帳號:guest(18.222.115.179)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):秦崧銘
作者(外文):Chin, Sung-Min
論文名稱(中文):生醫應用之低功耗類比數位轉換器 : 具軌對軌可適性功率控制比較器設計
論文名稱(外文):A Rail-to-Rail Comparator with Adaptive Power Control for Low Power SAR ADCs in Biomedical Applications
指導教授(中文):謝志成
指導教授(外文):Hsieh, Chih-Cheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:9661515
出版年(民國):99
畢業學年度:98
語文別:英文
論文頁數:43
中文關鍵詞:SAR ADCsLow Power ADCsrail-to-rail
相關次數:
  • 推薦推薦:0
  • 點閱點閱:166
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
半導體製造技術不斷的演進,使得積體電路的電晶體數目,依舊遵循著摩爾定律成長。隨著電晶體的通道長度朝著物理極限不斷縮短,在電路的面積、速度和功率消耗上都有非常顯著的提升。然而,如此的情況僅局限於數位電路。對於類比電路而言,電路設計的技術將面臨更大的挑戰,例如:低電壓、低功率消耗的類比數位轉換器。

電子鼻 (Electronic Nose)是一種可以辨別氣體中特定的成分的裝置。電子鼻系統中需要使用類比數位轉換器作為前端感測器和數位信號處理器之間的橋樑。而低功率的消秏和低電壓操作是此類比數位轉換器最重要的議題。本論文提出一個應用於連續漸進式類比數位轉換器的軌對軌比較器,且操作電壓為1伏持並具有低功率消耗和低雜訊的特性。在電路設計上,使用電流鏡的技巧去克服輸出信號和輸入信號的相互干擾(kickback noise)。對於比較器的功率消耗方面,提出可適性功率控制電路來達到功率消耗的最佳化。一個連續漸進式類比數位轉換器於0.18製程,使用所提出之比較器和可適性功率控制電路,經實際量測試結果僅消耗2.86 μW,此時取樣頻率為250 kHz。FOM可達85.7 fJ/conversion-step。在可適產功率控制電路方面,它可以有效的降低比較器52%和80%的功率消耗,分別當取樣頻率為 125 kHz和500 kHz的時候。
The technology scaling down has provided much more gate count in silicon chips. The contraction of minimum channel length and decrease of power supply voltage have benefited digital circuits to smaller area, higher operation rate and lower power consumption. However, this progress of technology presents a number of challenges in mixed signal IC design.

In this thesis, a new 1V rail-to-rail comparator with low noise and low power consumption is presented. We utilize current mirrors to overcome the common issue, kickback noise. A new adaptive power control (APC) technique is also proposed to minimize the power dissipation of the comparator. Moreover, it provides an optimized and stable power dissipation irrelative to process and bias variation. A 1V rail-to-rail SAR ADC prototype, targets for biomedical applications, has been implemented in 0.18μm TSMC CMOS technology. It consumes 2.86 μW at 250kS/s and the figure of merit is 85.7 fJ/conversion-step. It shows that this work efficiently reduces 52% to 80% power consumption of the dynamic latched comparator at 500kS/s to 125kS/s.
Chapter 1 Introduction
1.1 Motivation
1.2 Architecture Selection
1.3 Thesis Organization
Chapter 2 Consideration of Circuit Design
2.1 MOS Switches
2.1.1 Channel Charge Injection
2.1.2 Clock Feedthrough
2.1.3 Transmission Gate
2.2 Mismatch of Device
Chapter 3 Architectures of SAR ADC
3.1 Global Architecture
3.2 Sample and Hold Circuit
3.2.1 Switch Bootstrapping
3.2.2 Bottom Plate Sampling
3.3 Latched Comparator
3.4 DAC Architecture
Chapter 4 Circuit Design
4.1 Conversion Plan
4.2 Comparator Circuit Design
4.3 Adaptive Power Control Circuit
4.4 DAC Circuit Design
4.5 SAR Circuit Design
Chapter 5 Measurement Result
5.1 Test Environment Setup
5.2 Characterization
5.3 Discussion
5.4 Summary
Chapter 6 Conclusion and Future Work
[1] A. Agnes, E. Bonizzoni, P. Malcovati, and F. Maloberti, “A 9.4-ENOB 1V 3.8μW 100kS/s SAR ADC with time-domain comparator,” IEEE ISSCC Dig. Tech. Pap., pp. 246–247, Feb. 2008.
[2] Binhee Kim, Long Yan, Jerald Yoo, Namjun Cho, and Hoi-Jun Yoo, “An energy-efficient dual sampling SAR ADC with reduced capacitive DAC,” Circuits and Systems, 2009. ISCAS 2009. IEEE International Symposium on , pp.972-975, 24-27 May 2009
[3] J. Sauerbrey, D. Schmitt-Landsiedel, and R. Thewes, “A 0.5-V 1-μW successive approximation ADC," Solid-State Circuits, IEEE Journal of , vol.38, no.7, pp. 1261-1265, July 2003
[4] S. Gambini and J. Rabaey, “Low-Power Successive Approximation Converter With 0.5 V Supply in 90 nm CMOS,” Solid-State Circuits, IEEE Journal of , vol.42, no.11, pp.2348-2356, Nov. 2007
[5] David Johns and Ken Martin, Analog Integrated Circuit Design. John Wiley & Sons, New York, 1997.
[6] Weize Xu, Eby G. Friedman, “Clock feedthrough in CMOS analog transmission gate switches,” ASIC/SOC Conference, 2002. 15th Annual IEEE International , pp. 181-185, 25-28 Sept. 2002
[7] M. J. M. Pelgrom, A. C. J. Duinmaijer, A. P. G. Welbers, “Matching properties of MOS transistors,” Solid-State Circuits, IEEE Journal of , vol.24, no.5, pp. 1433-1439, Oct 1989
[8] R. A. Hastings, The Art of Analog Layout. Prentice Hall, 2th ed., July 4, 2005.
[9] Yanfei Chen et al., “Split capacitor DAC mismatch calibration in successive approximation ADC,” Custom Integrated Circuits Conference, 2009. CICC '09. IEEE , pp.279-282, 13-16 Sept. 2009
[10] J. L. McCreary et al., “All-MOS charge redistribution analog-to-digital conversion techniques-Part I,” Solid-State Circuits, IEEE Journal of, Vol. SC-10, No. 6, pp. 371-379, Dec. 1975.
[11] Scott, M.D.; Boser, B.E.; Pister, K.S.J., "An ultralow-energy ADC for Smart Dust," Solid-State Circuits, IEEE Journal of , vol.38, no.7, pp. 1123-1129, July 2003
[12] Ricardo E. Suarez, Paul R. Gray, and David A. Hodges, “All-MOS Charge Redistribution Analog-to-Digital Conversion Techniques-Part II”, Solid-State Circuits, IEEE Journal of, Vol. SC-10, No. 6, pp. 371-379, Dec. 1975.
[13] N. Verma, A.P. Chandrakasan, “An Ultra Low Energy 12-bit Rate-Resolution Scalable SAR ADC for Wireless Sensor Nodes,” Solid-State Circuits, IEEE Journal of , vol.42, no.6, pp.1196-1205, June 2007
[14] T. B. Cho and P. R. Gray, “A 10b, 20 Msample/s, 35mW pipeline A/D converter,” IEEE J. Solid-State Circuits, vol. 30, no. 3, March 1995.
[15] A. M. Abo, P. R. Gray, “A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter,” Solid-State Circuits, IEEE Journal of , vol.34, no.5, pp.599-606, May 1999
[16] B. J. McCarroll, C. G. Sodini, H. S. Lee, “A high-speed CMOS comparator for use in an ADC,” Solid-State Circuits, IEEE Journal of , vol.23, no.1, pp.159-165, Feb 1988
[17] B. Razavi, Principles of Data Conversion System Design. New York: IEEE Press, 1995.
[18] P. M. Figueiredo, J. C. Vital, “Kickback noise reduction techniques for CMOS latched comparators,” Circuits and Systems II: Express Briefs, IEEE Transactions on , vol.53, no.7, pp. 541-545, July 2006
[19] Hao-Chiao Hong, Guo-Ming Lee, “A 65-fJ/Conversion-Step 0.9-V 200-kS/s Rail-to-Rail 8-bit Successive Approximation ADC,” Solid-State Circuits, IEEE Journal of , vol.42, no.10, pp.2161-2168, Oct. 2007
[20] Y. S. Yee, L. M. Terman, L. G. Heller, “A two-stage weighted capacitor network for D/A-A/D conversion,” Solid-State Circuits, IEEE Journal of , vol.14, no.4, pp. 778-781, Aug 1979
[21] E. Alpman, H. Lakdawala, L. R. Carley, K. Soumyanath, “A 1.1V 50mW 2.5GS/s 7b Time-Interleaved C-2C SAR ADC in 45nm LP digital CMOS,” Solid-State Circuits Conference - Digest of Technical Papers, 2009. ISSCC 2009. IEEE International, pp.76-77,77a, 8-12 Feb. 2009
[22] A. Rossi, G. Fucili, “Nonredundant successive approximation register for A/D converters,” Electronics Letters , vol.32, no.12, pp.1055-1057, 6 Jun 1996
[23] A. Agnes, E. Bonizzoni, P. Malcovati, F. Maloberti, “A 9.4-ENOB 1V 3.8μW 100kS/s SAR ADC with Time-Domain Comparator,” Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of Technical Papers. IEEE International, pp.246-610, 3-7 Feb. 2008
[24] M. van Elzakker, E. van Tuijl, P. Geraedts, D. Schinkel, E. Klumperink, B. Nauta, “A 1.9μW 4.4fJ/Conversion-step 10b 1MS/s Charge-Redistribution ADC,” Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of Technical Papers. IEEE International, pp.244-610, 3-7 Feb. 2008
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 具直流偏移校正與增益校準迴路之短通道可變增益放大器
2. 具有數位自動增益迴路之2.4-GHz無電感式射頻前端
3. 基於頻率合成器之 2.4-GHz 全數位控制式二進制頻移鍵控發射器
4. 具有電容不匹配校正之 2.4 GHz數位控制震盪器
5. A Quadrature Sub-harmonic Up-converter with Sideband & Carrier Leakage Calibration
6. 應用於影像感測器具線性度校正功能之行平行十位元漸進式類比數位轉換器
7. 應用於紅外線感測器陣列之1.8伏自動轉換增益讀出電路
8. 具自適應式電容切換技術之低功耗非同步漸近式類比數位轉換器之設計與製作
9. 具動態範圍延展及雜訊抑制之超低電壓0.5伏特脈衝寬度調變互補式金氧半導體影像感測器
10. 應用於互補式金屬氧化物半導體影像感測器以毗連像素傳遞技術讀出之時間延遲積分電路架構
11. 一個具有臨界電壓消除技術及可調變轉換曲線之高動態範圍線性對數互補式金氧半導體影像感測器
12. 一個應用於生醫系統低功耗多級共用內建截波器之切換式運算放大器三角積分調變器之設計與製作
13. 具兩段式曝光讀取之高動態範圍互補式金氧半導體影像感測器
14. 應用於無線測試系統的高面積效率內崁式二進制頻移鍵控發射器之設計
15. 可應用於無線感測網路與生醫設備的十位元低功耗連續近似類比數位轉換器利用電荷平均切換數位類比轉換器技術
 
* *