帳號:guest(3.147.126.242)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):曾建朧
作者(外文):Tseng, Jian-Long
論文名稱(中文):以玻璃為載台之三維異質整合晶片熱應力分析及最佳化
論文名稱(外文):Thermal Stress Analysis and Optimization of 3D Heterogeneous Integrated Chip Based on Glass Carrier
指導教授(中文):葉孟考
指導教授(外文):Yeh, Meng-Kao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:9633572
出版年(民國):98
畢業學年度:97
語文別:中文
論文頁數:79
中文關鍵詞:微系統晶片玻璃載台熱分析熱應力田口法
相關次數:
  • 推薦推薦:0
  • 點閱點閱:539
  • 評分評分:*****
  • 下載下載:10
  • 收藏收藏:0
現今在晶片封裝中最廣為使用的系統整合技術不外乎是系統單晶片(System on Chip, SoC)和系統級封裝(System in Package, SiP)。本研究以系統級封裝(SiP)之三維異質整合晶片模組為探討對象,並以單晶矽為穿晶片導線、玻璃材料(Pyrex 7740)為載台。首先以有限單元分析模擬軟體ANSYS探討三維玻璃載台內嵌矽導線在製程中由高溫降至室溫後載台中的殘留熱應力,並使用田口法(Taguchi method)來找出玻璃載台結構的最佳幾何參數,減少高溫製程所產生的殘留熱應力,以降低在往後製程中發生破壞的可能性。結果顯示由田口法所得之最佳參數水準組合可使玻璃載台中矽材料的最大von Mises應力值下降13.39%;也可使玻璃材料的最大von Mises應力值下降10.43%。文中也分析整體晶片模組結構在運作時系統中各元件的熱應力和溫度場分布情形。最後建立出一套分析流程,並且使用紅外線熱像儀量測晶片模組運作時,元件的表面溫度分布與熱傳分析之結果趨勢一致,藉以驗證數值模型分析之正確性。
目 錄
摘 要 i
目 錄 iv
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.2.1 球柵陣列和塑封球柵陣列封裝之可靠度探討 2
1.2.2 覆晶封裝和晶圓級封裝之研究 3
1.2.3 穿晶片導線的製程與研究 3
1.2.4 三維堆疊封裝的研究 4
1.2.5 以玻璃材料為載台之封裝研究 5
1.2.6 微尺度鎳之機械性質研究 5
1.3 研究主題 6
第二章 有限單元分析與設計最佳化理論 7
2.1 有限單元分析 7
2.2 熱應力分析 9
2.3 熱傳分析 10
2.4 最佳化理論 13
2.5 田口法(Taguchi method) 14
2.5.1 信號雜訊比(Signal to Noise Ratio, S/N ratio) 14
2.5.2 平均值 16
第三章 實驗設備與步驟 17
3.1 玻璃拉伸實驗 17
3.1.1 實驗設備 17
3.1.2 實驗步驟 19
3.2 紅外線熱像儀溫度量測實驗 21
3.2.1 實驗設備 21
3.2.2 實驗步驟 22
第四章 玻璃載台內嵌矽導線之分析結果與討論 24
4.1 玻璃載台內嵌矽導線製程殘留熱應力之模擬 24
4.1.1 有限單元分析 24
4.1.2 田口法 25
4.2 玻璃材料單軸拉伸試驗 27
4.3 玻璃載台內嵌矽導線分析結果 28
第五章 三維異質整合晶片整體模組之分析結果與討論 29
5.1 晶片整體模組熱分析 29
5.2 晶片整體模組熱-結構分析 30
5.3 微掃描面鏡模組熱分析 31
5.4 紅外線熱像儀實驗結果 31
第六章 結論 32
參考文獻 33
1. R. R. Tummala, Fundamentals of Microsystems Packaging, McGraw-Hill, New York, 2001.
2. V. Kripesh, S. W. Yoon, V. P. Ganesh, N. Khan, M. D. Rotaru, W. Fang and M. K. Iyer, “Three-Dimension System-in-Package using Stacked Silicon Platform Technology,” IEEE Transactions on Advanced Packaging, Vol. 28, pp. 377-386, 2005.
3. 奈米電子共同實驗室使用者聯盟,產業要聞與分析,SoC發展面臨瓶頸,造就SiP發展方向被看好,2004.
4. http://ssttpro.acesuppliers.com/semiconductor/Magazine_Details_Index_Id_70.html. J. Adam, M. Bird, 系統封裝技術(SiP)提供設計之選擇-技術整合和降低成本,半導體科技雜誌導讀,AP封面故事,2005。
5. M. D. Samber, T. Nellissen and E. V. Grunsven, “Through Wafer Interconnection Technologies for Advanced Electronic Devices,” IEEE Electronics Packaging Technology Conference, pp.1-6, 2004.
6. J. U. Knickerbocker, L. P. Buchwalter, E. J. Sprogis, H. Gan, R. R. Horton, R. J. Dolastre, S. L. Wrigh and J. Cotte, “3-D Silicon Integration and Silicon Packaging Technology Using Silicon Through-Vias,” IEEE Journal of Solid-State Circuits, Vol. 41, pp. 1718-1725, 2006.
7. http://auo.com/auoDEV/technology.php?sec=COG&ls=tc.
8. T. H. Wang, C. C. Lee, Y. S. Lai and Y. C. Lin, “Transient Thermal Analysis for Board-Level Chip-Scale Packages Subjected to Coupled Power and Thermal Cycling Test Conditions,” ASME Journal of Electronic Packaging, Vol. 128, pp. 281-284, 2006.
9. T. T. Yan, M. Lim, N. H. Shen, X. Barato, D. Kaire and Z. Zhaowei, “Design Analysis of Solder Joint Reliability for Stacked Die Mixed Flip-Chip and Wirebond BGA,” IEEE Electrical Packaging Technology Conference, pp. 391-397, 2002.
10. B. A. Zahn, “Finite Element Based Solder Joint Fatigue Life Predictions for a Same Die Size-Stacked-Chip-Scale-Ball Grid Array Package,” IEEE Electronics Manufacturing Technology Symposium, pp. 274-284, 2002.
11. S. X. Wu, J. Chin, T. Grigorich, X. Wu, G. Mui and C. P. Yeh, “Reliability Analysis for Fine Pitch BGA Package,” IEEE Electronic Components and Technology Conference, pp. 737-741, 1998.
12. T. Burnette, Z. Johnson, T. Koschmieder and W. Oyler, “Underfilled BGAs for Ceramic BGA Packages and Board-Level Reliability,” IEEE Electronic Components and Technology Conference, pp. 1221-1226, 2000.
13. S. Y. Teng and M. Brillhart, “Reliability Assessment of a High CTE CBGA for High Availability Systems,” IEEE Electronic Component and Technology Conference, pp. 611-616, 2002.
14. 李英舜,塑封球柵陣列電子封裝之破裂延伸,國立清華大學動力機械工程學系碩士論文,2000。
15. J. H. L. Pang, K. H. Tan, X. Shi and Z. P. Wang, “Thermal Cycling Aging Effects on Microstructual and Mechanical Properties of a Single PBGA Solder Joint Specimen,” IEEE Transactions on Components and Packaging Technology, Vol. 24, pp. 10-15, 2001.
16. B. Han, M. Chopra, S. Park, L. Li and K. Veima, “Effect of Substrate CTE on Solder Ball Reliability of Flip-Chip PBGA Package Assembly,” Journal of Surface Mount Technology, Vol. 9, pp. 43-52, 1996.
17. 蔡嘉育,覆晶構裝底填膠材料機械性質及可靠度分析,國立清華大學動力機械工程學系碩士論文,2002。
18. J. H. Lau, “Solder Joint Reliability of Flip Chip and Plastic Ball Grid Array Assemblies under Thermal, Mechanical, and Vibrational Conditions,” IEEE Transactions on Components, Packaging and Manufacturing Technology-Part B, Vol. 19, pp. 728-735, 1996.
19. Y. Cheng, G. Xu, D. Zhu, X. Lin, and L. Luo, “Thermo- Mechanical Reliability Study of High I/Os Flip Chip on Laminated Substrate Based on FEA, RSM and Interfacial Fracture Mechanics,” 6th International Conference on Electronic Packaging Technology, pp. 459-466, 2005.
20. S. Y. Jang, T. S. Park, Y. S. Kim, J. W. Jeong, J. J. Bang, D. K. Kang, “Wafer Level Package Solder Joint Reliability Study for Portable Electronic Devices,” Electronic Component and Technology Conference, pp. 660-664, 2005.
21. N. Ranganathan, K. Prasad, N. Balasubramanian, Z. Qiaoer and S. C. Hwee, “High Aspect Ratio Through-Wafer Interconnect for Three Dimensional Integrated Circuits,” IEEE Electronic Components and Technology Conference, pp. 343-348, 2005.
22. P. A. Miranda, A. J. Moll, “Thermo-Mechanical Characterization of Copper Through-Wafer Interconnects,” IEEE Electric Components and Technology Conference, pp. 844- 848, 30 May-2 June 2006.
23. S. Spiesshoefer, J. Patel, T. Lam, L. Cai, S. P. R. F. Figueroa, S. L. Burkett, L. Schape, R. Geil and B. Roger, “Copper Electroplating to Fill Blind Vias for Three-Dimensional Integration,” The Journal of Vacuum Science and Technology A, Vol. 24, pp. 1277-1282, 2006.
24. S. Spiesshoefer, L. Schaper, S. Burkett, G. Vangara, Z. Rahman and P. Arunasalam, “Z-Axis Interconnects Using Fine Pitch, Nanoscale Through-Silicon Vias: Process Development,” IEEE Electronic Components and Technology Conference, Vol. 1, pp. 466-471, 2006.
25. A. Parthihan, Z. Fan, A. D. Harold, S. G. Bahgat, “Thermo-Mechanical Analysis of Thru-Silicon-Via Based High Density Compliant Interconnect,” Electronic Components and Technology Conference, pp. 1179-1185, 2007.
26. C. W. Lin, H. A. Yang, W. C. Wang, W. L. Fang, “Implementation of Three-Dimensional SOI-MEMS Wafer-Level Packaging Using Through-Wafer Interconnections,” Journal of Micromechanics and Microengineering, Vol. 17, pp. 1200-1205, 2007.
27. T. E. Lawrence, S. M. Donovan, W. B. Knowltonl, J. R. Byers and A. J. Moll, “Electrical Characterization of Through-Wafer Interconnects,” IEEE Workshop Microelectronics and Electron Devices, pp. 99-102, 2004.
28. S. W. Yoon, D. Witarsa, S. Y. L. Lim, V. Ganesh, A. G. K. Viswanath, T. C. Chai, K. O. Navas and V. Kripesh, “Reliability Studies of a Through Via Silicon Stacked Module for 3D Microsystem Packaging,” IEEE Electronic Components and Technology Conference, pp. 1449- 1453, 30 May-2 June 2006.
29. N. Khan, S. W. Yoon, A. G. K. Viswanath, V. P. Ganesh, Ranganathan, D. Witarsa, S. Lim, “Development of 3D Stack Package Using Silicon Interposer for High Power Application,” IEEE Electronic Components and Technology Conference, pp. 756- 760, 30 May-2 June 2006.
30. K. O. Lee, K. E. Ong, K. N. Seetharamu, I. A. Azid and G. A. Quadir, “Application of Artificial Intelligence for the Determination of Package Parameters for a Desired Solder Joint Fatigue Life,” Microelectronics International, Vol. 23, pp. 37-44, 2006.
31. R. G. Filippi, J. F. McGrath, T. M. Shaw, C. E. Murray, H. S. Rathore, P. S. McLaughlin, V. McGahay, L. Nicholson, P. C. Wang, J. R. Lloyd, M. Lane, R. Rosenberg, X. Liu, Y. Y. Wang, W. Landers, T. Spooner, J. J. Demarest, B. H. Engel, J. Gill, G. Goth, E. Barth, G. Biery, C. R. Davis, R. A. Wachnik, R. Goldblan, T. Ivers, A. Swinton, C. Barile, and J. Aitken, “Thermal Cycle Reliability of Stacked Via Structures with Copper Metallization and an Organic Low-k Dielectric,” IEEE 42nd Annual International Reliability Physin Sympasiur, pp. 61-67, 2004.
32. N. Tanaka, T. Sato, Y. Yamaji, T. Morifuji, M. Umemoto and K. Takahashi, “Mechanical Effects of Copper Through-Vias in a 3D Die-Stacked Module,” IEEE Eletronic Components and Technology Conference, pp. 473-479, 2002.
33. P. Benkart, A. Kaiser, A. Munding, M. Bschorr, H. J. Pfleiderer, E. K. A. Heittmann, H. Huebner and U. Ramacher, “3D Chip Stack Technology Using Through-Chip Interconnects,” IEEE Design and Test of Computers, pp. 512-518, 2005.
34. X. Chen, J. Zhang, Z. P. Wang, “Microscopic Observation of Failure Mechanism of Anisotropic Conductive Film for Flip-Chip Joining,” IEEE Inter Society Conference on Thermal Phenomena, pp. 453-457, 2004.
35. C. W. Lin, C. P. Hsu, H. A. Yang, W. C. Wang, and W. L. Fang, “Implement of SOG Devices with Embedded Through-Wafer Silicon Vias Using a Glass Reflow Process for Wafer-Level 3D MEMS Integration,” in Proceedings of 21st IEEE International Conference on Micro Electro Mechanical Systems, pp. 802-805, January 13-17, 2008.
36. Fraunhofer ISIT, Itzehoe (DE) “Electrical Feedthroughs Using Wafer-Level Glass-Flow Technology,” Achievements and Results AnnualReport, pp. 36-39, 2005.
37. C. M. L. Wu, M. L. Chau, “Degradation of Flip-Chip-on-Glass Interconnection with ACF under High Humidity and Thermal Aging,” Soldering and Surface Mount Technology, Vol. 14, pp. 51-58, 2002.
38. R. Joshi, “Chip on Glass-Interconnect for Row/Column Driver Packaging,” Microelectronics Journal, Vol. 29, No.6, pp. 343-349, 1998.
39. M. Ebert, J. Bagdahn, “Determination of Residual Stress in Glass Frit Bonded MEMS by Finite Element Analysis,” 5th. Int. Conf. on Thermal and Mechanical Simulation and Experiments in Micro-electronics and Micro-System, pp. 407-412, 2004.
40. P. Merz, H. J. Quenzer, H. Bernt, B. Wagner, M. Zoberbier, “A Novel Micromachining Technology for Structuring Borosilicate Glass Substrates,” IEEE Transducers, Vol. 1, pp. 258-261, 2003.
41. W. N. Sharpe, Jr., D. A. LaVan, and R. L. Edwards, “Mechanical Properties of LIGA-Deposited Nickel for MEMS Transducers,” International Conference on Solid-State Sensors and Actuators, pp. 607-610, June 16-19, 1997.
42. T. Fritz, H. S. Cho, K. J. Hemker, W. Mokwa, and U. Schnakenberg, “Characterization of Electroplated Nickel,” Microsystem Technologies, Vol. 9, pp.87-91, 2002.
43. H. S. Cho, K. J. H. Hemker, K. Lian, J. Goettert, and G. Dirras, “Measured Mechanical Properties of LIGA Ni Structures,” 15th IEEE MEMS conference, Sensors and Actuators A 103, pp.59-63, 2003.
44. R. Liu, H. Wang, X. Li, G. Ding, and C.Yang, “A Micro-Tensile Method for Measuring Mechanical Properties of MEMS Materials,” Journal of Micromechanics and Microengineering, pp. 1-7, 2008.
45. ANSYS Release 10.0, ANSYS, Inc., PA, 2005.
46. R. D. Cook, D. S. Malkus, M. E. Plesha, R. J. Witt, Concepts and Applications of Finite Element Analysis, 4th ed., John Wiley & Sons, Inc., Danvers, 2002.
47. 康淵,陳信吉,ANSYS入門,全華科技圖書股份有限公司,台北。
48. J. H. Lienhard, A Heat Transfer Textbook, 2nd ed., Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1987.
49. G. R. Blackwell, The Electronic Packaging Handbook, CRC Press, Boca Raton, 2000.
50. 李輝煌,田口方法品質設計的原理與實務,高立圖書有限公司,台北,2000。
51. 黎正中譯,穩健設計之品質工程,台北圖書有限公司,台北,1993。
52. http://www.valleydesign.com/pyrex.htm
53. P. P. Benham, Mechanics of Engineering Materials, Baker & Taylor Books, Essex, England, pp. 314, 1996.
54. O. V. Mazurin, M. V. Streltsina, T. P. S. Shvaikovskaya, Handbook of Glass Data, Elsevier, Amsterdam, Netherlands, 1983.
55. COMSOL Multiphysics Release v3.4, COMSOL, Inc., PA.
56. 洪東銘,內嵌穿晶片導線三維晶片模組之熱應力分析及最佳化,國立清華大學動力機械工程學系碩士論文,2008。
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *