帳號:guest(18.117.159.229)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄭舒婷
作者(外文):Cheng, Su-Ting
論文名稱(中文):以第一原理計算小半徑二矽化鎳奈米線的結構與電性性質
論文名稱(外文):First Principle Calculation: Structural and Electronic Properties of Small Diameter NiSi2 NWs
指導教授(中文):蔡哲正
指導教授(外文):Tsai, Cho-Jen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:9631552
出版年(民國):98
畢業學年度:97
語文別:英文
論文頁數:53
中文關鍵詞:第一原理計算二矽化鎳奈米線楊氏系數
外文關鍵詞:First principle calculationNiSi2Young's modulusnanowire
相關次數:
  • 推薦推薦:0
  • 點閱點閱:225
  • 評分評分:*****
  • 下載下載:16
  • 收藏收藏:0
奈米線的各種性質在尺度小於數十奈米時,會有強烈的尺寸效應,也就是說,其各種性質會和奈米線半徑(假設奈米線長度相對於半徑為無限長)有關係存在。此一效應源自於在奈米結構中,表面對體積的比例(surface to volume ratio:SVR)急遽的上升,使得表面會影響整體結構的性質。
我們的模擬是針對NiSi2的奈米線,使用第一原理計算預測其可能穩定的結構,楊氏係數,以及相關電性行為。在我們的結果中顯示,[111]軸向奈米線相對於[100]奈米線,在直徑小於1奈米時具有相對較好的穩定性,這可供成長超細奈米線參考。在機械行為方面,NiSi2奈米線在我們所計算的範圍(直徑0.8-1.3nm)僅具有原本塊材12.5%的楊氏系數,這樣的改變,我們相信來自於奈米線表面應力,此表面應力隨著奈米線尺寸上升會跟著慢慢下降,而表面應力和奈米線側面的方向有密切的關係,奈米線各種側面對機械行為的影響是值得繼續探討的問題。
在電性方面也深受各種奈米線側面的影響,NiSi2在製程上的應用主要用在歐姆接面(ohmic contact), 而幾乎所有我們進行計算的NiSi2奈米線都具有半金屬(semi-metal)的性質,且它們的能帶結構卻有很大的差異。[100]和[110]為典型半金屬能帶,而[111]則較接近半導體的能帶型態,這樣的差異我們認為主要來自於側面(facet)的不同。而側面對電性造成的影響,是來自於表面低鍵結度(low coordination number)的原子,從投影態密度(PDOS)中可發現,表面低鍵結度的原子可貢獻許多額外的態密度,造成與塊材迥異的能帶結構。
Physical properties at the nanoscale are known to be different from those in macro-dimensions. It was indicated that both structural and electronic properties are dependent on size effect or surface effect according to the high surface-to-volume ratio (SVR), which will exaggerate the surface status.
Our research examined the small diameter NiSi2 NWs with first principle calculations via CAmbridge Serial Total Energy Package (CASTEP). Numerical convergence has been checked with different k-point sets and cut-off energy from 300 to 380 eV. We have grown self-assembled NiSi2 NWs with triangular cross section on (100) Si substrate and these kinds of wires have been observed having very low resistivity. On the other hand, free-standing NiSi2 NWs have been fabricated by silicidation of Si NWs produced by etching Si substrates. Hence, we attempted to simulate the properties of low index axis NiSi2 NWs.
(1) Structural Properties
All the structures were carried out with total energy minimization to reach the most stable state and tensile and compressive strain were applied to analyze the Young’s modulus. Both types of NWs were found to have shorter bond length for edge (surface) bonding compared to bulk NiSi2 but longer bond length for inner bonding. The Young’s modulus was found to be much softer than that of the bulk. The difference of the bond length can be considered as “surface stress” which accounts for the softening.
(2) Electronic Properties
As to know the electronic properties in such low dimensions, we examined the band structure and density of states (DOS). The band structure was computed along the direction from □ (0,0,0) to Z (0,0,0.5). All the NWs simulated are calculated to be semimetal. Ni and Si atoms both contributed to the low resistivity because half of the DOS near the Fermi level comes from Si and half from Ni. Further analyzing the Partial Density of States (PDOS), the surface Si atoms with low coordination number make greater contribution to the total Si DOS.
CHAPTER 1. INTRODUCTION 1
1.1 PROPERTIES DOWN TO NANOSCALE 1
1.1 NICKEL SILICIDE NANOWIRES 3
1.2 FRAMEWORK OF RESEARCH 3
CHAPTER 2. LITERATURE SURVEY 4
2.1 EXPERIMENTAL RESULTS 4
2.1.1 Metal NWs 4
2.1.2 Si and Ge NWs 5
2.2 SIMULATION RESULTS 6
2.2.1 Molecular Dynamics 6
2.2.2 First Principle calculation 7
2.2.2.1 Cu nanoplate 7
2.2.2.2 Si NWs 9
2.2.2.3 GaN NWs 10
CHAPTER 3. FIRST PRINCIPAL CALCULATION 13
3.1 MANY-BODY QUANTUM MECHANICS 13
3.2 DENSITY FUNCTIONAL THEORY 14
3.3 KOHN-SHAM THEORY22 15
3.4 APPROXIMATION METHOD 16
3.4.1 Local Density Approximation23 16
3.4.2 Generalized Gradient Approximation 16
3.4.3 Psudopotential 17
CHAPTER 4. COMPUTATION PROCEDURE 18
4.1 CASTEP 18
Energy 19
Geometry Optimization 19
Band structure and DOS calculation 20
4.2 SIMULATION CELL 20
[111] 21
[110] 21
[100] 22
4.3 SIMULATION STEPS 23
CHAPTER 5. RESULTS AND DISCUSSION 27
5.1 [111] NW 27
Structure Analysis & Young’s Modulus 27
Convergence Test for Young’s Modulus 31
5.2 [110] NW 32
Structure Analysis & Young’s Modulus 32
5.3 [100] NW 35
Structure Analysis 35
5.4 DISCUSSIONS 36
5.4.1 Structure Stability 36
5.4.2 Young’s Modulus 37
5.4.3 Electronic properties 38
Band Structure 38
Density of State 39
CHAPTER 6. CONCLUSIONS 41
REFERENCE 42
ACKNOWLEDGE 44
附錄-使用國家高速網路中心大型主機進行計算 45
1 Ali Kazempour, S. Javad Hashemifar, and Hadi Akbarzadeh, "Structural properties of narrow hexagonal MnAs nanowires: Role of edge atoms," Physical Review B 79, 195420 (2009).
2 B. Lee and R. E. Rudd, "First-principles calculation of mechanical properties of Si(001) nanowires and comparison to nanomechanical theory," Physical Review B 75 (19), 195328 (2007).
3 H. Y. Liang, M. Upmanyu, and H. C. Huang, "Size-dependent elasticity of nanowires: Nonlinear effects," Physical Review B 71 (24), 241403 (2005).
4 D. J. Carter, J. D. Gale, B. Delley et al., "Geometry and diameter dependence of the electronic and physical properties of GaN nanowires from first principles," Physical Review B 77 (11), 115349 (2008).
5 L. G. Zhou and H. C. Huang, "Are surfaces elastically softer or stiffer?," Applied Physics Letters 84 (11), 1940-1942 (2004).
6 S. Cuenot, C. Fretigny, S. Demoustier-Champagne et al., "Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy," Physical Review B 69 (16), 165410 (2004).
7 X. X. Li, T. Ono, Y. L. Wang et al., "Ultrathin single-crystalline-silicon cantilever resonators: Fabrication technology and significant specimen size effect on Young's modulus," Applied Physics Letters 83 (15), 3081-3083 (2003).
8 J. M. Jia, D. N. Shi, J. J. Zhao et al., "Structural properties of silver nanowires from atomistic descriptions," Physical Review B 76 (16), 165420 (2007).
9 T. Kizuka, Y. Takatani, K. Asaka et al., "Measurements of the atomistic mechanics of single crystalline silicon wires of nanometer width," Physical Review B 72 (3), 035333 (2005).
10 St□phane Cuenot, Christian Fr□tigny, Sophie Demoustier-Champagne et al., "Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy," Physical Review B 69 (16), 165410 (2004).
11 Xinxin Li, Takahito Ono, Yuelin Wang et al., "Ultrathin single-crystalline-silicon cantilever resonators: Fabrication technology and significant specimen size effect on Young’s modulus," Applied Physics Letters 83 (15), 3081-3083 (2003).
12 Haiyi Liang, Moneesh Upmanyu, and Hanchen Huang, "Size-dependent elasticity of nanowires: Nonlinear effects," Physical Review B 71, 241403-241401~241403-241404 (2005).
13 D. D. D. Ma, C. S. Lee, F. C. K. Au et al., "Small-diameter silicon nanowire surfaces," Science 299 (5614), 1874-1877 (2003).
14 A. K. Singh, V. Kumar, R. Note et al., "Pristine semiconducting [110] silicon nanowires," Nano Letters 5 (11), 2302-2305 (2005).
15 J. P. Gambino and E. G. Colgan, "Silicides and ohmic contacts," Materials Chemistry and Physics 52 (2), 99-146 (1998).
16 S.Y. Cnen, "Growth of Self-Assembled Epitaxial Metal Silicide Nanowires " PHD Thesis, from National Tsing Hua University (2006).
17 M. S. Daw and M. I. Baskes, "Embadded-Atom Method - Derivation And Application To Impurities, Surfaces, And Other Defects In Metals," Physical Review B 29 (12), 6443 (1984).
18 M. H. Tsai, Z. F. Jhang, J. Y. Jiang et al., "Electrostatic and structural properties of GaN nanorods/nanowires from first principles," Applied Physics Letters 89 (20) (2006).
19 Q. Wang, Q. Sun, and P. Jena, "Ferromagnetism in Mn-doped GaN nanowires," Physical Review Letters 95 (16) (2005).
20 J. E. Northrup and J. Neugebauer, "Theory of GaN(10(1)over-bar-0) and (11(2)over-bar-0) surfaces," Physical Review B 53 (16), 10477-10480 (1996).
21 P. Hohenberg and W. Kohn, "Inhomogeneous Electron Gas," Physical Review B 136 (3B), B864 (1964).
22 W. Kohn and L. J. Sham, "Self-Consistent Equations Including Exchange And Correlation Effects," Physical Review 140 (4A), 1133-& (1965).
23 Robert G. Parr and Weitao Yang, "Density-Functional Theory of Atoms and Molecules.," Oxford: Oxford University Press (1994).
24 B. G. Pfrommer, M. Cote, S. G. Louie et al., "Relaxation of crystals with the quasi-Newton method," Journal of Computational Physics 131 (1), 233-240 (1997).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *