帳號:guest(3.149.249.154)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):葉修鋒
作者(外文):Ye, Hsiu-Feng
論文名稱(中文):探討微藻Chlorella sp.油脂生產較適培養條件
論文名稱(外文):Optimal culture conditions of oil production by microalgae Chlorella sp.
指導教授(中文):黃世傑
指導教授(外文):Hwang, Shyh-Jye
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:9632529
出版年(民國):98
畢業學年度:97
語文別:中文
論文頁數:106
中文關鍵詞:Chlorella sp.藻類油脂生質柴油
外文關鍵詞:Chlorella sp.Algae oilBiodiesel
相關次數:
  • 推薦推薦:0
  • 點閱點閱:586
  • 評分評分:*****
  • 下載下載:1
  • 收藏收藏:0
由於人類活動及工業化發展消耗大量石化燃料,造成環境中溫室氣體累積以及原油供應量下降等問題,其中二氧化碳為造成全球暖化現象的主要溫室氣體。因此,開發一可再生、碳中和並能夠降低大氣中二氧化碳濃度的替代能源是必要的。
微藻為光合自營生物,可有效地利用二氧化碳作為碳源,透過光合作用將其轉化成脂質。目前已知有許多種類微藻,在不利的環境條件下可生產大量三酸甘油脂及脂肪酸儲存於細胞內。由此可見,微藻不僅可行固碳作用,亦可生產大量油脂作為生質柴油的原料來源。
小球藻 (Chlorella sp.)為油質性微藻,文獻指出其平均油脂含量為20-50 % dry cell weight,故Chlorella sp.可作為生質柴油良好的原料來源。為了獲得較高油脂產率,將針對環境條件及營養因子對Chlorella sp.細胞生長及油質生成的影響進行探討。本研究以杯瓶試驗探討Chlorella sp.較適培養條件,以獲得較高細胞及油脂產量。由實驗結果可知,Chlorella sp.在較適培養條件下 (pH 8、鹽度:8.5 g/L、通氣量:2 L/min、L/D:12/12、溫度:30 ℃、光照強度:12000 lux、CO2:5 %及0.1 g/L urea),經14天培養,可獲得最大細胞濃度2.85 g/L以及油脂產率48.2 mg/L.day。
Due to human activities and industrialization development consumption massive fossil fuels, resulting in the environment questions and so on greenhouse gas accumulation as well as crude oil supply drop, in which carbon dioxide is the main greenhouse gas for causing the phenomenon of global warming. Therefore, it is necessary to development a substitute energy source for petroleum which is renewable, carbon neutral and be able to reduce atmospheric carbon dioxide concentration.
Microalgae are photosynthetic autotrophs, which can efficiently utilize carbon dioxide as carbon source and convert it to lipid through photosynthesis. Many species of microalgae have the ability to produce large number of triacylglycerols and fatty acids in the adverse environmental conditions. Thus it can be seen, microalgae are not only for carbon dioxide fixation, but also can produce a large number of oils as a source of raw materials for biodiesel.
Chlorella sp. is oleaginous microalgae, literatures indicate that the average oil content is 20-50 % dry cell weight, therefore Chlorella sp. is excellent raw material for biodiesel production. In order to obtain a higher oil yield, the effects of environment conditions and nutrient factors on Chlorella sp. growth and oil production was investigated. In this study, we will confirm the optimal culture conditions to obtain higher biomass and oil productivity. The results show that Chlorella sp. grown on optimal culture conditions (pH 8, salinity: 8.5 g/L, air flow rate: 2 L/min, L/D: 12/12, temperature: 30 ℃, light intensity: 12000 lux, CO2: 5 % and 0.1 g/L urea) after 14 days, it could obtain maximum biomass (2.85 g/L) and oil productivity (48.2 mg/L.day).
封面內頁
中文摘要 ii
Abstract iii
誌謝 v
目錄 vi
圖目錄 ix
表目錄 xi

第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 3
第二章 文獻回顧 4
2.1 微藻簡介 4
2.1.1 小球藻 (Chlorella sp.) 6
2.1.2 小球藻 (Chlorella sp.)的生殖方式 6
2.2 藻類光合作用 7
2.3 藻類培養 13
2.3.1 光合自營 (photoautotrophic) 14
2.3.2 異營 (heterotrophic) 14
2.2.3 混營 (mixotrophic) 15
2.5 藻類油脂生成與組成 16
2.5.1 脂質與三酸甘油酯 (TAGs)含量 16
2.5.2脂肪酸組成 17
2.5.3 脂肪酸與三酸甘油酯生物合成 22
2.5.4 脂肪酸生物合成 22
2.5.5 三酸甘油脂生物合成 26
2.6 藻類生長及油脂生成之影響因子 28
2.6.1 營養源 28
2.6.2 溫度 29
2.6.3 pH值 29
2.6.4 光照強度 30
2.6.5 鹽度 30
2.6.6 生長週期與藻株年齡 31
2.7 微藻於生質柴油生產上之潛力 32
第三章 材料與方法 38
3.1 實驗材料與設備 38
3.1.1 藥品 38
3.1.2 儀器設備 38
3.2 藻株培養 39
3.2.1 藻株來源 39
3.2.2 培養基 39
3.2.3 藻株前培養 39
3.3 實驗步驟 39
3.3.1 培養pH值探討 40
3.3.2 培養鹽度探討 40
3.3.3 通氣量探討 40
3.3.4 培養溫度探討 40
3.3.5 光照強度及光照週期探討 40
3.3.6 CO2濃度探討 40
3.3.7 氮源種類及濃度探討 41
3.3.8 異營試驗 41
3.4 分析方法 44
3.4.1 細胞濃度 (OD值)之測定 44
3.4.2 油脂含量分析 44
第四章 結果與討論 47
4.1 篩選生長及油脂生產量最佳之藻株 47
4.2 初始pH對Chlorella sp.生長及油脂生產之影響 50
4.3 鹽度對Chlorella sp.生長及油脂生產之影響 54
4.4 通氣量對Chlorella sp.生長及油脂生產之影響 58
4.5 溫度對Chlorella sp.生長及油脂生產之影響 61
4.6 光照強度對Chlorella sp.生長及油脂生產之影響 65
4.7 CO2濃度對Chlorella sp.生長及油脂生產之影響 68
4.8 光照週期對Chlorella sp.生長及油脂生產之影響 72
4.9 氮源對Chlorella sp.生長及油脂生產之影響 75
4.10 初始氮源濃度對Chlorella sp.生長及油脂生產之影響 78
4.11 異營試驗 81
第五章 結論 83
參考文獻 85
參考文獻

徐明光,1999,台灣的淡水浮游藻(I)-通論及綠藻(1),國立台灣博物館印行。
葉俊良,2006,在光生化反應器中以二階段策略培養微藻生產油脂之研究,國立成功大學化學工程學系碩士論文。
Aaronson, S. 1973. Effect of incubation temperature on the macromolecular and lipid content of the phytoflagellate Ochromonas danica. J. Phycol. 9: 111-113.
Abdel-Rahman, M.H.M., Ali, R.M. and Said, H.A. 2005. Alleviation of NaCl-induced effects on Chlorella vulgaris and Chlorococcum humicola by Riboflavin application. Int. J. Agr. Biol. 7(1): 58-62.
Ackman, R.G., Tocher, C.S. and McLachlan, J. 1968. Marine phytoplankter fatty acids. J. Fish. Res. Board Can. 25: 1603-1620.
Ahmed, A.M., Hamada, A.M. and Desouky, S.A. 1995. Effect of exogenously added vitamins on photosynthesis and some related activities of salinized Chlorella vulgaris. In: Photosynthesis: From Light to Biosphere (Mathis, P., ed.). Vl. IV, Kluwer Acad. Pub. France: 749-752.
Aizawa, K. and Miyachi, S. 1986. Carbonic anhydrase and the CO2 concentrating mechanisms in microalgae and cyanobacteria. FEMS Microbiol. Rev. 39: 215-233.
Akkerman, I., Janssen, M., Rocha, J. and Wijffels, R.H. 2002. Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int. J. Hydrogen Energy 27: 1195-1208.
Ali, R.M., 2000. Role of putrescine in salt tolerance of Atropa belladonna plant. Plant Sci. 152: 173-179.
Alonso, D.L., Belarbi, E.H., Fernandez-Sevilla, J.M., Rodriguez-Ruiz, J. and Grima, E.M. 2000. Acyl lipid composition variation related to culture age and nitrogen concentration in continuous culture of the microalga Phaeodactylum tricornutum. Phytochemistry 54: 461-471.
Andre, C., Froehlich, J.E., Moll, M.R. and Benning, C. 2007. A heteromeric plastidic pyruvate kinase complex involved in seed oil biosynthesis in Arabidopsis. Plant Cell 19: 2006-2022.
Antolin, G., Tinaut, F.V., Briceno, Y., Castano, V., Perez, C. and Ramirez, A.I. 2002. Optimisation of biodiesel production by sunflower oil transesterification. Bioresour. Technol. 83: 111-114.
Apt, K.E. and Behrens, P.W. 1999. Commercial developments in microalgal biotechnology. J. Phycol. 35(2): 215-226.
Bajpai, P., Bajpai, P.K. and Ward, O.P. 1992. Optimization of production docosahexaenoic acid (DHA) by Thraustochyrium aureum ATCC 34304. J. Am. Oil. Chem. Soc. 68: 509-514.
Banerjee, A., Sharma, R., Chist,i Y. and Banerjee, U.C. 2002. Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit. Rev. Biotechnol. 22: 245-279.
Basova, M.M. 2005. Fatty acid composition of lipids in microalgae. Int. J. Algae 7: 33-57.
Baud, S., Wuillème, S., Dubreucq, B., de Almeida, A., Vuagnat, C., Lepiniec, L., Miquel, M. and Rochat, C. 2007. Function of plastidial pyruvate kinases in seeds of Arabidopsis thaliana. Plant J. 52: 405-419.
Beach, D.H., Harrington, G.W. and Holz, G.G. 1970. The polyunsaturated fatty acids of marine and freshwater Cryptomonads. J. Protozool. 17: 501-510.
Beardall, J. 1981. CO2 accumulation by Chlorella saccharophila (Chlorophyceae) at low external pH: evidence for active transport of inorganic carbon at the chloroplast envelope. J. Phycol. 17: 371-373.
Beardall, J. and Raven, J.A. 1981. Transport of inorganic carbon and the CO2 concentrating mechanism in Chlorella emersonii (Chlorophyceae). Ibid. 17: 134-141.
Becker, E.W. 1994. Culture media. In: Microalgae: Biotechnology And Microbiology. Cambridge University Press, UK: 9-41.
Bejaoui, M., 1985. Interaction between NaCl and some phytohormones on soybean growth. J. Plant Physiol. 120: 95-110.
Bertoldi, F. C., Sant’Anna, E., da Costa Braga, M.V. and Oliveira, J.L.B. 2006. Lipids, fatty acids composition and carotenoids of Chlorella vulgaris cultivated in hydroponic wastewater. Grasas y Aceites 57(3): 270-274.
Bigogno, C., Khozin-Goldberg, I., Boussiba, S., Vonshak, A. and Cohen, Z. 2002. Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid. Phytochemistry 60: 497-503.
Bligh, E.G. and Dyer, W.J. 1959. A rapid method of total lipid extractions and purification. Can. J. Biochem. Physiol. 37: 911-917.
Borowitzka, M. 1988. Fats, oils and hydrocarbons. In: Microalgal Biotechnology (Borowitzka, M.A. and Borowitzka, L.J., eds.). Cambridge, UK: Cambridge University Press: 257-287.
Borowitzka, M.A. 1999. Pharmaceuticals and agrochemicals from microalgae. In: Chemicals from microalgae. (Cohen, Z., ed.). Taylor & Francis: 313-352.
Boussiba, S., Vonshak, A., Cohen, Z., Avissar, Y. and Richmond, A. 1987. Lipid and biomass production by the halotolerant microalga Nanochloropsis salina. Biomass 12: 37-47.
Brown, M.R., Dunstan, G.A., Norwood, S.J. and Miller, K.A. 1996. Effects of harvest stage and light on the biochemical composition of the diatom Thalassiosira pseudonana. J. Phycol. 32: 64-73.
Camacho Rubio, F., Acién Fernández, F.G., García Camacho, F., Sánchez Pérez, J.A. and Molina Grima, E. 1999. Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnol. Bioeng. 62: 71-86.
Camacho Rubio, F., García Camacho, F., Fernández Sevilla, J.M., Chisti, Y. and Molina Grima, E. 2003. A mechanistic model of photosynthesis in microalgae. Biotechnol. Bioeng. 81: 459-473.
Chen, F. 1996. High cell density culture of microalgae in heterotrophic growth. Trends Biotechnol. 14(11): 421-426.
Chetsumon, A., Isamu, M., Fusako, U., Kiyohito, Y., Yoshiharu, M. and Tadashi, M. 1994. Antibiotic production by the immobilized cyanobacterium, Scytonema sp. TISTR 8208, in a seaweed-type photobioreactor, J. Appl. Phycol. 6: 539-543.
Chisti, Y. 2007. Biodiesel from microalgae. Biotechnol. Adv. 25: 294-306.
Cho, S.H., Ji, S.C., Hur, S.B., Bae, J., Park, I.S. and Song, Y.C. 2007. Optimum temperature and salinity conditions for growth of green algae Chlorella ellipsoidea and Nannochloris oculata. Fish. Sci. 73: 1050-1056.
Chuecas, L. and Riley, J.P. 1969. Component fatty acids of the total lipid of some marine phytoplamkton. J. Mar. Biol. Assoc. UK, 49: 97-116.
Cid, A., Abalde, J. and Concepcion, H. 1992. High yield mixotrophic cultures of the marine microalga Tetraselmis suecica Butcher. J. appl. Phycol. 4: 31-37.
Cobelas, M.A. and Lechado, J.Z. 1989. Lipids in microalgae. A review. I. Biochemistry. Grasas y Aceites 40: 118-145.
Cohen, Z. 1999. Monodus subterraneus. In Chemicals From Microalgae (Cohen, Z., ed.). London: Taylor & Francis: 25-40.
Cohen, Z., Khozin-Goldberg, I., Adlrestein, D. and Bigogno, C. 2000. The role of triacylglycerols as a reservoir of polyunsaturated fatty acids for the rapid production of chloroplastic lipids in certain microalgae. Biochem. Soc. Trans. 28: 740-743.
Collins, R.P. and Kalnins, K. 1969. The fatty acids of Cryptomonas ovata var palustris. Phyton. 26: 47-50.
Colman, B. and Gehl, K. A. 1983. Physiological characteristics of photosynthesis in Porphyridium cruentum: evidence for bicarbonate transport in a unicellular red alga. J. Phycol. 19: 216-219.
Conover, S.A.M. 1975. Partitioning of nitrogen and carbon in cultures of the marine diatom Thalassiosira fluviatillis supplied with nitrate, ammonium, or urea. Mar. Biol. 32: 231-246.
Dahlqvist, A., Ståhl, U., Lenman, M., Banas, A., Lee, M., Sandager, L., Ronne, H. and Stymne, S. 2000. Phospholipid:diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc. Natl. Acad. Sci. USA 97: 6487-6492.
De Swaaf, M.E., de Rijk, T.C., Eggink, G. and Sijtsma, L. 1999. Optimisation of docosahexaenoic acid production in batch cultivation by Crypthecodinium cohnii. J. Biotechnol. 70: 185-192.
Dote, Y., Sawayama, S., Inoue, S., Minowa, T. and Yokoyama, S. 1994. Recovery of liquid fuel from hydrocarbon-rich microalgae by thermochemical liquefaction. Fuel 73: 1855-1857.
Dunahay, T.G., Jarvis, E.E., Dais, S.S. and Roessler, P.G. 1996. Manipulation of microalgal lipid production using genetic engineering. Appl. Biochem. Biotechnol. 57-58: 223-231.
Endo, H. and Shirota, M. 1972. Studies on the heterotrophic growth of Chlorella in a mass culture. In: Fermentation and Technology Today (Terui, G., ed.). Society Ferment. Technol.,Osaka, Japan: 533-541.
Endo, T., Schreiber, U. and Asada, K. 1995. Suppression of quantum yield of photosystem-II by hyperosmotic stress in Chlamydomonas reinhardtii. Plant Cell Physiol. 36(7): 1253-1258.
Fábregas, J., Maseda, A., Dominquez, A. and Otero, A. 2004. The cell composition of Nannochloropsis sp. changes under different irradiances in semicontinuous culture. World J. Microbiol. Biotechnol. 20: 31-35.
Fábregas, J., Morales, E.D., Lamela, T., Cabezas, B. and Otero, A. 1996. Mixotrophic productivity of the marine diatom Phaeodactylum tricornutum cultured with soluble fractions of rye, wheat and potato. World J. Microbiol. Biotechnol. 13: 349-351.
Falkowski, P.G. and Owens, T.G. 1980. Light–shade adaptation: two strategies in marine phytoplankton. Plant Physiol. 66: 592-595.
Falkowski, P.G. and Raven, J.A. 1997. An introduction to photosynthesisin aquatic system. In: Aquatic Photosynthesis (Malden, M.A., ed.). Blackwell Science: 1-32.
Gavrilescu, M. and Chisti, Y. 2005. Biotechnology-a sustainable alternative for chemical industry. Biotechnol. Adv. 23: 471-499.
Gehl, K. A. and Colman, B. 1985. Effect of external pH on the internal pH of Chlorella saccharophila. Plant Physiol. 77: 917-921.
Gehl, K.A., Colman, B. and Sposato, L.M. 1990. Mechanism of inorganic carbon uptake in Chlorella saccharophila: The lack of involvement of carbonic anhydrase. J. Exp. Bot. 41(232): 1385-1391.
Ghirardi, M.L., Zhang, J.P., Lee, J.W., Flynn, T., Seibert, M. and Greenbaum, E. 2000. Microalgae: a green source of renewable H2. Trends Biotechnol. 18: 506-511.
Ginzburg, B.Z. 1993. Liquid fuel (oil) from halophilic algae: a renewable source of non-polluting energy. Renew. Energy 3: 249-252.
Gopala Rao, P. and Sastry, K.S. 1972. B-group vitamins during seedling growth of late and early varieties of groundnut Arachis hypogea L. Indian Bot. Soc. 51: 155-161.
Grossman, A.R., Croft, M., Gladyshev, V.N., Merchant, S.S., Posewitz, M.C., Prochnik, S. and Spalding, M.H. 2007 Novel metabolism in Chlamymdomonas through the lens of genomics. Curr. Opin. Plant Biol. 10: 190-198.
Guil-Guerrero, J.L., Navarro-Juárez, R., López-Martínez, J.C., Campra-Madrid, P. and Rebolloso-Fuentes, M.M. 2004. Functionnal properties of the biomass of three microalgal species. J. Food Eng. 65: 511-517.
Guschina, I.A. and Harwood, J.L. 2006. Lipids and lipid metabolism in eukaryotic algae. Prog. Lipid Res. 45: 160-186.
Harris, R.V., Harris, P. and James, A.T. 1965. The fatty acid metabolism of Chlorella vulgaris. Biochim. Biophys. Acta. 106: 465-473.
Harwood, J.L. 1998. Membrane lipids in algae. In Lipids in Photosynthesis: Structure, Function and Genetics (Siegenthaler, P.A. and Murata, N., eds). Dordrecht, The Netherlands: Kluwer Academic Publishers: 53-64.
Hill, A., Feinberg, A., McIntosh, R., Neeman, B. and Terry, K. 1984. Fuels from microalgae: technical status, potential and research issues, Report SERI/SP-231-255. Golden, CO: Solar Energy Research Institute.
Hsieh, C.H. and Wu, W.T. 2009. Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresour. Technol. 100: 3921-3926.
Hu, Q. 2004. Environmental effects on cell composition. In Handbook of Microalgal Culture (Richmond, A., ed.). Oxford: Blackwell: 83-93.
Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M. and Darzins, A. 2008. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54: 621-639.
Hu, Q., Zhang, C.W. and Sommerfeld, M. 2006. Biodiesel from Algae: Lessons Learned Over the Past 60 Years and Future Perspectives. Juneau, Alaska: Annual Meeting of the Phycological Society of America: 40-41.
Iida, I., Nakahara, T., Yokochi, T., Kamisaka, Y., Yagi, H., Yamaoka, M. and Suzuki, O. 1996. Improvement of docosahexaenoic acid production in a culture of Thraustochytrium aureum by medium optimization. J. Ferment. Bioeng. 81: 76-78.
Illman, A.M., Scragg, A.H. and Shales, S.W. 2000. Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb. Technol. 27: 631-635
Iwamoto, H. 2004. Industrial production of microalgal cell-mass and secondary products-Major industrial species. In Handbook of Microalgal Culture (Richmond, A., ed.). Oxford: Blackwell: 255-263
Janssen, M.G.J. 2002. Chapter 1 Introduction. In: Cultivation of microalgae: effect of light/dark cycles on biomass yield (Janssen, M.G.J., ed.). Wageningen, The Netherlands: 9-27.
Jaworski, J.G., Clough, R.C. and Barnum, S.R. 1989. A cerulenin insensitive short chain 3-ketoacyl acyl carrier protein synthase in Spinacia oleracea leaves. Plant Physiol. 90: 41-44.
Kalin, M., Wheeler, W.N. and Meinrath, G. 2005. The removal of uranium from mining waste water using algal/microbial biomass. J. Environ. Radioact. 78: 151-177.
Kandler, O. and Sironval C. 1959. Photoxidation processes in normal green Chlorella cells. II. Effects on metabolism. Biochim. Biophys. Acta. 33: 207-215.
Kapdan, I.K. and Kargi, F. 2006. Bio-hydrogen production from waste materials. Enzyme Microb. Technol. 38: 569-582.
Karube, I., Takeuchi, T. and Barnes, D. J. 1992. Biotechnological reduction of CO2 emissions. In Modern Biochemical Engineering (Fiechter, A., ed.). Adv. Biochem. Eng. Biotechnol., 46: 63-79.
Kawachi, M., Inouye, I., Honda, D., O’Kelly, C.J., Bailey, J.C., Bidigare, R.R. and Andersen, R.A. 2002. The pinguiphyceae classis nova, a new class of photosynthetic stramenopiles whose members produce large amounts of omega-3 fatty acids. Phycol. Res. 50: 31-47.
Kenyon, C.N. 1972. Fatty acid composition of unicellular strains of blue-green algae. J. Bacteriol. 109: 827-834.
Kessler, E. 1985. Upper limits of temperature for growth in Chlorella (Chlorophyceae). Plant Syst. Evol. 151: 67-71.
Khotimchenko, S.V. and Yakovleva, I.M. 2005. Lipid composition of the red alga Tichocarpus crinitus exposed to different levels of photon irradiance. Phytochemistry 66: 73-79.
Khozin-Goldberg, I. and Cohen, Z. 2006. The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry 67: 696-701.
Khozin-Goldberg, I., Bigogno, C., Shrestha, P. and Cohen, Z. 2002. Nitrogen starvation induces the accumulation of arachidonic acid in the freshwater green alga Parietochloris incisa (Trebuxiophyceae). J. Phycol. 38: 991-994.
Kodandaramaiah, J. and Gopala Rao, P. 1984. Photosynthesis by isolated chloroplasts of clusterbeans Cyamopsis tetragonoloba (L.) Taub. As influenced by B-vitamins. Indian J. Plant Physiol. 27: 166-171.
Kosaric, N. and Velikonja, J., 1995. Liquid & gaseous fuels from biotechnology: challenge and opportunities. FEMS Microbiol. Lett. 16: 111-142.
Lang, X., Dalai, A.K., Bakhshi, N.N., Reaney, M.J. and Hertz, P.B. 2001. Preparation and characterization of bio-diesels from various bio-oils. Bioresour. Technol. 80: 53-62.
Lee, C.G. and Palsson B.O. 1994. High-density algal photobioreactors using light-emitting diode. Biotechnol. Bioeng. 44: 1161-1167.
Lee, R.F. and Loeblich, A.R. 1971. Distribution of 21:6 hydrocarbon and its relationship to 22:6 fatty acid in algae. Phytochemistry 10: 593-602.
Lee, Y. and Tay, H.S. 1991. High CO2 partial pressure depresses productivity and bioenergetic growth yield of Chlorella pyrenoidosa culture. J. Appl. Phycol. 3(2): 95-101.
Li, Y., Horsman, M., Wang, B., Wu, N., Lan, C.Q. 2008. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl. Microbiol. Biotechnol. 81, 629-636.
Liang, Y., Beardall, J. and Heraud, P. 2006. Changes in growth, chlorophyll fluorescence and fatty acid composition with culture age in batch cultures of Phaeodactylum tricornutum and Chaetoceros muelleri (Bacillariophyceae). Bot. Mar. 49: 165-173.
Livne, A. and Sukenik, A. 1990. Acetyl coenzyme A carboxylase from the marine Prymnesiophyte Isochrysis galbana. Plant Cell Physiol. 31: 851-858.
Lynch, D.V. and Thompson, G.A. 1982. Low temperature-induced alterations in the chloroplast and microsomal membranes of Dunaliella salina. Plant Physiol. 69: 1369-1375.
Ma, F. and Hanna, M.A. 1999. Biodiesel production: a review. Bioresour. Technol. 70: 1-15.
Mansour, M.P., Volkman, J.K. and Blackburn, S.I. 2003. The effect of growth phase on the lipid class, fatty acid and sterol composition in the marine dinoflagellate, Gymnodinium sp. in batch culture. Phytochemistry 63: 145-153.
Mansour, M.P., Volkman, J.K., Jackson, A.E. and Blackburn, S.I. 1999. The fatty acid and sterol composition of five marine dinoflagellates. J. Phycol. 35: 710-720.
Masojidek, J., Koblizek, M. and Torzillo, G. 2004. Photosynthesis in microalgae. In: Handbook of Microalgal Culture: Biotechnology and Applied Phycology (Richmond, A., ed.). Blackwell Science. UK: 20-33.
Meier, R.L. 1955. Biological cycles in the transformation of solar energy into useful fuels. In: Solar Energy Research (Daniels, F. and Duffie, J.A., eds). Madison, WI: University of Wisconsin Press: 179-183.
Melis, A. 2002. Green alga hydrogen production: progress, challenges and prospects. Int. J. Hydrogen Energy 27: 1217-1228.
Menezes-Benavente, L., Teixeira, F.K., Kamei, C.L.A. and Margis- Pinheiro, M. 2004. Salt stress induces altered expression of gene encoding antioxidant enzymes in seedlings of a Brazilian indica rice (Oryza sativa L.). Plant Sci. 2: 323-331.
Merchant, S.S., Prochnik, S.E. and Vallon, O. 2007. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318: 245-251.
Merzlyak, M.N., Chivkunova, O.B., Gorelova, O.A., Reshetnikova, I.V., Solovchenko, A.E., Khozin-Goldberg, I. and Cohen, Z. 2007. Effect of nitrogen starvation on optical properties, pigments, and arachidonic acid content of the unicellular green alga Parietochloris incisa (Trebouxiophyceae, Chlorophyta). J. Phycol. 43: 833-843.
Metting, F.B. 1996. Biodiversity and application of microalgae. J. Ind. Microbiol. 17: 477-489.
Metzger, P. and Largeau, C. 2005. Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl. Microbiol. Biotechnol. 66: 486-496.
Miao, X. and Wu, Q. 2006. Biodiesel production from heterotrophic microalgal oil. Bioresour. Technol. 97: 841-846.
Miller, A. G. and Colman, B. 1980. Evidence for HCO3- transport by the bluegreen alga (Cyanobacterium) Coccochloris peniocystis. Plant Physiol. 65: 397-402.
Milne, T.A., Evans, R.J. and Nagle, N. 1990. Catalytic conversion of microalgae and vegetable oils to premium gasoline, with shapeselective zeolites. Biomass 21: 219-232.
Minowa, T., Yokoyama, S.Y., Kishimoto, M. and Okakurat, T. 1995. Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction. Fuel 74: 1735-1738.
Moroney, J.V., Husic, H.D. and Tolbert, N.E. 1985. Effect of carbonic anhydrase inhibitors on inorganic carbon accumulation by Chlamydomonas reinhardtii. Ibid. 79: 177-183.
Mühling, M., Belay, A. and Whitton, B.A. 2005. Variation in fatty acid composition of Arthrospira (Spirulina) strains. J. Appl. Phycol. 17: 137-146.
Munns, R., Greenway, H. and Krist, G.O. 1983. Halotolerant Eukaryotes. In: Encyclopedia of Plant Physiology (Lange, O.L., Noble, P.S. Osmond, C.B. and Ziegler, H., eds.). C, Springer- Verlag, Berlin, Heidelberg, New York 12: 59-136.
Munoz, R. and Guieysse, B. 2006. Algal–bacterial processes for the treatment of hazardous contaminants: a review. Water Res. 40: 2799-2815.
Nagle, N. and Lemke, P. 1990. Production of methyl-ester fuel from microalgae. Appl. Biochem. Biotechnol. 24(5): 355-361.
Napolitano, G.E. 1994. The relationship of lipids with light and chlorophyll measurement in freshwater algae and periphyton. J. Phycol. 30: 943-950.
Ogbonna, J.C., Masui, H. and Tanaka, H. 1997. Sequential heterotrophic/ autotrophic cultivation – An efficient method of producing Chlorella biomass for health food and animal feed. J. appl. Phycol. 9: 359-366.
Oh-Hama, T. and Miyachi, S. 1988. Chlorella. In: Microalgal Biotechnology (Borowitzka, M.A. and Borowitzka, L.J., eds.). Cambridge, UK: Cambridge University Press: 3-26.
Ohlrogge, J. and Browse, J. 1995. Lipid biosynthesis. Plant Cell 7: 957-970.
Ohmori, M., Wolf, F.R. and Bassham, J.A. 1984. Botryococcus braunii carbon/nitrogen metabolism as affected by ammonia addition. Arch. Microbiol. 140: 101-106.
Oliveira, M.A.S., Monteiro, M.P., Robbs, P.G. and Leite, S.G. 1999. Growth and chemical composition of Spirulena maxima and Spirulena platensis biomass at different temperatures. Aquacult. Int. 7: 261-275.
Orcutt, D.M. and Patterson, G.W. 1974. Effect of light intensity upon Nitzchia closternium (Cylindrotheca fusiformis). Lipids 9: 1000-1003.
Orcuut, D.M. and Patterson, G.W. 1975. Sterol, fatty acid and elemental composition of diatoms grown in chemically defined media. Comp. Biochem. Physiol. 50B: 579-583.
Otsuka, H. 1961. Changes of lipid and carbohydrate contents of Chlorella cells during the sulfur starvation, as studied by the technique of synchronous culture. J. Gen. Appl. Microbiol. 7: 72-77.
Parker, P.L., van Baalen, C. and Maurer, L. 1967. Fatty acids in eleven species of blue-green algae: geochemical significance. Science 155: 707-708.
Patterson, G. 1970. Effect of temperature on fatty acid composition of Chlorella sorokiniana. Lipids 5: 597-600.
Peeler, T.C., Stephenson, M.B., Einsphar, K.J., and Thompson, G.A., Jr. 1989. Lipid characterization of an enriched plasma membrane fraction of Dunaliella salina grown in media of varying salinity. Plant Physiol. 89: 970-976.
Post, A.F., Dubinsky, Z., Wyman, K. and Falkowski, P.G. 1985. Physiological responses of a marine planktonic diatom to transitions in growth irradiance. Mar. Ecol. Prog. Series 25: 141-149.
Pugh, P.R. 1971. Changes in the fatty acid composition of Coscinodiscus eccentricus with culture-age and salinity. Mar. Biol. 11: 118-124.
Radi, A.F., Shaddad, M.A., Abdel-Rahman, A.M. and Azooz, M.M. 1989. Physiological effect of ascorbic acid and pyroxene on Lupinus termis and Vicia faba plants growth in salinized soils. 2. Changes in carbohydrates and nitrogen metabolism. Sohag pure and Appl. Sci. Bull. Fac. Sci. 5: 161-181.
Ratledge, C. 1988. An overview of microbial lipids. In Microbial Lipids, Vol. 1 (Ratledge, C. and Wilkerson, S.G., eds). New York: Genet. Eng.: 3-21.
Reitan, K.I., Rainuzzo, J.R. and Olsen, Y. 1994. Effect of nutrient limitation on fatty acid and lipid content of marine microalgae. J. Phycol. 30: 972-979.
Renaud, S.M. and Parry, D.L. 1994. Microalgae for use in tropical aquaculture-Effect of salinity on growth, gross chemical-composition and fatty-acid composition of 3 species of marine microalgae. J. Appl. Phycol. 6(3): 347-356..
Renaud, S.M., Thinh, L.V., Lambrinidis, G. and Parry, D.L. 2002. Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 211: 195-214.
Renaud, S.M., Zhou, H.C., Parry, D.L., Loung-Van, T. and Woo, K.C. 1995. Effect of temperature on the growth, total lipid content and fatty acid composition of recently isolated tropical microalgae Isochrysis sp., Nitzschia closterium, Nitzschia paleacea, and commercial species Isochrysis sp., (clone T.ISO). J. Appl. Phycol. 7: 595-602.
Richmond, A. 2004. Biologicla principles of mass cultivation. In Handbook of Microalgal Culture (Richmond, A., ed.). Oxford: Blackwell:125-177.
Roessler, P.G. 1988. Changes in the activities of various lipid and carbohydrate biosynthetic enzymes in the diatom Cyclotella cryptica in response to silicon deficiency. Arch. Biochem. Biophys. 267: 521-528.
Roessler, P.G. 1990a. Environmental control of glycerolipid metabolism in microalgae: commercial implications and future research directions. J. Phycol. 26: 393-399.
Roessler, P.G. 1990b. Purification and characterization of acetyl CoA carboxylase from the diatom Cyclotella cryptica. Plant Physiol. 92: 73-78.
Roessler, P.G. and Ohlrogge, J.B. 1993. Cloning and characterisation of the gene that encodes acetyl-coenzyme A carboxylase in the alga cyclotella cryptica. J. Biol. Chem. 268: 19254-19259.
Roessler, P.G., Brown, L.M., Dunahay, T.G., Heacox, D.A., Jarvis, E.E., Schneider, J.C., Talbot, S.G. and Zeiler, K.G. 1994. Genetic engineering approaches for enhanced production of biodiesel fuel from microalgae. In Enzymatic Conversion of Biomass for Fuels Production (Himmel, M.E., Baker, J. and Overend, R.P., eds). American Chemical Society: 256-270.
Ruuska, S.A., Girke, T., Benning, C. and Ohlrogge, J.B. 2002. Contrapuntal networks of gene expression during Arabidopsis seed filling. Plant Cell 14: 1191-1206.
Samejima, H. and Myers, J. 1958. On the heterotrophic growth of Chlorella pyrenoidosa. J. gen. Microbiol. 18: 107-117.
Sato, N. and Murata, N. 1980. Temperature shift-induced responses in lipids in the blue-green alga, Anabaena variabilis: the central role of diacylmonogalactosylglycerol in term-adaptation. Biochim. Biophys. Acta 619: 353-366.
Sato, N., Hagio, M., Wada, H. and Tsuzuki, M. 2000. Environmental effects on acidic lipids of thylakoid membranes. In Recent Advances in the Biochemistry of Plant Lipids (Harwood, J.L. and Quinn, P.J., eds). London: Portland Press Ltd,: 12-914.
Satu, N. and Murata, N. 1980. Temperature shift-induced responses in lipids in the blue-green alga, Anabaena variabilis. The central role of diacylmonoalactosylglycerol in thermo adaption. Biochim. Biophys. Acta 619: 353-365.
Sawayama, S., Inoue, S., Dote, Y. and Yokoyama, S.Y. 1995. CO2 fixation and oil production through microalga. Energy Convers. Manag. 36: 729-731.
Schenk, P.M., Thomas-Hall, S.R., Stephens, E., Marx, U.C., Mussgnug, J.H., Posten, C., Kruse, O. and Hankamer, B. 2008. Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg. Res. 1: 20-43.
Schwender, J. and Ohlrogge, J.B. 2002. Probing in vivo metabolism by stable isotope labeling of storage lipids and proteins in developing Brassica napus embryos. Plant Physiol. 130: 347-361.
Scragg, A. H., Spiller, L. and Morrison, J., 2003. The effect of 2,4-dichlorophenol on the microalga Chlorella VT-1. Enzyme Microb. Technol. 32(5): 616-622.
Seto, A., Wang, H.L. and Hesseltine, C.W. 1984. Culture conditions affect eicosapentaenoic acid content of Chlorella minutissima. JAOCS 61(5): 892-894.
Shaddad, M.A., Ahmed, A.M., Abdel-Rahman, A.M. and Azooz, M.M. 1990. Response of seeds of Lupinus termis and Vicia faba to the interactive effect of salinity and ascorbic acid or pyridoxine. Plant and Soil 122: 177-183.
Sheehan, J., Dunahay, T., Benemann, J. and Roessler, P. 1998. A look back at the U.S. Department of Energy's Aquatic Species Program-biodiesel from algae. National Renewable Energy Laboratory, Golden, CO, Report NREL/TP-580–24190.
Shelp, B. T. and Canvin, D. T. 1985. Inorganic carbon accumulation and photosynthesis by Chlorella pyrenoidosa. Can. J. Bot. 63: 1249-1254.
Silva, H.J. and Pirt, S.J. 1984. Carbon dioxide inhibition of photosynthetic growth of Chlorella. J. Gen. Microbiol. 130: 2822-2838.
Sironval, C. and Kandler, O. 1958. Photoxidation processes in normal green Chlorella cells. I. The bleaching process. Biochem. Biophys. Acta 29: 359-368.
Soeder, C.J. 1986. A historical outline of allied algology In: Handbook of Microalgal Mass Culture. (Richmond, A., ed.), CRC Press, Boca Raton, Florida: 25-41.
Somerville, C. 1995. Direct tests of the role of membrane lipid composition in low-temperature-induced photoinhibition and chilling sensitivity in plants and cyanbacteria. Proc. Natl. Acad. Sci. USA 92: 6215-6218.
Sorokin, C. and Krauss, R.W. 1962. Effects of temperature & illuminance on Chlorella growth uncoupled from cell division. Plant Physiol. 37(1): 37-42.
Spoehr, H.A. and Milner, H.W. 1949. The chemical composition of Chlorella; effect of environmental condition. Plant Physiol. 24: 120-149.
Spolaore, P., Joannis-Cassan, C., Duran, E. and Isambert, A. 2006. Commercial applications of microalgae. J. Biosci. Bioeng. 101: 87-96.
Suen, Y., Hubbard, J.S., Holzer, G. and Tornabene, T.G. 1987. Total lipid production of the green alga Nannochloropsis sp. QII under different nitrogen regimes. J. Phycol. 23: 289-297.
Sukenik, A. 1999. Production of eicosapentaenoic acid by the marine eustigmatophyte Nannochloropsis. In Chemicals from Microalgae (Cohen, Z., ed.). London: Taylor & Francis: 41-56.
Sukenik, A. and Livne, A. 1991. Variations in lipid and fatty acid content in relation to acetyl CoA carboxylase in the marine prymnesiophyte Isochrysis galbana. Plant Cell Physiol. 32: 371-378.
Sukenik, A., Wyman, K.D., Bennett, J. and Falkowski, P.G. 1987. A novel mechanism for regulating the excitation of photosystem II in green alga. Nature 327: 704-707.
Sukenik, A., Yamaguchi, Y. and Livne, A. 1993. Alterations in lipid molecular species of the marine eustigmatophyte Nannochloropsis sp. J. Phycol. 29: 620-626.
Suresh, B. and Ravishankar, G.A. 2004. Phytoremediation — a novel and promising approach for environmental clean-up. Crit. Rev. Biotechnol. 24: 97-124.
Syrett, P.J. 1981. Nitrogen metabolism of microalgae. Can. Bull. Fish. Aquat. Sci. 210: 182-210.
Takagi, M., Watanabe, K., Yamaberi, K. and Yoshida, T. 2000. Limited feeding of potassium nitrate for intracellular lipid and triglyceride accumulation of Nannochloris sp. UTEX LB1999. Appl. Microbiol. Biotechnol. 54: 112-117.
Tam, N.F.Y. and Wong, Y.S. 1996. Effect of ammonia concentrations on growth of Chlorella vulgaris and nitrogen removal from media. Bioresour. Technol. 57 (1): 45-50.
Thompson, G.A. 1996. Lipids and membrane function in green algae. Biochim. Biophys. Acta 1302: 17-45.
Thompson, J.F. and Muenster, A.M.E. 1971. Separation of the Chlorella ATP:urea amidolyase into two components. Biochem. Biophys. Res. Commun. 43: 1049-1055.
Thompson, P. A., Guo, M. and Harrison, P. J. 1992a. Effects of variation of temperature: I. On the biochemical composition of eight species of marine phytoplankton. J. Phycol. 28: 481-488.
Thompson, P. A., Guo, M., Harrison, P. J. and Whyte, J. N. C. 1992b. Effects of variation in temperature: II. On the fatty acid composition of eight species of marine phytoplankton. J. Phycol. 28: 488-497.
Tomaselli, L., Giovannetti, L., Sacchi, A. and Bochi, F. 1988. Effects of temperature on growth and biochemical composition in Spirulina platensis strain M2. In: Algal Biotechnology (Stadler, T., Mellion, J., Verdus, M. C., Karamanos, Y., Morvan, H. and Christiaen, D., Eds.). Elsevier Applied Science, London: 303-314.
Tonon, T., Larson, T.R. and Graham, I.A. 2002. Long chain polyunsaturated fatty acid production and partitioning to triacylglycerols in four microalgae. Phytochemistry 61: 15-24.
Urda Cardona, J. 1997. Análisis del crecimiento y producción de ácido eicosapentaenoico en cultivos internos y externos de Phaeodactylum tricornutum UTEX 640. Doctoral Thesis. University of Almería, Spain.
Vaishampayan, A., Sinha, R.P., Hader, D.P., Dey, T., Gupta, A.K. and Bhan, U. 2001. Cyanobacterial biofertilizers in rice agriculture. Bot. Rev. 67: 453-516.
Vicente, G., Martinez, M. and Aracil, J. 2004. Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresour. Technol. 92: 297-305.
Volkman, J.K., Smith, D.J., Eglinton, G., Forsberg, T.E.V. and Corner, E.D.S. 1981. Sterol and fatty acid composition of four marine haptophycean algae. J. Mar. Biol. Assoc. UK 61: 509-527.
von Denffer, D. 1949. Die planksche Massenkultur pennatar Grunddiatomeen. Arch. Mikrobiol. 14: 159-202.
Wada, H. and Murata, N. 1998. Membrane lipids in cyanobacteria. In Lipids in Photosynthesis: Structure, Function and Genetics (Siegenthaler, P.A. and Murata, N., eds). Dordrecht, The Netherlands: Kluwer Academic Publishers: 65-81.
Walne, P.R. 1974. Culture of Bivalve Molluscs. 50 years' experience at conwy. Fishing News Ltd, England: 173.
Weete, J.D., Kim H., Gandhi, S.R., Wang, Y., and Dute, R. 1997. Lipids and ultrastructure of Thaustochytrium sp. ATCC 26185. J. Lipids 32: 830-845.
Wu, J., Neimanis, S. and Heber, U. 1991. Photorespiration is more effective than the mehler reaction in protecting the photosynthetic apparatus against photoinhibition. Bot. Acta 104(4): 283-291.
Xu, N., Zhang, X., Fan, X., Han, L., Zeng, C. 2001. Effects of nitrogen source and concentration pn growth rate and fatty acid composition of Ellipsoidion sp. (Eustigmatophyta). J. Appl. Phycol. 13: 463-469.
Xu, X.Q. and Berdall, J. 1997. Effect of salinity on fatty acid composition of a green microalgae from an Antarctic hypersaline lake. Phytochemistry 45: 655-658.
Yongmanitchai, W. and Ward, O.P. 1991. Growth and omega-3 fatty acid production by Phaeodactylum tricornnyum under different culture conditions. Appl. Environ. Microbiol. 57: 419-426.
Yun, Y.S., Park, J.M. and Yang, J.W. 1996. Enhancement of CO2 tolerance of Chlorella vulgaris by gradual increase of CO2 concentration. Biotechnol. Tech. 10(9): 713-716.
Zhang, Y., Dube, M.A., McLean, D.D. and Kates, M. 2003. Biodiesel production from waste cooking oil. 1. Process design and technological assessment. Bioresour. Technol. 89: 1-16.
(此全文限內部瀏覽)
電子全文
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *