帳號:guest(3.16.15.149)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):阮文祺
作者(外文):Juan, Un-Chi
論文名稱(中文):三環燃燒器搭配非單一當量比之貧油燃燒研究
論文名稱(外文):Lean combustion with non-uniform equivalence ratio in three-ring combustors
指導教授(中文):楊鏡堂
陳榮順
指導教授(外文):Yang, Jing-Tang
Chen, Rong-Shun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:9633515
出版年(民國):98
畢業學年度:97
語文別:中文
論文頁數:115
中文關鍵詞:貧油燃燒
相關次數:
  • 推薦推薦:0
  • 點閱點閱:398
  • 評分評分:*****
  • 下載下載:3
  • 收藏收藏:0
本文以貧油燃燒為研究主軸,利用實驗方法探討三環燃燒器中,透過三股環形預混火焰間交互作用,拓展貧油可燃極限之效果,並以此為參考基礎,獲得三環非單一當量比之燃燒流場特性,包括火焰型態、溫度場分佈、流場結構、燃燒氣體濃度。結果發現,三股火焰間之交互作用行為,確實有助於貧油燃燒進行,並可拓展貧油燃燒極限,達超貧油燃燒之目標。
二股接近貧油可燃極限之環形火焰彼此輔助燃燒進行,若內環火焰燃料比例過低,會影響外環原先可燃之燃氣,導致整體火焰熄滅。利用內環當量比較高之火焰幫助外環當量比低之燃氣,能使原先不可燃之外環燃氣變得可燃。在流場穩定之大型三環燃燒器中,設定出口流速1 m/s,總當量比及外環當量比0.6,改變內、中環當量比可歸納出四種火焰型態,分別是外無焰、中高型、中低型、及內無焰。其中,中高型中環火焰f =0.45已超出其本身貧油可燃極限0.6,達到利用火焰間保護與交互作用,拓展貧油可燃極限之目的。
四種火焰型態之燃燒特性與當量比息息相關,顯示主宰著初始火焰強度的當量比,影響各項燃燒及流場特性。四種火焰型態中,外無焰溫度分佈不均,一氧化碳生成量過高,燃料轉換率不佳,不是理想的燃氣搭配。中高型、中低型、及內無焰,在溫度場分佈、汙染物濃度表現相近,而中高型燃料轉換率最高,表現優於其餘二者。
目錄
摘要 i
Abstract ii
目錄 iii
表目錄 vii
圖目錄 viii
符號說明 xiii
第一章 前言 1
第二章 文獻回顧 3
2-1 燃燒基本概念 3
2-1-1 燃料選擇 4
2-1-2 燃燒模式 5
2-1-3 火焰模式 7
2-1-4火焰流場結構 8
2-1-5 汙染物 9
2-2 貧油燃燒特性 10
2-3 可燃極限 12
2-4 拓展貧油可燃極限 13
2-4-1觸媒反應 13
2-4-2 非均質燃料燃燒 14
2-4-3 預熱效應 14
2-4-4 燃燒器設計 15
2-5 火焰交互作用 16
第三章 研究方法 18
3-1 火焰型態 19
3-1-1 燃燒模式 19
3-1-2 當量比 20
3-1-3 火焰型態觀測 21
3-1-3.1 燃燒器外型 21
3-1-3.2 實驗設備配置 23
3-1-3.3 氣體供應系統 24
3-1-3.4 流量控制系統 25
3-1-3.5 影像記錄系統 26
3-1-3.6 外罩 26
3-2 貧油可燃極限 27
3-3 PIV流場 28
3-3-1 PIV簡介 28
3-3-2 PIV原理 30
3-3-3 PIV流場觀測 32
3-3-3.1 PIV實驗設備系統 33
3-3-3.2 追縱粒子 33
3-3-3.3 粒子導入設備 34
3-3-3.4 雷射系統 35
3-3-3.5 透鏡組 36
3-3-3.6 高速攝影機 36
3-4 溫度場量測 37
3-5 燃燒氣體量測 40
第四章 結果與討論 44
4-1 不同環間距之三環燃燒器可燃範圍 44
4-2 不同環間距燃燒器之火焰型態 46
4-3 小型三環燃燒器 48
4-3-1 各環之火焰型態 48
4-3-2 各環之火焰高度 51
4-3-3 火焰非單一當量比搭配 52
4-4 中型三環燃燒器 57
4-4-1各環之火焰型態 57
4-4-2 各環之火焰高度 60
4-4-3 火焰非單一當量比搭配 60
4-5 大型三環燃燒器 64
4-5-1各環之火焰型態 65
4-5-2 各環之火焰高度 67
4-5-3 火焰非單一當量比搭配 68
4-5-4 火焰溫度場 71
4-5-5 燃燒流場 82
4-5-6 燃燒氣體 99
4-5-6.1 氧氣(O2) 100
4-5-6.2 一氧化碳(CO) 102
4-5-6.3 二氧化碳(CO2) 103
4-5-6.4 氮氧化物(NOx) 105
第五章 結論與展望 108
5-1 結論 108
5-2 未來展望 110
第六章 參考文獻 111
Bennett, B. A. V., McEnally, C. S., Pfefferle, L. D., and Smooke, M. D., 2000, “Computational and Experimental Study of Axisymmetric Coflow Partially Premixed Methane/Air Flames,” Combustion and Flame, Vol. 123, pp. 522-546.
Blanc, M. V., Guest, P. G., von Elbe. G., and Lewis, B., 1949, “Ignition of Explosive Gas Mixtures by Electric Sparks. III. Minimum Ignition Energies and Quenching Distances of Mixtures of Hydrocarbons and Ether with Oxygen and Inert Gases,” Third Symposium (International) on Combustion, Combustion Institute, pp. 363-367.
Bowman, C. T., Hanson, R. K., Davidson, D. F., Gardiner, W. C., Jr., Lissianski, V., Smith, G. P., Golden, D. M., Frenklach, M., and Goldenberg, 1998, M., GRI-Mech Home Page, retrieved on 2008/6/13, report available at: http://www.me.berkeley.edu/gri_mech/.
Cengel, Y. A. and Boles, M. A., 2002, Thermodynamics, An Engineering Approach, 4th edition in SI units, McGraw-Hill.
Cheng, T. S., Chao, Y. C., Wu, D. C., Hsu, H. W., and Yuan, T., 2001, “Effects of Partial Premixing on Pollutant Emissions in Swirling Methane Jet Flames,” Combustion and Flame, Vol. 125, pp. 865-878.
Dantec, 2000, Flowmanager software and Introduction to PIV Instrumentation.
Disimile, P. J., Savory, E., and Toy, N., 1995, “Mixing Characteristic of Twin Impinging Circular Jets,” Journal of Propulsion and Power, Vol. 11, No. 6, pp. 1118-1124.
Domingo, P. and Vervisch, L., 1996, “Triple Flame and Partially Premixed Combustion in Autoignition of Non-premixed Turbulent Mixtures,” Twenty-sixth Symposium (International) on Combustion, Combustion Institute, pp. 233-240.
Glassman, I., 1987, Combustion, 2nd edition, Academic Press, New York.
Guo, H., Liu, F., and Smallwood, G. J., 2005, “A Numerical Study on NOx Formation in Laminar Counterflow CH4/air Ttriple Flames,” Combustion and Flame, Vol. 143, pp. 282-298.
Guo, H., Smallwood, G. J., Liu, F., Ju, Y., and Gülder, Ö. L., 2005, “The Effect of Hydrogen Addition on Flammability Limit and NOx Emission in Ultra-lean Counterflow CH4/air Premixed Flames,” Thirtieth Symposium (International) on Combustion, Combustion Institute, pp. 303-311.
Hawkes, E. R., and Chen, J. H., “Direct Numerical Simulation of Hydrogen-Enriched Lean Premixed Methane-Air Flames,” Combustion and Flame, Vol. 138, pp. 242-258.
Kanury, A., 1975, Introduction to Combustion Phenomena, Gordon and Breach Science Publishers, New York.
Kawaguchi, O., Kinoshita, J., and Sato, G. T., 1985, “Premixed Flames at a Multi-Slit Burner,” 日本機械學會論文集 (B篇),51卷,467號。
Kenneth, L. C., Issac, A. Z., Gregory M. G., Richard A. T., and Martin, H., 2000, “Flammability of Methane, Propane, and Hydrogen Gases,” Journall of Loss Prevention, Vol. 13, pp. 327-340.
Kuo, K. K., 2005, Principles of Combustion, 2nd edition, John Wiley & Sons, Inc.
Law, C. K., 2006, Combustion Physics, Cambridge University Press.
Li, X. and Tankin, R. S., 1987, “A Study of Cold and Combusting Flow Around Bluff-Body Combustors,” Combustion Science and Technology, Vol. 52, pp. 173-206.
Li, S. C. and Williams, F. A., 1999, “NOx Formation in Two-Stage Methane-Air Flames,” Combustion and Flame, Vol. 118, pp. 399-414.
Liao, S. Y., Cheng, Q., Jiang, D. M., and Gao, J., 2005, “Experimental Study of Flammability Limits of Natural Gas-Air Mixture,” Journal of Hazardous Materials, Vol. B119, pp. 81-84.
Masri, A. R. And Bilger, R. W., 1984, “Turbulent Diffusion Flames of Hydrocarbon Fuels Stabilized on a Bluff Body,” Twentieth Symposium (International) on Combustion, Combustion Institute, pp. 319-326.
Mungekar, H. P. and Atreya, A., 2006, “Effect of Partial Premixing on the Sooting Structure of Methane Flames,” Combustion and Flame, Vol. 144, pp. 336-348.
Nishioka, M., Ishigami, Y., Horii, H., Umeda Y., and Nakamura, Y., 2006, “NOx Reduction Mechanism of a Methane–Air Smithells Flame,” Combustion and Flame, Vol. 147, pp. 93-107.
NYMEX, 2007, http://tonto.eia.doe.gov/dnav/pet/pet_pri_spt_sl_d.htm
Ren, J. Y., Egolfopoulos, F. N., and Tsotsis, T. T., 2002, “NOx Emission Control of Lean Methane-Air Combustion With Addition of Methane Reforming Products,” Combustion Science and Technology, Vol. 174, pp. 181-205.
Sato J., 1997, “Combustion in High Temperature Air,” 1st ASPACC, Osaca, pp. 286-289.
Sazonov, V. A., Ismagilov, Z. R., and Prokudina, N. A., 1999, “Catalytic Combustion of Lean Methane-Air Mixtures,” Catalysis Today, Vol. 47, pp.149-153.
Smith, L. L., Karim, H., Castaldi, M. J., Etemad, S., and Pfefferle, W. C., 2006, “Rich-Catalytic Lean-burn Combustion for Fuel-Flexible Operation with Ultra Low Emissions,” Catalysis Today, Vol. 117, pp.438-446.
Ting, D. S.-K. and Reader, G. T., 2005, “Hydrogen Peroxide for Improving Premixed Methane–Air Combustion,” Energy, Vol. 30, pp.313-322.
Turns, S. R., 2000, An Introduction to Combustion, Concepts and Application, 2nd edition, McGraw-Hill International Editions.
Warnatz, J., Maas, U., and Dibble, R. W., 1996, Combustion, Physical and Chemical Fundamentals, Modelling and Simulation, Experiments, Pollutant Formation, Springer-Verlag Berlin Heidelberg.
Weinberg, F. J., 1986, Advanced Combustion Methods, Academic Press.
Williams, F. A., 1985, Combustion Theory, 2nd edition, Addison-Wesley, New York, p.266.
Yu, G., Law, C. K., and Wu, C. K., 1986, “Laminar Flame Speeds of Hydrocarbon + Air Mixtures with Hydrogen Addition,” Combustion and Flame, Vol. 63, pp.339-347.
Zabetakis, M. G., 1965, “Flammability Characteristics of Combustible Gases and Vapors,” Bureau of Mines Bulletin 627.
大塚哲二,1995,濃淡燃燒裝置,日本國特許廳公開特許公報,特開平7-253204
白井豐,守屋好文,原正一,1995,燃燒器裝置,日本國特許廳公開特許公報,特開平7-260108。
黃木丈俊,藤生昭,1995,燃燒裝置,日本國特許廳公開特許公報,特開平7-151319。
楊鏡堂,高智勇,1999,對流衝擊型燃燒器,中華民國新型專利 第149086號 (專利權期間: 1999/7/21~2010/6/28,發證日期: 88/12/06; 國科會專題研究計畫編號: NSC-87-2212-E-007-034)。
陳福安,2000,高負荷燃燒器之火焰雷射診測與燃燒機制研究,國立清華大學動力機械工程學系碩士論文。
陳必虔,2007,以預混噴流火焰相互作用下研究次貧油極限之火焰特性,國立成功大學航空太空工程研究所碩士論文。
孫泊寧, 1997,高負荷燃燒器之設計實作與火焰結構分析,國立清華大學動力機械工程學系碩士論文。
蔣淑卿, 2002,複合進氣道燃燒器之火焰結構研究,國立清華大學動力機械工程學系碩士論文。
藍斌豪,2004,多向斜衝燃燒器之衝擊效應數值分析,國立清華大學動力機械工程學系碩士論文。
中華民國九十五年臺灣能源統計手冊,2006,經濟部能源局編印。
(此全文限內部瀏覽)
電子全文
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *