帳號:guest(3.138.114.38)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡昕融
作者(外文):Tsai, Shin-Rung
論文名稱(中文):Study of μc-Si:H films and fabrication of μc-Si:H P-I-N Thin Film Solar Cell Deposited by Electron Cyclotron Resonance Chemical Vapor Deposition (ECRCVD)
論文名稱(外文):使用電子迴旋共振化學氣相沉積系統沉積微晶矽薄膜太陽能電池之研究
指導教授(中文):黃惠良
指導教授(外文):Hwang, Huey-Liang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:9663535
出版年(民國):98
畢業學年度:97
語文別:英文
論文頁數:68
中文關鍵詞:薄膜太陽能電池電子迴旋共振化學氣相沉積非晶矽微晶矽多晶矽
外文關鍵詞:Thin film solar cellECRCVDamorphousmicrocrystallinepolycrystalline
相關次數:
  • 推薦推薦:0
  • 點閱點閱:163
  • 評分評分:*****
  • 下載下載:1
  • 收藏收藏:0
本篇論文在於利用電子迴旋共振化學沉積(ECRCVD)系統來進行沉積非晶和微晶矽薄膜,並且利用不同的氫稀釋比法來成長微晶矽薄膜於矽基板及玻璃基板上,並且利用拉曼(Raman)散射頻譜來用於分析微晶矽薄膜之結晶度與結晶態體積含量,X-ray繞射頻譜則用於分析微晶矽薄膜的擇優取向,而α-step 測厚儀用來量測薄膜厚度,掃描式電子顯微鏡(SEM)作表面晶粒型態的分析,四點探針用來量測摻雜濃度以及展阻量測來測量有效的載子濃度等特性進行分析。
在實驗的過程中,我們固定基版的溫度(2000C),微波的能量400W~700W,以及製程壓力20mTorr(2×10-2torr)~60mtorr(6×10-2torr),同時固定上下磁場的電流,分別為60A/100A,改變氫稀釋比例來進行薄膜分析。此外,我們也在矽薄膜中摻雜B2H6及PH3之氣體形成P型以及N型矽薄膜,同時我們也利用四點探針對其電阻率進行量測分析。
實驗結果顯示,我們得到微晶矽薄膜的結晶態體積含量比達70%,當氫稀釋比在98%時,晶粒尺寸大約是359A,非摻雜型多晶矽薄膜的擇優取向為<111>,氫含量也隨著氫稀釋比增加而減少。在摻雜的部分,N-type濃度控制在1×1017~1×1018,P-type濃度在1×1013~1×1014。而在元件特性方面開路電壓為0.41V,短路電流為11.2mA,填充因子為37%。
This thesis presents the characteristics of microcrystalline silicon (μc-Si) films deposition on silicon wafer and glass substrates and the solar cell fabricated by a-Si/μc-Si films. We deposited both the μc-Si films and a-Si films by electron cyclotron resonance chemical vapor deposition(ECRCVD).
The characterization of μc-Si films and a-Si films were carried out by using Raman scattering, XRD, SEM, SRP, Hall Measurement, α-step, and Four point probe. Raman scattering spectra were used to investigate the films crystallinity and crystalline fraction in the μc-Si/a-Si films. X-ray diffraction pattern(XRD) spectra were used to analyze the μc-Si/a-Si films. Fourier transform infrared(FTIR) absorption spectra were used to study the silicon-hydrogen bonding configurations and the hydrogen content of the μc-Si films. Conductivity measurements were employed to study the electrical properties of μc-Si films and a-Si films. α-step were used to measure the films thickness. Scanning electron microscopy (SEM) were used to analyze grain geometry and top morphology. Spreading Resistance Profiling (SRP) and Four point probe were used to analyze the doping concentration and Sheet resistance.
In our experiments, the growth conditions to prepare the p, I, n, layers of solar cells by using ECRCVD were found. The experimental parameters used in this study are the Top/Bottom magnetic current at 60A and 100A respectively and substrate temperature at 2000C the Microwave power at 400W~700W, the process pressure at 20mtorr~60mtorr. The hydrogen dilution ratio was varied to analyze the characteristics of thin films. In addition, we also doped the films using phosphine(PH¬3) and diborance(B2H6) to form the n-type and p-type silicon thin film.
The experimented results show that, the maximum crystalline fraction obtained was about 70%, and the grain size in these μc-Si films have dimension of about 35.9nm when the dilution ratio was 98%. The preferred orientation of the μc-Si films were found to be<100>, and also it was observed that hydrogen content decreased with the increase of hydrogen ration. The doped concentration of N-type is about 1×1017~1×1018, P-type is about 1×1013~1×1014. In device measurement results, the Voc is about 0.41V, Isc is about 11.2mA, Fill factor is about 37%.
Chapter 1 Introduction ………………………………………1
1.1 Background………………………………………………………………………..1
1.2 Motivation…………………………………………………………………..…….5
1.2.1 Thin Film Silicon Based Solar Cell……………………………………………5
1.2.2 Thin film Amorphous Silicon Solar Cell………………………………………8
1.2.3 Microcrystalline Silicon Solar Cell…..………………………….……………8
1.3 To compare the differences between amorphous and microcrystalline silicon thin films……………. ………………………………………………………………..10
1.3.1 Definition of amorphous and microcrystalline silicon………………………..11
1.3.2 Electronic properties of amorphous silicon (a-Si:H) and microcrystalline silicon(uc-Si:H)…………..…………………………………………………..13
References…………………………………………………………...……………….15

Chapter 2 Theory and Deposition Mechanism…………….16
2.1 Solar cell…………………………………………………………………………16
2.1.2 Introduction to the solar cell………………………………………………….16
2.1.2 Basic theory of solar cell……………………………………………………...17
2.1.3 The spectrum irradiance of the Sunlight……………………………………...19
2.1.4 The equivalent circuit of a solar cell………………………………………….21
2.1.5 Energy conversion efficiency…………………………………………………23
2.1.6 Fill Factor……………………………………………………………………..24
2.1.7 Categories of solar cell………………………………………………………..26
2.2 Silicon thin film deposition technology………………………………………….27
2.3 Growth mechanism of microcrystalline silicon thin films……………………….28
References………………………………………...………………………………….30

Chapter 3 Equipment and Characterization………………31
3.1 ECR-CVD….…………………………………………………………………31
3.2 Characterization Tools……………………………………………………………33
3.2.1 X-Ray Diffraction……………………………………………………………..33
3.2.2 Raman spectroscopy…………………………………………………………..35
3.2.3 Scanning Electron Microscopy (SEM)………………………………………..36
3.2.4 Spreading Resistance Profiling(SRP)…………………………………………38
3.2.5 α-STEP………………………………………………………………………..40
3.2.6 Hall measurement……………………………………………………………40
3.2.7 Four-point probe………………………………………………………………41
3.2.8 I-V characteristics measurement……………………………………………42
3.3 Experimental procedures…………………………………..……………….42
3.4 Process step of device………………………………………………………….46
References………………………………………...………………………………….47

Chapter 4 Results and Discussion…………………………48
4.1 Introduction………………………………………………………………………48
4.2 Properties of the Intrinsic (i) Layer………………………………………………50
4.2.1 Deposition rate………………………………………………………………50
4.2.2 Results of Raman scattering spectra…………………………………………53
4.2.3Results of X-ray Diffraction (XRD)……………………………56
4.2.4 Results of Scanning Electron Microscopy (SEM)…………………………59
4.3 Properties of the P layer…………………………….……………………………61
4.4 Properties of the N layer…………………………………………………………63
4.5 Characterization of device……………………………………………………….64
4.6 Conclusions……………………………………………………………………...66
References………………………………………...………………………………….67

Chapter 5 Conclusion……………………………………….68
[1] International Energy Agency, IEA.
[2] Energy Information Administration, EIA.
[3] Energy Information Administration, EIA.
[4] Chung-Min Chiu, “Study of µc-Si:H films and fabrication of µc-Si:H p-i-n solar cell by ECRCVD”, National Tsing Hua University Master Thesis (2007)
[5] Ye-Wen Zeng, “High performance grating solar cell with low resistivity wafer and passivation using HNO3”, National Tsing Hua University Master Thesis(2008).
[6] Kroll U, Meier J, Keppner H, Littlewood SD, Kelly IE, Giannoule’s, Ko..hler J. Proceedings of the Materials Research Society Symposium;377:39-44(1995)
[7] Poruba A, Fejfar A, Remes Z, Springer J, Vanecek M, Kocka J, Meier J, Torres P,
Shah A.. Journal of Applied Physics; 88: 148–160.( 2000)
[8] Veprek S, Marecek V, Anna Selvan JA. Solid State Electronics; 11:683-684(1968)
[9] J. K. Rath and R. E. I. Schropp, “Incorporation of p-type microcrystalline silicon films in amorphous silicon based solar cells in a superstrate structure,” Sol. Energy Materials and Sol. Cells, vol. 53, pp. 189–203, 1998.

[1] 莊嘉琛 編譯,太陽能工程-太陽電池篇 Chapter2, p.9-11 , 全華科技圖書股份有限公司 (1997)
[2] National Renewable Energy Laboratory.
[3] Sze S. M. Physics of semiconductor Devices, 2nd Edition, p.802(1981)
[4] Ye-Wun Zeng, “High performance grating solar cell with low resistivity wafer and passivation using HNO3”, National Tsing Hua University Master Thesis (2008)
[5] S.O. Kasap, Optoelectronics and Photonics : Principles and Practices,
Prentice Hall, Upper Saddle River, NJ (2001)
[6] 林明獻,太陽能電池技術入門,全華出版社,2007.
[7] KRI Report No. 8 : Solar cells, February 2005
[8] Kato T. IEEE Trans ED 35 (1988) 23.
[9] Inversion RB, Rief R. J Appl Phys 62 (1987)1675.
[10] S. Veprek, Z. Iqbal, H.R.Oswald,and A.P.Wedd,J. Phys.C 14,295(1981)
[11] A.Matsuda and T.Goto, Mater. Res. Soc. Symp. Proc. 164,3(1990)
[12] A.Matsuda, Thin Solid Films 337,1 (1999)
[13] C.C.Tsai, G. B. Anderson, R. Thompson,and B. Wecker, J. Non-Cryst. Solids 114, 151(1989)
[14] I.Shimizu, J.Non-Cryst. Solids114,145(1989)

[1] http://epswww.unm.edu/xrd/xrdbasics.pdf.
[2] Brundle CR, Evans CA, Wilson S. Encyclopedia of Materials Characterization, Surfaces, Interfaces, Thin Films, Butterworth-Heinemann, Boston, 1992.
[3] Sameshima T, Hara M, Usui S. Jpn J Appl Phys 28 (1989) 1789.
[4] Jinhua Gu,Meifang Zhu,a_Liujiu Wang,Fengzhen Liu,Bingqing Zhou, and Yuqin Zhou, J. Appl. Phys98, 093505(2005)
[5] James D. Plummer, Michael D. Deal, and Peter B. Griffin, Silicon VLSI Technolog, Prentice Hall (2000)

[1] Yue G, Lorentzen JD, Lin J, Han D, Wang Q. Appl Phys Lett 1999;75:492.
[2] Nishimoto T, Takai M, Miyahara H, Kondo M, Matsuda A. J Non-Cryst Solids
299-302 (2002) 1116.
[3] Takai M, Nishimoto T, Kondo M, Matsuda A. Appl Phys Lett 77 (2000) 2828.
[4] Hwang HL, Wang KC, Hsu KC, Wang RY, Yew TR, Loferski JJ. Appl Surf Sci
113-114 (1997) 741.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *