帳號:guest(3.144.74.88)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳景怡
作者(外文):Wu, Ching-Yi
論文名稱(中文):適用於電子鼻晶片中與標準CMOS製程相容之積體化導電聚合物氣體感測器陣列及其適應介面電路
論文名稱(外文):An Integrated Conducting Polymer Gas Sensor Array and Its Adaptive Interface Circuit Compatible with Standard CMOS Processes for an Electronic Nose Chip
指導教授(中文):鄭桂忠
指導教授(外文):Tang, Kea-Tiong
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:9661602
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:93
中文關鍵詞:電子鼻氣體感測器適應介面電路
外文關鍵詞:Enosegas sensoradaptive interface circuit
相關次數:
  • 推薦推薦:0
  • 點閱點閱:395
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
電子鼻對於氣體的監測與辨識能力是非常有價值的,它可以使用於非常多應用上,例如環境監測、食品加工、汙染測試與醫療診斷等。雖然人類的嗅覺能力是遠遠超過任何現有的儀器,但在許多應用過程不能由人類嗅覺進行偵測,例如偵測環境中的有毒或其他危險氣體時。並且與傳統氣相層析儀比較,電子鼻有體積小、更輕便與低成本的優點。
本研究的目的在發展適用於電子鼻晶片中與標準CMOS製程相容之積體化導電聚合物氣體感測器陣列及其適應介面電路。導電聚合物氣體感測器為聚合物和碳黑混合物,當其暴露於化學氣體中,聚合物會產生可逆性膨脹造成電阻值的變化,並且導電聚合物感測器的初始電阻值會受到溫濕度的影響,因此本論文提出一適應介面電路可消除溫濕度造成的基線信號漂移。另一方面隨著微機電製程的進步,關於導電聚合物氣體感測器的微小化已有相當多研究,但多是於實驗室自行後製程完成,並未達到與標準CMOS製程相容,故本論文提出使用標準CMOS製程製作感測器,此研究方向對於發展可攜式電子鼻系統相當重要,能將感測器與電路作整合,達到微小化、低功率、低雜訊與低成本。
Many applications use the electronic nose (Enose) system, such as environmental monitoring, food processing, pollution measurement and medical diagnosis. The ability to monitor and identify various chemical gases is also valuable. Although the sensing capabilities of our noses are well beyond that achievable by any existing instrument, many applications require non-human odor detecting ability. Compared with a traditional gas chromatograph-mass spectrometer (GC-MS), electronic nose systems have the advantage of being smaller, more portable, and cost economic.
The research focuses on an integrated conducting polymer gas sensor array and its adaptive interface circuit compatible with standard CMOS processes for an electronic nose chip. The sensors use polymer-carbon black composites, which swell reversibly and create resistance change upon exposure to chemical vapors. The initial resistances of sensors are influenced by temperature or humidity. Therefore, an adaptive interface circuit is proposed to cancel the baseline signal drift. With the progress of MEMS process, there are many researches about miniature conducting polymer gas sensors. But most of the researches could not compatible with standard CMOS processes. We proposed the conducting polymer gas sensor array that compatible with standard CMOS processes. It is very important for the portable electronic nose system. Using standard CMOS process to integrate sensors and circuits can achieve small size, low-power, low noise and low cost.
摘 要 i
ABSTRACT ii
致 謝 iii
目 錄 iv
圖目錄 vi
表目錄 ix
第1章 緒論 1
1.1研究背景與目標 2
1.2論文架構 7
第2章 文獻回顧 8
2.1電子鼻簡介 8
2.2氣體感測器種類 10
2.1.1 金氧氧化物感測器(Metal Oxide Semiconductor Sensors, MOS) 10
2.1.2 導電聚合物感測器(Conducting Polymer sensors, CPs) 11
2.1.3 金氧半場效電晶體(Metal Oxide Field Transistors, MOSFET) 12
2.1.4 石英水晶微量天平(Quartz-Crystal Microbalance, QCM) 13
2.1.5 表面聲波(Surface Acoustic Wave, SAW) 14
2.1.6 光感測器(Fluorescent Odor Sensors) 15
2.3導電聚合物感測器組成之電子鼻系統 18
2.4積體化氣體感測器 23
第3章 導電聚合物氣體感測器設計與氣體實驗 28
3.1感測器基座製作 28
3.1.1 離散型 30
3.1.2 積體化 31
3.2 感測材料 35
3.3 滴定儀器與方式 40
3.4 四頸瓶氣體感測環境 46
3.5 氣體實驗結果 47
第4章 感測器適應介面電路設計與模擬 55
4.1 文獻回顧 55
4.2 架構簡介 57
4.3 Hspice模擬結果 63
4.3.1 八位元計數器 63
4.3.2 八位元數位類比轉換器 64
4.3.3 感測器適應介面電路 65
4.4電路佈局圖 66
第5章 電路量測結果 70
5.1量測裝置與環境 71
5.2電路區塊量測結果 72
5.3功率消耗討論 76
第6章 電子鼻系統建構 80
6.1 系統簡介 80
6.2 氣體辨識 82
第7章 結論與未來展望 85
參考文獻 87
[1] Chen Cunshe, Li Xiaojuan, and Yuan Huimei, "Quality Assessment of Beef Based of Computer Vision and Electronic Nose," in Proc. ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, 2007 vol. 2, pp. 627-631
[2] H. W. Shin, "Classification of the strain and growth phase of cyanobacteria in potable water using an electronic nose system", Science, Measurement and Technology, IEE Proceedings -, vol. 147(4), pp. 158-164, 2000
[3] J. W. Gardner, "An electronic nose system for monitoring the quality of potable water", Sensors and Actuators B: Chemical, vol. 69(3), pp. 336-341, 2000
[4] J. W. Gardner, "Prediction of bacteria type and culture growth phase by an electronic nose with a multi-layer perception network", Measurement Science and Technology, vol. 9, pp. 120-127, 1998
[5] J. W. Gardner, "Prediction of health of dairy cattle from breath samples using neural network with parametric model of dynamic response of array of semiconducting gas sensors", Science, Measurement and Technology, IEE Proceedings -, vol. 146(2), pp. 102-106, 1999
[6] J. W. Gardner, H. W. Shin, and E.L. Hines, "An electronic nose system to diagnose illness" Sensors and Actuators B: Chemical, vol. 70(1-3), pp. 19-24, 2000
[7] Y. J. Lin, "Application of the electronic nose for uremia diagnosis" Sensors and Actuators B: Chemical, vol. 76(1-3), pp. 177-180, 2001

[8] GARDNER, J.W. AND BARTLETT, P.N. A Brief History of Electronic Noses. Sensors and Actuators B,vol 18, pp. 211–220 , 1993
[9] R. W. Moncrieff, “An instrument for measuring and classifying odours”, in J. Appl. Physiol., vol. 16, 1961, pp. 742
[10] W. F. Wilkens and A. D. Hatman, “An electronic analog for the olfactory processes”, in Ann. NY Acad. Sci., vol. 116, 1964, pp. 608
[11] T. M. Buck, F. G. Allen, and M. Dalton, “Detection of chemical species by surface effects on metals and semiconductors”, in Surface Effects in Detection, Spartan Books Inc., USA, 1965
[12] K. Persaud and G. H. Dodd, “Analysis of discrimination mechanisms of the mammalian olfactory system using a model nose”, in Nature, vol. 299, 1982, pp. 352–355
[13] J.W. Gardner, P. N. Bartlett, G. H. Dodd, and H. V. Shurmer, “Pattern recognition in the Warwick Electronic Nose”, in 8th Int. Congress of European Chemoreception Research Organisation, University of Warwick, UK, July 1987
[14] J.W. Gardner and P. N. Bartlett (eds.), NATO Advanced Research Workshop, Reykjavik, Iceland, Sensors and Sensory Systems for an Electronic Nose, NATO ASI Series E: Applied Sciences, vol. 212, 1992.
[15] N. Taguchi, Patent 45-38200, 1962
[16] T. Seiyama, et al., "A new detector for gaseous components using semi-conductive thin films", Anal. Chem., vol. 34, pp. 1502-1503, 1962
[17] T. C. Pearce, et al., Handbook of Machine Olfaction: electronic nose technology, Wiley-VCH, 2003


[18] Y.S. Kim, S.-C. Ha, Y. Yang, Y.J. Kim, S.-M. Cho, H. Yang, and Y.T. Kim, “Portable Electronic Nose System Based on the Carbon Black-Polymer Composite Sensor Array,” Sens. Actuators B, vol. 108, no. 1-2, July 2005, pp. 285-291
[19] K. S. Suslick and N. A. Rakow, "Colorimetric sensor arrays for molecular recognition", Tetrahedron, vol. 60, pp. 11133-11138, 2004
[20] D.S. Ballantine, Acoustic wave sensors: theory, design, and physico- chemical applications, Academic Press, 1997
[21] B. Drafts, "Acoustic wave technology sensors", IEEE TRANSACTIONS ON MiCROWAVE THEORY AND TECHNIQUES, vol. 49, pp. 795-802, 2001
[22] Frank Ro¨ck, Nicolae Barsan, and U. Weimar, "Electronic Nose: Current Status and Future Trends", Chem. Rev., vol. 108, pp. 705-725, 2008
[23] J. S. Suehle, R. E. Cavicchi, M. Gaitan, and S. Semancik, “Tin oxide gas sensor fabricated using CMOS microhotplates and in-situ processing,” IEEE Electron Device Lett., vol. 14, pp. 118–120, Feb. 1993
[24] S. Semancik and R. Cavicchi, “Kinetically controlled chemical sensing using micromachined structures,” Acc. Chem. Res., vol. 31, pp.279–287, 1998
[25] P. C. H. Chan, G.-Z. Yan, L.-Y. Sheng, R. K. Sharma, Z. Tang, J. K. O.Sin, I.-M. Hsing, and Y. Wang, “An integrated gas sensor technology using surface micro-machining,” Sens. Actuators B, vol. 82, p. 277,2002.
[26] M. Graf, D. Barrettino, M. Zimmermann, A. Hierlemann, and H. Baltes “CMOS Monolithic Metal-Oxide Sensor System Comprising a Microhotplate and Associated Circuitry” Proc. IMCS 2002, Boston, MA,USA, 121
[27] C.Hagleitner, A.Hierlemann, O.Brand, and H. Baltes “CMOS single chip gas detection systems----PART II, “Sensor Update, vol. 12, pp.51-120, 2003
[28] Tomi Salo, Kay-Uwe Kistein, Tobias Vancra, Henry Baltes “ CMOS-Based Tactile Microsensor for Medical Instrumentation.” Sensor Journal, IEEE, 2007, p258-265
[29] M.A. Ryan, M.L. Homer, M.G. Buehler, K.S. Manatt, F. Zee, J. Graf, Monitoring the air quality in a closed chamber using an electronic nose, in: Proceedings of the 27th International Conference on Environmental Systems, Lake Tahoe, Nevada, USA, July 14-17, 1997.
[30] K. Domansky, V.S. Zapf, J.W. Grate, A.J. Ricco, W.G. Yelton, J. Janata, Integrated chemiresistor and work function microsensor array with carbon black-polymer composite materials, in: Workshop on Solid State Sensor and Actuator, June 8-11, 1998.
[31] Lewis, N.S. Acc. Chem. Res. 2004, 37, 663-672.
[32] M. C. Lonergan, E. J. Severin, B.J. Doleman, S. A. Beaber, R. H. Grubbs, and N.
S. Lewis, “Array Based Vapor Sensing Using Chemically Sensitive, Carbon Black-Polymer Resistors,” Chem. Materials, 8, 2298, 1996

[33] Q. Fang*, D.G. Chetwynd, J.A. Covington, C.-S. Toh, J.W. Gardner, “Micro-gas-sensor with conducting polymers,” Sensors and Actuators B 84 (2002) 66–71
[34] K. Domansky, V. S. Zapf, J. W. Grate, A. J. Ricco, W. G. Yelton, and J. Janata, “Integrated Chemiresistor And Work Function Microsensor Array With Carbon Black/Polymer Composite Materials,” Solid-State Sensor and Actuator Workshop, Hilton Head, S. C., June 8-11, 1998
[35] Q.Wan, Q.H. Li, Y.J. Chen, T.H.Wang, X.L. He, J.P. Li, C.L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors”, Appl. Phys. Lett. 84 (2004) 3654–3656.
[36] Y.S. Kim, S.-C. Ha, Y. Yang, Y.J. Kim, S.-M. Cho, H. Yang, and Y.T. Kim, “Portable Electronic Nose System Based on the Carbon Black-Polymer Composite Sensor Array”, Sens. Actuators B, vol. 108, no. 1-2, July 2005, pp. 285-291
[37] Seong M. Cho, Sang Choon Ko, Seung-Chul Ha, Yong Shin Kin, Young Jun Kim, Yoonseok Yang, Hyeon-Bong Pyo, Chang Auck Choi, “Monolithic Electronic Nose System Fabricated by Post Micromachining”, Sensors 2005 IEEE, p420-423
[38] Chih-Cheng Lu, Kuan-Hsun Liao, “Microfabrication and chemoresistive characteristic of SBA-15-templated mesoporous carbon gas sensors with CMOS compatibility.” Sensors and Actuators B:chemical Elsevier 2010, pp500-507
[39] Zee, F., Judy, J., “MEMS Chemical Gas Sensor”, IEEE Proc. The Thirteenth Biennial Univ./Govt./Industry Microelectronics Symposium, pp150-152, June 1999.
[40] F. Zee and J. Judy, “MEMS Chemical Gas Sensor Using A Polymer-Based Array” of Transducers ’99 -Int. Conf. on Solid-State Sensors and Actuators, Sendai, Japan, June 7-10, 1999
[41] Zee F, Judy JW. , “Micromachined polymer-based chemical gas sensor array “, Sensors Actuators B-Chem 2001; 72: 120–8.
[42] Frank Zee, Jack W. Judy, “Miniature Electronic Nose System Based on Polymer/Carbon Black Films”, Sensors Applications Symposium,2008
[43] M. Grassi, P. Malcovati, and A. Baschirotto, “A 0.1% Accuracy 100Ω- 20 MΩDynamic Range Integrated Gas Sensor Interface Circuit with 13+4 Bit Digital Output,” in Proceedings of ESSCIRC, Grenoble, France, 2005.
[44] M. Malfatti, D. Stoppa, A. Simoni, L. Lorenzelli,A. Adami, and A. Baschirotto, “A CMOS Interface for a Gas-Sensor Array with a 0.5% Linearity over the 500kΩ-to-1GΩ Range and ±2.5% degree Temperature Control Accuracy,” in Proceedings of ISSCC, San Francisco, 2006.
[45] P. E. Allen and D. R. Holberg ,”CMOS Analog Circuit Design”. New York. Halt, Rinehart and Winston, 1987
[46] Tian, F.; Yang, S. X.; Dong, K., ”Circuit and Noise Analysis of Odorant Gas Sensors in an E-Nose.” Sensors 2005 IEEE, p85-96
[47] X. Wangand S , C. Liu, “Programmable synaptic weights for an a VLSI network of spiking neurons”, in Proceedings of the 2006 IEEE International Symposium on Circuits and Systems, pp.4531–4534, 2006
[48] Douglas A. Mercer, “Low-Power Approaches to High-Speed Current-Steering Digital-to-Analog Converters in 0.18-μm CMOS” , Solid-State Circuits, IEEE Journal of Publication Date: Aug. 2007 ,Volume: 42, Issue: 8 On page(s): 1688-1698
[49] David Fitrio1, Aleksandar Stojcevski, Jugdutt Singh ,” Ultra Low Power Weak Inversion Current Steered Digital to Analog Converter”, Circuits and Systems, 2006. APCCAS 2006. IEEE Asia Pacific Conference on Publication Date: 4-7 Dec. 2006 On page(s): 1543-1546
[50] P.F. Ruedi, et al., “Interface circuit for metal-oxide gas sensor”, in: Proceedings of the IEEE Custom Integrated Circuits Conference, San Diego, CA, USA, 6–9 May 2001, pp. 109–112.
[51] K. Arshak, G. Lyons, L. Cavanagh and S. Glifford , “Front end Signal conditioning used for resistance-based sensors in electronic nose systems : a review”, Sensor Review, Vol.23, No. 3, 2003. pp. 230 – 241.
[52] M. Grassi, P. Malcovati, A Baschirotto, "A 160dB Equivalent Dynamic Range Auto- Scaling Interface for Resistive Gas Sensors Journal of Arrays", Journal of Solid-State Circuits, Vol. 42, pp. 518-528, IEEE, 2007.
[53] U. Frey, M. Graf, S. Taschini, K. -U. Kirstein and A. Hierlemann “A Digital CMOS Architecture for a Micro-Hotplate Array”, in IEEE Journal of Solid-State Circuits, Feb. 2007. pp. 441-450
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *