帳號:guest(18.220.16.184)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蕭閎仁
論文名稱(中文):以磁性微結構陣列操控細胞載具移動之研究
論文名稱(外文):Cell carriers manipulated by magnetic thin film array
指導教授(中文):衛榮漢
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:9633608
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:76
中文關鍵詞:單磁區異向性磁操控
外文關鍵詞:single domainanisotropymagnetic manipulation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:83
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
於微米尺度下精確操控細胞乃為生醫科技領域中備受重視之課題。本文利用微機電技術製作微米尺度之磁薄膜輸送軌道,於自製式旋轉磁場平台之作用下,磁性載具始能沿順軌道作精準移動,本研究成功地操控載具進行:直線行進、來回往返及反平行前進等多種移動方式。其中,討論包括磁性薄膜形狀對於磁化翻轉難易度之關係,並且發現於弱磁場影響下,磁載體會出現躍遷或是斥離軌道之現象;對此,配合適當的磁微米軌道設計,載具在晶片上的二維移動定位可以更加準確。應用上,吞入磁珠之細胞搭乘此磁性載體後,於旋轉外磁場之影響下,可以順利將此細胞輸送至特定位置,已進行後續的生醫檢測。本文提出運輸活體細胞的新型操控方式,期盼研究成果將助益於生醫檢測之領域。
摘要 ....................................................................................................................... I
Abstract ................................................................................................................ II
致謝 ..................................................................................................................... III
目錄 ......................................................................................................................V
圖目錄...............................................................................................................VIII
第一章緒論 ...................................................................................................... 1
1-1 前言........................................................................................1
1-2 研究動機與目的....................................................................1
1-3 實驗架構................................................................................2
第二章 理論基礎與文獻回顧 ..................................................................... 5
2-1 鐵磁性...................................................................................5
2-2 磁區結構...............................................................................6
2-2-1 磁區的成因.................................................................6
2-2-2 單磁區.........................................................................9
2-2-3 可逆磁區磁化轉動...................................................10
2-2-4 不可逆磁區磁化轉動...............................................11
2-3 磁性薄膜量測技術.............................................................13
VI
2-3-1 磁電阻效應...............................................................13
2-3-2 原子力顯微鏡技術...................................................15
2-4 生醫磁操控技術.................................................................16
2-4-1 利用電流建立磁場梯度...........................................16
2-4-2 以負介電泳力降低表面與磁性物質接觸的影響...17
2-4-3 磁性微米結構建立磁場梯度...................................18
2-4-4 外加磁場直接操控微結構.......................................19
2-4-5 生醫磁操控晶片.......................................................20
第三章 研究方法........................................................................................... 31
3-1 磁性結構製作.....................................................................31
3-1-1 光罩圖樣設計...........................................................31
3-1-2 光罩製作...................................................................32
3-1-3 晶片清洗...................................................................33
3-1-4 黃光微影與電子束蒸鍍...........................................34
3-1-5 磁性載具水溶液製作...............................................35
3-2磁操控設備架設..................................................................36
3-2-1 觀測平台...................................................................36
3-2-3 電荷耦合元件...........................................................37
3-3 異向性磁阻量測.................................................................37
VII
3-3-1 量測樣品製作...........................................................38
3-3-2 磁阻量測系統...........................................................38
3-4 MFM磁軌道表面量測........................................................38
第四章 實驗結果........................................................................................... 42
4-1 異向性磁阻曲線圖.............................................................42
4-2 不同磁場下MFM影像分析圖..........................................43
4-3 載具操控實驗步驟.............................................................46
4-4 磁載具操控結果.................................................................47
4-4-1 磁載具直行...............................................................48
4-4-2 磁載具往返移動.......................................................51
4-4-3 磁載具反向行進.......................................................52
4-4-4 磁載具改道...............................................................53
4-4-5 弱磁場下磁載具操控...............................................53
4-5 磁載具乘載細胞之移動定位.............................................54
第五章 結論與未來展望............................................................................. 73
[1] R. Feynman, “There’s plenty of room at the bottom,” Joural of Micro-electro-mechanical Systems, 1 (1992), 60-66.
[2] Manz, N. Graber, and H. M. Widmer, "Miniaturized total chemical analysis systems," Sensors and Actuators B, 1 (1990), 244-248.
[3] Haukanes and C. Kvam, “Application of Magnetic Beads in Bioassays,” Nature Biotechnology, 11 (1993), 60–63.
[4] Hubert and R. Schäfer, “Magnetic domains: the analysis of magnetic microstructures,” (1998), Ch. 5.5.
[5] 嚴密、彭曉領, /磁學基礎與磁性材料/ 浙江大學出版社(2006)
[6] J. W. Judy, “Batch-Fabricated Ferromagnetic Microactuators with Silicon Flexures,” (1996), 154-165.
[7] R. P. Cowburn, D. K. Koltsov, A. O. Adeyeye, M. E. Welland, and D. M. Tricker, “Single-Domain Circular Nanomagnets,” Physical Review Letters, 83 (1999), 1042-1045.
[8] J-E. Wegrowe, D. Kelly, A. Franck, S. E. Gilbert, and J.-Ph. Ansermet, “Magnetoresistance of Ferromagnetic Nanowires,” Physical Review Letters, 82 (1999), 3681-3684.
[9] Th.G. S. M. Rijks, R. Coehoorn, M. J. M. de Jong, and W. J. M. de Jonge,“Semiclassical calculations of the anisotropic magnetoresistance of NiFe-based thin films, wires, and multilayers,” Physical Review B, 51 (1995), 283-291.
[10] P. Drude, “Zur Elektronentheorie der metalle,” Annalen der Physik,306 (1900), 566-613.
75
[11] P. Drude, “Zur Elektronentheorie der Metalle; II. Teil. Galvanomagnetische und thermomagnetische Effecte,” Annalen der Physik, 308 (1900), 369-402.
[12] G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, “Surface studies by scanning tunneling microscopy,” Physical Review Letters, 49 (1982), 57–61.
[13] G. Binnig, C.F. Quate, and C. Gerber, “Atomic Force Microscope,” Physical Review Letters, 56 (1986), 930-933.
[14] T. Deng, G. M. Whitesides, M. Radhakrishnan, G. Zabow, and M. Prentiss, ” Manipulation of magnetic microbeads in suspension using micromagnetic systems fabricated with soft lithography,” Applied Physics Letters, 78 (2001), 1775-1777.
[15] H. Lee, A. M. Purdon, and R. M. Westervelt, “Micromanipulation of biological systems with microelectromagnets,” IEEE TRANSACTIONS ON MAGNETICS, 40 (2004), 2991-2993
[16] Q. Ramadana, C. Yu, V. Samper, and D. P. Poenar, ” Microcoils for transport of magnetic beads,” Applied Physics Letters, 88 (2006), 032501
[17] H. A. Pohl, “Some Effects of Nonuniform Fields on Dielectrics,” Journal of Applied Physics, 29 (1958), 1182-1188.
[18] H. A. Pohl, “Dielectrophoresis,” Cambridge University Press, Cambridge (1978).
[19] Liu, L. Lagae, and G. Borghs, “Manipulation of magnetic particles on chip by magnetophoretic actuation and dielectrophoretic levitation,” Applied Physics Letters, 90 (2007), 184109.
76
[20] K. Gunnarsson, P. E. Roy,S. Felton, J. P. Svedlindh, S. Berner, H. Lidbaum, and S. Oscarsson, “Programmable motion and separation of single magnetic particles on patterned magnetic surfaces,” Advanced Materials, 17 (2005), 1730-1734.
[21] R. S. Conroy, G. Zabow, J. Moreland, and A. P. Koretsky, “Controlled transport of magnetic particles using soft magnetic patterns,” Applied Physics Letters, 93 (2008), 203901
[22] M. S. Sakar, E. B. Steager, D. H. Kim, M. J. Kim, G. J. Pappas, and V. Kumar, “Single cell manipulation using ferromagnetic composite microtransporters,” Applied Physics Letters, 96 (2010), 043705.
[23] M. T. Hou, H. M. Shen, G. L. Jiang, C. N. Lu,I. J. Hsu, and J. A. Yeh, “A rolling locomotion method for untethered magnetic microrobots,” Applied Physics Letters, 96 (2010), 024102.
[24] L. Johansson, K. Gunnarsson, S. Bijelovic, K. Eriksson, A. Surpi, E. Gothelid, P. Svedlindhb, and S. Oscarsson, “A magnetic microchip for controlled transport of attomole levels of proteins,” Lab on a Chip, 10 (2010), 654-661.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *