(0001)h轉變成(-201)m,而[11-20]h晶向轉變成[020]m。在這一系列的成長過程中,由臨場反射式高能電子繞射和高解晰X光繞射實驗的觀測下,定義3到4奈米為相變化之臨界厚度。我們使用層狀結構的模型來合理解釋這兩種相似結構之原子排列,相轉變發生的原因可能來自於磊晶成長過程中導入的應變場。伴隨著厚度效應的發生,吾人觀察到由六方晶相主導和單斜晶相主導之兩種不同結構的形貌。
High-quality nano-thick Gd2O3 and Y2O3 epitaxial films have been grown on GaN(0001)h substrate by molecular beam epitaxy (MBE). The epi-layer of R2O3 (where R denotes Gd and Y) still exhibit remarkably uniform thickness and highly structural perfection despite a large lattice mismatch of 15-17% with the substrate.
Structural and morphological investigation were carried out by in-situ reflection high energy electron diffraction (RHEED)、synchrotron x-ray diffraction (XRD) and x-ray reflectivity (XRR). The electric properties were studied by measuring their C-V and J-V characteristics.
The initial stage of the Gd2O3 and Y2O3 epitaxial growth corresponds to a hexagonal phase with 6-fold symmetry. The hetero-structure follows an epitaxial relationship R2O3(0001)h [11-20]h // GaN(0001)h [11-20]h. With increasing layer thickness, the structure of the R2O3 film changes from hexagonal with (0001)h normal to monoclinic with (-201)m normal and the in-plane alignment with GaN[11-20]h changes from [11-20]h to [020]m. We concluded that approximate 3-4 nm is the critical thickness characterized by in-situ RHEED and ex-situ HRXRD. We utilized layer-like structural feature to nicely account for the phase transformation between the two phases. Overall, the strain filed might be responsible for the thickness dependent hexagonal to monoclinic phase transformation during MBE growth.
Chapter1 Introduction
1-1 Research background
1.2 Motivation
1.2.1 High-quality nano thick Gd2O3 film on GaN
1.2.2 High quality nano thick Y2O3 film on GaN

Chapter 2 Instrumentation and Theories
2.1 Multi chamber MBE system
2.1.1 Molecular beam epitaxy
2.1.2 In-situ reflection high energy electron diffraction
2.2 Structural Characterization by X-ray scattering
2.2.1 Correlation between real space and the reciprocal space
2.2.2 XRD technique
2.2.3 Scherrer’s formula
2.2.4 Longitudinal scan
2.2.5 XRD line width analysis
2.3 X-ray reflectivity
2.4 Transmission electron microscope (TEM)
2.5 Fundamentals of the metal-oxide-semiconductor (MOS)
2.5.1 Basic Characteristics of MOS Capacitor
2.5.2 C-V characteristic of ideal MOS capacitor
2.5.3 Charges in Oxide Films

Chapter 3 Experimental Procedure
3.1 High K oxide deposition Process in MBE System
3.2 Structural Characterizations
3.2.1 High resolution X-ray diffraction (HRXRD)
3.2.2 X-Ray Reflectivity
3.2.3 High Resolution Transmission Electron Microscope (HRTEM)
3.3 Electrical Properties Measurement

Chapter 4 Results and Discussion
4.1 High-quality nano thick Gd2O3 film on GaN(0001)
4.1.1 Structural analysis of Gd2O3 epi-layer by in-situ RHEED
4.1.2 Correlation between structures and oxide thickness
4.1.3 Phase transformation between hexagonal (A-type) and monoclinic (B-type) structure
4.2 High-quality nano-thick Y2O3 film on GaN(0001)
4.2.1 Structural analysis of Y2O3 epi-layer by in-situ RHEED
4.2.2 Structural characteristics of Y2O3/GaN
4.2.3 Correlation between structures and oxide thickness
4.2.4 Electrical properties

Chapter 5 Conclusion
Reference
Chapter 1 Reference

[1] S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T. Kehias, and T. J. Jenkins, IEEE Electron Device Lett. 20, 161 (1999).

[2] P. D. Ye, B. Yang, K. K. Ng, J. Bude, G. D. Wilk, S. Halder, and J. C. M. Hwang, Appl. Phys. Lett. 86, 063501 (2005).

[3] M. Higashiwaki, T. Matsui, and T. Mimura, IEEE Electron Device Lett. 27, 16 (2006).

[4] B. Gelmont, K. Kim, and M. Shur, J. Appl. Phys. 74, 1818 (1993).

[5] T. P. Chow, Proc. Mater. Res.Soc. Spring Meeting 622, T1.1.1 (2000).

[6] W. Huang, T. Khan, and T. P. Chow, IEEE Electron Device Lett. 27, 796 (2006).

[7] H. B. Lee, H. I. Cho, H. S. An, Y. H. Bae, M. B. Lee, J. H. Lee, and S. H. Hahm, IEEE Electron Device Lett. 27, 81 (2006).

[8] M. Hong, K. A. Anselm, J. P. Mannaerts, J. Kwo, A. Y. Cho, A. R. Kortan, C. M. Lee, J. I. Chyi, and T. S. Lay, J. Vac. Sci. Technol. B 18, 1453 (2000).

[9] Y.C. Chang, Y.J. Lee, Y.N. Chiu, T.D. Lin, S.Y. Wu, H.C. Chiu, J. Kwo, Y.H. Wang, and M. Hong, J. Cryst. Growth 301-302, 390 (2007).

[10] P. D. Ye, B. Yang, K. K. Ng, J. Bude, G. D. Wilk, S. Halder, and J. C. M. Hwang, Appl. Phys. Lett. 86, 063501 (2005).

[11] Y. Q. Wu, P. D. Ye, G. D. Wilk, and B. Yang, Mater. Sci. Eng. B 135, 282 (2006).

[12] Y. Irokawa, Y. Nakano, M. Ishiko, T. Kachi, J. Kim, F. Ren, B. P. Gila, A. H. Onstine, C. R. Abernathy, S. J. Pearton, C. C. Pan, G. T. Chen, and J. I. Chyi, Appl. Phys. Lett. 84, 2919 (2004).

[13] J. Kim, R. Mehandru, B. Luo, F. Ren, B. P. Gila, A. H. Onstine, C. R. Abernathy, S. J. Pearton, and Y. Irokawa, Appl. Phys. Lett. 80, 4555 (2002).

[14] Y. C. Chang, H. C. Chiu, Y. J. Lee, M. L. Huang, K. Y. Lee, M. Hong, Y. N. Chiu, J. Kwo, and Y. H. Wang, Appl. Phys. Lett. 90, 232904 (2007).

[15] W. H. Chang, C. H. Lee, P. Chang, Y. C. Chang, Y. J. Lee, J. Kwo, C. C. Tsai, J.M. Hong, C.H. Hsu and M. Hong , Journal of Crystal Growth, 311, (2009), 2183

[16] Hong M, Kwo J, Chu SNG, Mannaerts JP, Kortan AR, Ng HM, Cho AY, Anselm KA, Lee CM, Chyi JI, J. Vac. Sci. Technol. B 20, 1274 (2002)

[17] B. P. Gila1, J. W. Johnson, R. Mehandru, B. Luo, A. H. Onstine, K. K. Allums, V. Krishnamoorthy, S. Bates, C.R. Abernathy,F. Ren, and S.J. Pearton, phys. stat. sol. (a) 188, No. 1, 239–242 (2001)

[18] Foex, M.; Traverse, J. P. Rev. Int. Hautes Temp. Re´fract. 1966,3, 429.

[19] Gin-ya Adachi and Nobuhito Imanaka Chem. Rev. 1998, 98, 1479-1514

[20] Matvei Zinkevich, Materials Science 52 (2007) 597–647


[21] J. Kwo, M. Hong, A. R. Kortan, K. L. Queeney, Y. J. Chabal, J. P. Mannaerts, T. Boone, J. J. Krajewski, A. M. Sergnt and J. M. Rosamilia, Appl. Phys. Lett. 77, 130 (2000)

[22] J. Kwo, M. Hong, A. R. Kortan, K. L. Queeney, Y. J. Chabal, R. L. Opila. Jr., D. A. Muller, S. N. G. Chu, B. J. Sapjeta, T. S. Lay, J. P. Mannaerts, T. Boone, H. W. Krautter, J. J. Krajewski, A. M. Sergnt and J. M. Rosamilia, J. Appl. Phys. 89, 3920 (2001)

[23] Y. J. Lee, W. C. Lee, C. W. Nieh, Z. K. Yang, A. R. Kortan, M. Hong, J. Kwo and C.-H. Hsu, JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B 26, 1124-1127 (2008)

[24] C. W. Nieh, Y. J. Lee, W. C. Lee, Z. K. Yang, A. R. L Kortan, M. Hong, J. Kwo and C. H. Hsu, , Appl. Phys. Lett. 92 ,061914 ,(2008)

[25] P. Chang, M. Hong and J. Kwo (unpublished results)

Chapter 2 Reference

[1] M. Hong, M. Passlack, J. P. Mannaerts, J. Kwo, S. N. G. Chu, N. Moriya, S. Y. Hou and V. J. Fratello, J. Vac. Sci. Technol. B 14, 2297 (1996)

[2] M. A. Herman, H. Sitter, Molecular Beam Epitaxy- Fundamentals and Current Status, Springer-Verlag Berlin Heidelberg 1989

[3] J. Als-Nielsen, Des McMorro, “Elements of Modern X-Ray Physics”, (Wiley& Sons , New York, 2001).

[4] Azaroff L V, Kaplow R, Kato N, Weiss R J, Wilson A J C and Young R A, X-ray Diffraction (International Series in Pure and Applied Physics) (New York: Wiley), 1974
[5] Babkevich A Yu, Cowley R A, Mason N J, Sandiford S and Stunault A, J. Phys.: Condens. Matter 14, 7101 (2002)

[6] B. E. Warren, and B. L. Averbach, J. Appl. Phys. 21, 595 (1950). [27] G. K. Williamson, and W.H. Hall, Acta Metal. 1, 22 (1953).

[7] G. K. Williamson, and W.H. Hall, Acta Metal. 1, 22 (1953).

[8] L. H. Schwartz, and J. B. Cohen, “ Diffraction from Materials, 2nd ed.” Springer- Verlag, Berlin, (1987).

[9] Feng Huang, X-ray Reflectivity Studies on Thin Films (2005)

[10] D. B. Wiliams and C. B. Carter, “Transmission Electron Microsdopy” Plenum Press, New York, (1996).

[11] C. O. Dunn, and E. F. Koch, Acta metall. 5, 548 (1957).

[12]. Donald A. Neamen, “Semiconductor physics and devices : basic principles", McGraw-Hill, 2003

[13] DIETER K. SCHRODER, “semiconductor material and device characterization”, Wiley

[14] YUAN TAUR and TAK H. NING,Fndamentals of Modern VLSI Devices, CAMBRIDGE(2002)



Chapter 3 Reference

[1] M. Hong, M. Passlack, J. P. Mannaerts, J. Kwo, S. N. G. Chu, N. Moriya, S. Y. Hou and V. J. Fratello, J. Vac. Sci. Technol. B 14, 2297 (1996)


Chapter 4 Reference

[1] W. H. Chang, C. H. Lee, P. Chang, Y. C. Chang, Y. J. Lee, J. Kwo, C. C. Tsai, J.M. Hong, C.H. Hsu and M. Hong , Journal of Crystal Growth, 311, (2009), 2183

[2] L. Tapfer, W. Stolz, K.H. Ploog, J. Appl. Phys. 66 (1989) 3217.

[3] Bo Wua, Matvei Zinkevich, Fritz Aldinger, Dingzhong Wen, Lu Chen, Journal of Solid State Chemistry 180 (2007) 3280–3287

[4] C.H Lee, thesis (2008) “Structural investigation of monoclinic phase Gd2O3 epitaxially grown on GaN(0001) by MBE”

[5] Matvei Zinkevich, Materials Science 52 (2007) 597–647

[6] Handbook on the Physics and Chemistry of rare earth, CH44 edited by K.A. Gschneidner, Jr. and L. Eyring, (1982)

[7] F. X. Zhang, M. Lang, J. W. Wang, U. Becker, and R. C. Ewing, PHYSICAL REVIEW B 78, 064114 (2008)

[8] Alessandro Molle, Claudia Wiemer, Md. Nurul Kabir Bhuiyan, Grazia Tallarida, and Marco Fanciulli, Appl. Phys. Lett. 90, 193511 (2007)

[9] J. Kwo, M. Hong, A. R. Kortan, K. L. Queeney, Y. J. Chabal, J. P. Mannaerts, T. Boone, J. J. Krajewski, A. M. Sergnt and J. M. Rosamilia, Appl. Phys. Lett. 77, 130 (2000)

[10] J. Kwo, M. Hong, A. R. Kortan, K. L. Queeney, Y. J. Chabal, R. L. Opila. Jr., D. A. Muller, S. N. G. Chu, B. J. Sapjeta, T. S. Lay, J. P. Mannaerts, T. Boone, H. W. Krautter, J. J. Krajewski, A. M. Sergnt and J. M. Rosamilia, J. Appl. Phys. 89, 3920 (2001)

[11] Y. J. Lee, W. C. Lee, C. W. Nieh, Z. K. Yang, A. R. Kortan, M. Hong, J. Kwo and C.-H. Hsu, JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B 26, 1124-1127 (2008)

[12] C. W. Nieh, Y. J. Lee, W. C. Lee, Z. K. Yang, A. R. L Kortan, M. Hong, J. Kwo and C. H. Hsu, , Appl. Phys. Lett. 92 ,061914 ,(2008)

[13] P Chang, M. Hong and J. Kwo (unpublished results)

[14] D. K. Bowen and B. K. Tanner, Nanotechnology,4,175 (1993).

[15] Roth, R. S., Phase Equilibria Diagrams: Phase Diagrams for Ceramics, Vol XI. The American Ceramic Society, Westville, OH, 1995, p. 107.

[16] M. Medraj, R. Hammond, M.A. Parvez, R.A.L. Drew and W.T. Thompson, Journal of the European Ceramic Society 26 (2006) 3515–3524

[17] K. Tomida, K. Kita, and A. Toriumi, Appl. Phys. Lett. 2006, 89, 142902
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *