帳號:guest(3.147.7.30)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳子涵
論文名稱(中文):熱壓法製造高導熱鑽石銀基複合材料及其性質之研究
論文名稱(外文):Study on Properties of High-Thermal Conductivity Diamond/Silver Composite Prepared by Hot-Pressing
指導教授(中文):林樹均
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:9631587
出版年(民國):98
畢業學年度:97
語文別:中文
論文頁數:118
中文關鍵詞:鑽石熱傳導熱膨脹界面
相關次數:
  • 推薦推薦:0
  • 點閱點閱:195
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
本實驗以不同大小、不同體積分率之原生鑽石(Saw Diamond)製作高導熱的鑽石銀基複材,實驗中發現鑽石與銀基材的界面接合不佳,且不會有化學鍵結出現,使得鑽石銀基複材的熱傳導性質遇到瓶頸,因此希望藉由添加容易生成碳化物的鈦來改善基材與強化材間的界面,進而改善複材性質。
以3D懸臂式混粉機將鑽石與銀兩種粉末進行混合分散,接著採用大氣熱壓法,在600 ℃、500 MPa壓力下熱壓30分鐘後製成圓板狀試片,量測其熱傳導、熱膨脹、硬度等性質,並觀察其熱性質變化趨勢,評估此複合材料在電子構裝散熱材的應用潛力。
鑽石銀基複材截面於SEM下可看到鑽石均勻分佈之圖像,添加了鈦之後也可以清楚看見三種元素的相。在銀添加30 vol%之100 ~ 120 μm鑽石之複材中,可得到熱傳導係數為500 W/m•K;而添加了鈦之後熱傳導係數更可以提升到525 W/m•K,除了明顯比純銀(430 W/m•K)高出許多之外,也証明了鈦的添加的確有助於複材的熱性質。
在不同的鑽石含量與鑽石顆粒大小實驗中,可發現隨著鑽石顆粒尺寸變大,總表面積減少,熱傳導係數上升;而鑽石含量增加,在低體積分率時複材熱傳導係數上升,但當體積分率更高之後複材熱傳導係數反而下降,推測與緻密度較差有關。而熱膨脹係數方面,隨著鑽石體積分率上升,熱膨脹係數僅有微微下降的趨勢,應與界面無穩固的化學鍵結(Chemical bonding),且原生鑽石較碎裂鑽石表面平滑無機械鍵結(Mechanical Interlocking)有關。硬度方面,則隨著鑽石體積分率上升,鑽石提供散佈強化的作用而有稍微上升,但趨勢上看不出與熱傳導性質有相關。
整體而言,以此法製造鑽石銀基複合材,製程設備便宜,硬度跟熱傳導係數都能隨著鑽石及鈦的添加而改善。
目錄
摘要 I
誌謝 III
目錄 V
圖目錄 VIII
表目錄 XII

壹、 前言 1
貳、 文獻回顧 3
2.1 散熱的重要性 5
2.2 散熱材料發展 8
2.2.1 傳統封裝散熱材料 8
2.2.2 先進散熱材料 10
2.2.3 散熱材料整合 14
2.3 金屬基複合材料 16
2.4 合金元素添加對熱傳導係數的影響 23
2.4.1 界面反應性 23
2.4.2 添加Si元素對熱傳導係數的影響 31
2.4.3 添加Cr、B元素的影響 33
2.4.4 合金元素反應層厚度 34
參、 實驗方法與步驟 39
3.1 實驗設計與流程 39
3.2 乾式混粉 44
3.3 大氣粉末熱壓法 44
3.4 複合材料性質分析 46
3.4.1 金相觀察 46
3.4.2 緻密度量測 46
3.4.3 硬度測試 47
3.4.4 熱膨脹係數量測 47
3.4.5 熱傳導係數量測 48
肆、 結果與討論 51
4.1 濕式球磨前粉末觀察 51
4.1.1 鑽石微結構觀察 51
4.1.2 銀粉與鈦粉 51
4.2 大氣熱壓複材微結構觀察 55
4.3 複材結構鑑定-XRD分析 66
4.4 鑽石銀基複材性質量測 70
4.4.1 緻密度 70
4.4.2 熱傳導係數 75
4.4.3 緻密度對熱傳導係數之影響 80
4.4.4 熱傳導係數與界面熱導之關係 86
4.4.5 熱膨脹性質 93
4.4.6 硬度 101
伍、 結論 104
陸、 未來研究方向 106
柒、 參考文獻 107
捌、 附錄 115
8.1 液相浸透法 115
1. http://ssttpro.acesuppliers.com/news/new_1_1809.html
2. D. B. Miracle, “Metal Matrix Composites-From Science to Technological Significance”, Composites Science and Technology, 65 (2005) 15-16.
3. J. Barcena, J. Maudes, M. Vellvehi, X. Jorda, I. Obieta, C. Guraya, L. Bilbao, C. Jimenez, C. Merveille, and J. Coleto,” Innovative Packaging Solution for Power and Thermal Management of Wide-Bandgap Semiconductor Devices in Space Applications”, Acta Astronautica, 62 (2008) 6-7.
4. Ho, P. S., “Basic Problems for Electromigration in VLSI Application”, Proceedings of the IEEE, IRPS: pp. 288-291 (1982).
5. G. L. Romero, J. M. Fusaro, and J. L. Martinez, IAS 95, Conference Record of the 1995 IEEE Industry Application Conference. Thirtieth IAS Annual Meeting, Vol. 1, pp. 916-922
6. http://ssttpro.acesuppliers.com/news/new_1_1809.html
7. C. Zweben, “Ultrahigh-Thermal-Conductivity Packaging Materials”, 21st IEEE SEMI-THERM Symposium
8. C. Thaw, J. Zemany and C. Zweben, “Metal Matrix Composites for Microwave Packaging Components”, Electronic Packaging and Production, (1987)
9. D. M. Jacobson and S. P. S. Sangha, “Novel Low Expansion Packages for Electronics”, GEC Journal of Technology, 14 (1997) 1.
10. J. F. Silvain, Y. Lepetitcorps, E. Sellier, P. Bonniau and V. Heim, ” Elastic Moduli, Thermal Expansion and Microstructure of Copper-Matrix Composite Reinforced by Continuous Graphite Fibers”, Composites, 25 (1994) 7.
11. I. Dutta, “Role of Interfacial and Matrix Creep During Thermal Cycling of Continuous Fiber Reinforced Metal-Matrix Composites”, Acta Materialia, 48 (2000) 5.
12. M. Vedula, R. N. Pangborn and R. A. Queeney, “Fiber Anisotropic Thermal-Expansion and Residual Thermal-Stress in a Graphite Aluminum Composite”, Composites, 25 (1988) 1.
13. C. Zweben and M. Kuntz (eds), “Mechanical Engineering’ Handbook”, John Wiley & Sons, New York, (1998).
14. A. Kelly and C. Zewben , “Comprehensive Composite Materials”, Pergamon Press, Oxford, (2000).
15. R. M. German, K. F. Hens, and J. L. Johnson, “Powder-Metallurgy processing of Thermal Management Materials for Microelectronic Applications”, International Journal of Powder Metallurgy, 30, (1994) 2.
16. Z. Hashin and S. Shtrikman, “A variational approach to The Theory of The Elastic Behavior of Multiphase Materials”, Journal of The Mechanics and Physics of Solids, 11, (1963) 6.
17. P. S. Turner, “Thermal-Expansion Stresses in Reinforced Plastics”, Journal of Research of The National Bureau of Standards, 37, (1946) 6.
18. E. H. Kerner, “The Elastic and Thermo-Elastic Properties of Composite Media”, Proceeding of The Physical Society of London (B), 68, (1956) 8.
19. T. T. Wang and T. K. Kwei, “Effect of Induced Thermal Stresses on Coefficients of Thermal Expansion and Densities of Filled Polymers”, Journal of Polymer Science, 7, (1969) 5PA2.
20. R. R. Tummala and A. L. Friedberg, “Thermal Expansion of Composite Materials”, Journal of Applied Physics, 41, (1970) 5104.
21. R. A. Schapery, “Thermal Expansion Coefficients of Composite Materials Based on Energy Principles”, Jounal of Composite Materials, 2, (1968) 3.
22. A. A. Fahmy and A. N. Ragai, “Thermal-Expansion Behavior of 2-Phase Solids”, Journal of Applied Physics, 41, (1970) 13.
23. R. M. German, “A Model for The Thermal-Properties of Liquid-Phase Sintered Composites”, Metallurgical Transactions A, 24A, (1993) 8.
24. D. P. H. Hasselman, K. Y. Donaldson and A. L. Geiger, “Effect of Reinforcement Particle-Size on The Thermal-Conductivity of a Particulate-Silicon Carbide-Reinforced Aluminum Matrix Composite”, Journal of The American Ceramic Society, 75, 11, (1992) 11.
25. A. G. Every, Y. Tzou, D. P. H. Hasselman and R. Raj, “The Effect of Particle-Size on The Thermal-Conductivity of ZnS Diamond Composites”, Acta Metallurgica et Materialia, 40, (1992) 1.
26. L. Rayleigh, “On the Instability of a Cylinder of Viscous Liquid Under Capillary Force”, Philosophical Magazine, 34, (1892) 145.
27. J.C. Maxwell (ed.), “A Treatise on Electricity and Magnetism”, Oxford University Press (1904).
28. D. P. H. Hasselman and L. F. Johnson, “Effective Thermal-Conductivity of Composites with Interfacial Thermal Barrier Resistance”, Journal of Composite Materials, 21 (1987) 6.
29. Y. Bevensite, “Effect Thermal Conductivity with a Thermal Resistance Between the Constituents: Nondilute Case”, Journal of Applied Physics, 61, (1987).
30. J. C. Y. Koh and A. Fortini, “Prediciton of Thermal-Conductivity and Electrical Resistivity of Porous Metallic Materials”, International Journal of Heat and Mass Transfer, 16, (1973) 11.
31. F. A. Khalid, O. Beffort, U.E. Klotz, B.A. Keller and P. Gasser,” Microstructure and Interfacial Characteristics of Aluminium-Diamond composite Materials” Diamond and Related Materials, 13 (2004) 11.
32. O. Beffort, S. Vaucher and F. A. Khalid, “Microstructure and Interfacial Characteristics of Aluminium-Diamond Composite Materials”, Diamond & Related Materials, 13 (2004) 10.
33. O. Beffort, F.A. Khalid, L. Weber, P. Ruch, U.E. Klotz, S. Meier and S. Kleiner, “Microstructure and Interfacial Characteristics of Aluminium-Diamond Composite Materials”, Diamond & Related Materials, 15 (2006) 9.
34. P. W. Ruch, O. Beffort, S. Kleiner, L. Weber and P.J. Uggowitzer, “Selective Interfacial Bonding in Al(Si)-Diamond Composites and Its Effect on Thermal Conductivity”, Composites Science and Technology 66 (2006) 15.
35. S. Kleiner, F.A. Khalid, P.W. Ruch, S. Meier and O. Beffort, “Effect of Diamond Crystallographic Orientation on Dissolution and Carbide Formation in Contact with Liquid Aluminium”, Scripta Materialia, 55 (2006) 4.
36. R. Tavangar, J.M. Molina and L. Weber, “Assessing Predictive Schemes for Thermal Conductivity Against Diamond-Reinforced Silver Matrix Composites at Intermediate Phase Contrast”, Scripta Materialia, 56 (2007) 5.
37. L. Weber and R. Tavangar, “On the Influence of Active Element Content on The Thermal Conductivity and Thermal Expansion of Cu-X (X = Cr, B) Diamond Composites”, Scripta Materialia, 57 (2007) 11.
38. K. Yoshida and H. Morigami, “Thermal Properties of Diamond/Copper Composite Material”, Microelectronics Reliability, 44 (2004) 2.
39. M. Y. Gu, G. D. Zhang and R. J. Wu, “Interfacial bondings in Gr(f)/Al Composites”, Progress in Natural Science, 7 (1997) 5.
40. W. B. Johnson and B. Sonuparlak, “Diamond/Al Metal-Matrix Composites Formed by The Pressureless Metal Infiltration Process”, Journal of Materials Research, 8 (1993) 5.
41. J. C. Sung and M. Sung, “The Brazing of Diamond”, International Journal of Refractory Metals & Hard Materials, 27 (2009) 2.
42. S. H. Baek, D. F. Mihec and J. B. Metson, “Interfacial Properties Between CVD Diamond and Titanium”, International Journal of Modern Physics, 17 (2003) 8-9.
43. L. Weber, C. Von Grunigen, N. Frigeni, in: H.P. Degischer (Ed.), Verbundwerkstoffe, 14. Symposium Verbundwerkstoffe und Werkstoffverbounde, DGM, WILEYVCH publ., 2003, pp. 801
44. T. B. Massalski and H. Okamoto (eds), “Binary Alloy Phase Diagrams”, ASM International (1990) pp. 93 and 131
45. T. Schubert, Ł. Ciupinski, W. Zielinski, A. Michalski, T. Weisgarber and B. Kieback, “Interfacial Characterization of Cu/Diamond Composites Prepared by Powder Metallurgy for Heat Sink Applications”, Scripta Materialia, 58 (2008) 4.
46. http://www.factdiamond.com
47. http://www.agpro.com.tw/
48. ASM Metals Handbook, “Properties and Selection: Nonferrous Alloys and Special-Purpose Materials”, Vol.10.
49. 傅美惠,“鑽石銀基複材熱性質之研究”,國立清華大學碩士論文 (2006)
50. 呂俊賢,“濕式球磨法製備鑽石銀機複合材料之研究”,國立清華大學碩士論文 (2007)
51. S. K. Bhaumik, G. S. Upadhyaya, and M. L. Vaidya, “Alloy Design of WC-10Co Hard Metals with Modifications in Carbide and Binder Phases” International Journal of Refractory Metals & Hard Materials., 11 (1992) 9.
52. David R. Gaskell, “Introduction to The Thermodynamics of Materials”, Taylor & Francis (2003)
53. D. P. H. Hasselman, K. Y. Donaldson, J. Liu, L. J. Gauckler and P. D. Ownby, “Thermal-Conductivity of a Particulate-Diomond-Reinforced Cordierite Matrix Composite”, Journal of The American Ceramic Society, 77 (1994) 7.
54. K. Hanada, K. Matsuzaki and T. Sano, “Thermal Properties of Diamond Particle-Dispersed Cu Composites”, Journal of Materials Processing Technology, 153 (2004) Part 1 Sp. Iss. SI.
55. R. J. Stoner, H. J. Maris, T. R. Anthony and W. F. Banholzer, “Measurements of The Kapitza Conductance Between Diamond and Several Metals”, Physical Review Letters, 68 (1992) 10.
56. D. E. Gray (ed.), “American Institute of Physics Handbook”, Mcgraw-Hill (1972)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *