帳號:guest(3.139.81.58)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李承漢
作者(外文):Li, Cheng-Han
論文名稱(中文):可攜式電子鼻SAW感測器陣列介面電路
論文名稱(外文):Interface Circuits for a Portable Electronic Nose Based on Surface Acoustic Wave Sensor Array
指導教授(中文):鄭桂忠
指導教授(外文):Tang, Kea-Tiong
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:9661612
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:87
中文關鍵詞:可攜式電子鼻感測器介面電路表面聲波感測器
外文關鍵詞:portable electronic nosesensor interfacesurface acoustic wave sensor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:471
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
電子鼻系統是目前世界上熱門的研究領域,它可以廣泛應用於各個產業及日常生活。藉由電子鼻系統可便於增加辨識氣體的種類、地點,並大幅改善辨識可靠度,傳統以人類嗅覺辨識氣體容易受到辨識者身體狀態及主觀意識等因素影響辨識可靠度。本論文希望能增加電子鼻系統的便利性,使用電路取代傳統電子鼻實驗需要使用的精密儀器,使電子鼻系統的應用可以不受到地點的限制,且降低成本。
表面聲波(Surface Acoustic Wave)感測器具有高靈敏度、響應速度快等優點,非常適合用於做為氣體感測器,透過陣列化可以圖形辨識的方式判斷目前感測到的氣體種類及濃度。使用非連續式表面聲波感測器陣列量測氣體所耗費功率較低,可延長可攜式裝置運作時間。本論文使用0.18μm CMOS製程設計數位式、類比式、混合訊號式(Mixed-Mode)電路實現表面聲波感測器陣列介面電路。數位式介面電路具有較高解析度特性,類比式介面電路具有低功耗特性,混合訊號式介面電路結合數位式電路及類比式電路的優點,其功率消耗僅1.48mW,解析度為10Hz,適用於輸出頻率約100MHz的SAW感測器陣列,並可結合無線傳輸模組傳送資料給接收端儲存與分析。
Electronic nose system is the world's popular field of studies, it can be widely applied to various industries and daily life. This thesis hopes to increase the convenience of the electronic nose system, the applicable site of electronic nose system can’t be constraints, and low cost.
Surface Acoustic Wave sensors with high sensitivity, fast response, etc., is very suitable for as gas sensors. Use of non-continuous surface acoustic wave gas sensor array measured power consumed by the lower, extend the operating hours of portable devices. It realization of SAW sensor interface circuits by using 0.18μm CMOS process in this work. The three types of circuits are digital, analog and mixed-mode SAW array interface circuit, the performance of the mixed-mode circuits is the best one, the power consumption is only 1.48mW, the resolution is 10Hz, suitable for the SAW output frequency of about 100MHz sensor array. The interface can be combined with wireless transmission to send data to the receiver storage and analysis.
第一章 緒論
1.1 前言
1.2 研究目標
第二章 文獻回顧
2.1 電子鼻簡介
2.1.1 金屬氧化物半導體感測器
2.1.2 金屬氧化物場效電晶體
2.1.3 導電聚合物感測器
2.1.4 光學感測器
2.1.5 石英晶體微量天平
2.1.6 表面聲波元件
2.1.7 各種電子鼻感測器之比較
2.2 表面聲波感測器陣列
第三章 表面聲波基本理論及參數
3.1 壓電現象的發展
3.2 壓電效應
3.3壓電材料種類
3.4指叉式電極換能器
3.5 頻率飄移效應
3.6質量負載效應
第四章 表面聲波感測器介面電路設計
4.1 設計考量
4.2 數位式頻率讀取電路
4.3 積體化數位式頻率讀取電路
4.4 類比式低功耗SAW感測器介面電路
4.4.1 架構原理介紹
4.4.2 混波器
4.4.3 低通濾波器
4.4.4 比較器
4.4.5 頻率電壓轉換器
4.5 混合訊號SAW感測器介面電路
第五章 量測結果與驗證
5.1 積體化數位式頻率讀取電路量測
5.1.1 量測環境設定
5.1.2解析度與精確度測試
5.1.3 功率消耗
5.2 類比式低功耗SAW感測器介面電路量測
5.2.1 量測環境設定
5.2.2解析度與精確度測試
5.2.3 功率消耗
5.3 混合訊號SAW感測器介面電路驗證與比較
5.3.1 量測環境設定
5.3.2 解析度與精確度測試
5.3.3 功率消耗
5.4 模擬氣體實驗測試
5.4.1 無線傳輸模組
5.4.2 模擬氣體測試流程
5.4.3 統計分析
5.5 氣體實驗結果
5.5.2 氣體測試流程
5.5.3 統計分析
第六章 結論與未來發展
參考文獻
1. I. Concinaa , M. Falasconib, E. Gobbic, F. Bianchie, M. Muscie, M. Mattarozzie, M. Pardob, A. Mangiae, M. Carerie and G. Sberveglierib, ” Early Detection of Microbial Contamination in Processed Tomatoes by Electronic Nose”, Food Control, Volume 20, Issue 10, October 2009, Pages 873-880.
2. Pradyumna K. Namdev , Yair Alroy, Vijay Singh, “Sniffing Out Trouble: Use of an Electronic Nose in Bioprocesses” , Biotechnology Progress, Volume 14 Issue 1, Sep 2008, Pages 75 -78.
3. J. W. Gardner, H. W. Shin, and E.L. Hines, “An Electronic Nose System to Diagnose Illness” Sensors and Actuators B: Chemical, vol. 70, 2000, pp. 19-24.
4. Y. J. Lin, “Application of the electronic nose for uremia diagnosis” Sensors and Actuators B: Chemical, vol. 76, 2001, pp. 177-180.
5. H. W. Shin, “Classification of the Strain and Growth Phase of cyanobacteria in Potable Water Using an Electronic Nose System”, Science, Measurement and Technology, vol.147, 2000, pp.158-164.
6. J. W. Gardner, “An Electronic Nose System for Monitoring the Quality of Potable Water”, Sensors and Actuators B: Chemical, vol. 69(3), 2000, pp. 336-341.
7. J. W. Gardner, “Prediction of Bacteria Type and Culture Growth Phase by an Electronic Nose with a Multi-Layer Perception Network”, Measurement Science and Technology, vol. 9, 1998, pp. 120-127.
8. S. Dragonieri, J. Annema, R. Schot, M. van der Schee, A. Spanevello, P. Carrat□, O. Resta, K. Rabe, P. Sterk, ” An Electronic Nose in the Discrimination of Patients with Non-Small Cell Lung Cancer and COPD” , Lung Cancer, Volume 64, Issue 2, 2009, pp. 166-170.
9. Guang Li , Jun Fu, Jia Zhang and JunBao Zheng, “Progress in Bionic Information Processing Techniques for an Electronic Nose Based on Olfactory Models”, Chinese Science Bulletin, Volume 54, Number 4, Feb 2009, pp. 521-534.
10. J. W. Gardner, “Prediction of Health of Dairy Cattle from Breath Samples using Neural Network with Parametric Model of Dynamic Response of Array of Semiconducting Gas Sensors”, Science, Measurement and Technology, vol. 146, 1999 , pp. 102-106.
11. Frank Roぴck, Nicolae Barsan, and Udo Weimar, ” Electronic Nose: Current Status and Future Trends” , Chemical Reviews, 2008, 108 (2), pp 705–725.
12. Richard Axel and L. B. Buck, "Odorant Receptors and the Organization of the Olfactory System," Nobel Prize in Physiology or Medicine, 2004.
13. S. Ampuero, J.O. Bosset, “The Electronic Nose Applied to Dairy Products: a review”, Sensors and Actuators B, Vol. 94, 2003, pp. 1–12.
14. Persaud, K.; Dodd, G. "Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose." Nature 1982, 299,pp. 352-355.
15. R.M. White and F.W Voltmer, “Direct piezoelectric coupling to surface elastic waves”, Applied Physics Letters, 1965, vol. 7, pp. 314-316.
16. N. Rao, C.M. van den Bleek and J. Schoonman, “Taguchi-type NOx gas sensors based on semiconducting mixed oxides”, Solid State Ionics, Volume 59, Issues 3-4, February 1993, Pages 263-270.
17. T. Seiyama, et al., “A New Detector for Gaseous Components using Semi-Conductive Thin Films”, Analystical chemistry, vol. 34, 1962, pp. 1502-1503.
18. K. Arshak, E. Moore, G.M. Lyons, J. Harris and S. Clifford, “A Review of Gas Sensors Employed in Electronic Nose Applications “, Sensor Review, Vol. 24 , 2004, No. 2 , 181–198.
19. Eisele, I., Doll, T. and Burgmair, M., “Low Power Gas Detection with FET Sensors”, Sensors and Actuators B: Chemical, Vol. 78 No. 1-3, 2001, pp. 19-25.
20. Hua Bai, Gaoquan Shi, “Gas Sensors Based on Conducting Polymers”, Sensors, March 2007, pp. 267-307.
21. Nagle, H.T., Gutierrez-Osuna, R., Schiffman, S.S., "The How and Why of Electronic Noses", IEEE Spectrum, Vol. 35 No.9, 1998, pp.22-31.
22. Pearce, T.C., Schiffman, S.S., Nagle, H.T. and Gardner, J.W., Handbook of Machine Olfaction, Wiley-VCH, Weinheim, 2003.
23. Jin, Z., Su, Y., Duan, Y., "Development of a Polyaniline-Based Optical Ammonia Sensor", Sensors and Actuators B: Chemical, Vol. 72 , 2001, No.1, pp.75-9.
24. Schaller, E., Bosset, J.O., Escher, F., "Electronic Noses and Their Application to Food", Lebensmittel-Wissenschaft & Technologie, Vol. 31 No.4, 1998, pp.305-16.
25. Khlebarov, Z.P., Stoyanova, A.I., Topalova, D.I., "Surface Acoustic Wave Gas Sensors", Sensors and Actuators B: Chemical, Vol. 8 No.1, 1992, pp.33-40.
26. Carey, P.W., Beebe, K.R., Kowalski, B.R., "Selection of Adsorbates for Chemical Sensor Arrays by Pattern Recognition", Analytical chemistry, Vol. 58, 1986, pp.149-53.
27. Grate, W.J., Abraham, M.H., "Solubility Interactions and Design of Chemically Selective Sorbant Coatings for Chemical Sensors and Arrays", Sensors and Actuators B, Vol. 3, 1991, pp.85-111.
28. Frank Roぴck, Nicolae Barsan, and U. Weimar, "Electronic Nose: Current Status and Future Trends", Chemical Reviews, vol. 108, 2008, pp. 705-725.
29. Stephen Y. Lai, MD, PhD , Olivia F. Deffenderfer , William Hanson, Marguerite P. Phillips, Erica R. Thaler, “Identification of Upper Respiratory Bacterial Pathogens With the Electronic Nose”, The Laryngoscope, Volume 112 Issue 6, Jan 2009, Pages 975 -979.
30. T. Alizadeh and S. Zeynali, "Electronic Nose Based on the Polymer Coated SAW Sensors Array for the Warfare Agent Simulants classification", Sensors and Actuators B: Chemical, vol. 129, 2008, pp. 412-423.
31. Erica R. Thaler, “The Diagnostic Utility of an Electronic Nose: Rhinologic Applications”, The Laryngoscope, Volume 112 Issue 9, Jan 2009, Pages 1533 – 1542.
32. B.G. Defilippia, W. San Juand, H. Vald□sa, M.A. Moya-Le□nc, R. Infanted and R. Campos-Vargas, “The Aroma Development During Storage of Castlebrite Apricots as Evaluated by Gas Chromatography, Electronic Nose, and Sensory Analysis”, Postharvest Biology and Technology, Volume 51, Issue 2, February 2009, Pages 212-219.
33. M. Rapp, et al., "New Miniaturized SAW-Sensor Array for Organic Gas Detection Driven by Multiplexed Oscillators", Sensors and Actuators B: Chemical, vol. 65, 2000, pp. 169-172.
34. 吳朗,電子陶瓷/壓電,全欣資訊,台灣,中華民國八十三年
35. 邱碧秀,電子陶瓷材料,徐氏基金會,台灣,中華民國七十七年
36. 高國陞,表面聲波元件之頻率及溫度特性之研究,國立中山大學電機
工程所,博士論文,中華民國九十三年
37. 趙哲新,以表面聲波陣列式震盪電路為基礎之氣體感測系統,國立清華大學工程與系統科學系,碩士論文,中華民國九十八年
38. B. D. Stephen, Acoustic wave sensors: theory, design, and physico-chemical applications, Academic Press, 1996.
39. Guopeng Hu, Hao Ying, Xinyu Du, Jianzeng Xu, Joseph Smolinski, Gregory Auner, ”Digital Phase Detection Approach and Its Application for AlN Dual-Mode Differential Surface Acoustic Wave Sensing”, Sensors and Actuators B: Chemical Volume 132, Issue 1, 28 May 2008, Pages 272-279.
40. J.M. Beeley, C. Mills, P.A. Hammond, A. Glidle, J.M. Cooper, L. Wang and D.R.S. Cumming, “All-Digital Interface ASIC for a QCM-Based Electronic Nose” Sensors and Actuators B: Chemical, Volume 103, 2009, pp. 31-36.
41. P. J. Sullivan, B. A. Xavier, and W. H. Ku “Low Voltage Performance of a Microwave CMOS Gilbert Cell Mixer,” IEEE Journal of Solid-State Circuits, Vol. 32, No. 7, 1997, p. 1151-1155.
42. Chin-Shen Lin, Pei-Si Wu, Hong-Yeh Chang, and Huei Wang “A 9-50-GHz Gilbert-Cell Down-Conversion Mixer in 0.13-μm CMOS Technology,” IEEE Microwave and Wireless components Letters, Vol. 16, No. 5, 2006, p. 293-295.
43. B. Gilbert, “A precise four quadrant multiplier with subnanosecond response,” IEEE Journal of Solid-State Circuits, Vol. 3 No. 4 , 1986, pp. 365-373.
44. M. B. Bendak , B. A. Xavier and P. M. Chau “A 1.2 GHz CMOS Quadrature Self-Oscillating Mixer,” Proc. IEEE Int. Symp. Circuits Syst., vol. 5, Jun 1999, pp. 434-437.
45. A. N. Karanicolas, “A 2.7-V 900 MHz CMOS LNA and Mixer,” IEEE J. Solid-State Circuits, vol. 31, 1996, pp. 1939–1944.
46. J. Crols and M. S. J. Steyaert, “A 1.5 GHz Highly Linear CMOS Downconversion Mixer,” IEEE J. Solid-State Circuits, vol. 30, 1995, pp.736–742.
47. A. Djemouai, M. Sawm and M. Slaman, “High Performance Integrated CMOS Frequency-to-Voltage Converter,” Microelectronics, ICM '98, 1998, pp. 63-66.
48. A. Djemouai, M. A. Sawan M. Slamani, “New Frequency-Locked Loop Based on CMOS Frequency-to-Voltage Converter: Design and Implementation,” IEEE Transactions on Circuits and Systems—II: Analogand Digital Signal Processing, Vol. 48 No. 5, May 2001, pp. 441-449.
49. A. Djemouai, M. A. Sawan M. Slamani, “A 200 MHz Frequency-Locked Loop Based on New Frequency-to-Voltage Converters approach”, Circuits and Systems. ISCAS '99. vol.2, 1999, pp.89-92.
50. F.M. Yasin, K.F. Tye, M.B.I. Reaz, “Design and Implementation of Interface Circuitry for CMOS-based SAW Gas Sensors”, SOC Conference, 2005, pp. 161-164.
51. C. Hagleitner, D. Barrettino, A. Hierlemann,Brand, H. Baltes, “CMOS Single-Chip Gas Detection System Comprising Capacitive,Calorimetric and Mass-Sensitive Microsensors”, IEEE Journal of Solid-State Circuits, Vol.37 No.12, 2002, pp. 1867- 1878.
52. Stephen A. Casalnuovo, Vincent M. Hietala, Edwin J. Heller, Gregory C. Frye-Mason, Albert G. Baea, and Joel R. Wendt, “Monolithic Integration of GaAs SAW Chemical Microsensor Arrays And Detection Electronics”, Solid-State Sensor and Actuator Workshop, 2000.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *