帳號:guest(3.135.194.15)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳珮琳
作者(外文):Chen, Pei-Lin
論文名稱(中文):嵌入式電流模式非揮發性類比記憶體研發
論文名稱(外文):The development of embedded, current-mode non-volatile analog memory
指導教授(中文):陳新
指導教授(外文):Chen, Hsin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:9663536
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:104
中文關鍵詞:非揮發性類比記憶體
外文關鍵詞:nonvolatileanalog memory
相關次數:
  • 推薦推薦:0
  • 點閱點閱:105
  • 評分評分:*****
  • 下載下載:17
  • 收藏收藏:0
仿神經系統之中,儲存類比値參數於懸浮閘內,可以使系統不經數位類比轉換,執行大量之平行運算;但文獻中的記憶體元件大部分是使用EEPROM技術,而非嵌入式記憶體元件。雖然有文獻有提出相容於標準製程(嵌入式)之實現方式,但準確度卻會受到非線性寫入機制和元件製程誤差的限制,為了提高解析度,有些文獻使用晶片外部之寫入系統或者外接高解析度比較器,但如此便會提高系統之複雜性。
本研究的主要目標希望在標準0.35微米互補型金氧半製程下設計嵌入式非揮發性類比記憶體,其設計原則著重於非揮發性、操作簡單、快速寫入(寫入時間於<1ms)以及具有高精準度(八位元解析度)等四項特性。本論文中,依據先前我們研究量測的結果,進一步改善寫入速度、破壞性讀取以及精準度等這些特性。經改良後下線量測並與模擬相比較,以及驗證量測結果是否符合原理的推論。除了電路設計上的改變,本論文為了提供類比記憶體電路模擬時的熱載子注入模型,將不同尺寸P-型電晶體萃取出的熱載子效應趨近模型之製程參數(α、β)加以歸納整理,並得出一定規律性之後,便藉此規律性預估不同元件尺寸之熱載子效應趨近模型。最後設計出在標準0.35微米互補型金氧半製程下,非破壞性讀取且有八位元解析度的類比記憶體單元後,提出陣列式類比記憶體電路架構。
第一章 緒論......................... ..................1
1.1 研就動機與目的................................. 1
1.2 研究貢獻....................................... 2
1.3 章節架構...........................................3
第二章 相關文獻回顧................. ..................4
2.1 不同非揮發性記憶體元件架構... ..................4
2.1.1 Diffusion Self-Align元件架構介紹........ 4
2.1.2 Novel MONOS元件架構介紹................. 5
2.1.3 HIMOS元件架構介紹....................... 6
2.1.4 SMCI元件架構介紹........................ 8
2.1.5 Step Split Gate元件架構介紹............. 9
2.2 不同類記憶體自我收斂寫入之電路架構............. 11
2.2.1自我收斂電流型類比記憶體電路............. 11
2.2.2線性調適負回授比較器自我收斂電壓型類比記憶體電
路...........................................12
2.2.3比較器負回授自我收斂電壓型類比記憶體電路. 15
2.2.4脈衝寬度調變(PWM)自我收斂電壓型類比記憶體電
路...........................................17
2.3非揮發性類比記憶體陣列.......................... 19
第三章 模擬閘極電流模型............................... 22
3.1非揮發性記憶體寫入抹除機制模型公式.............. 22
3.1.1傅勒-諾德翰穿隧(Fowler-Nordheim tunneling
effect).................................. 22
3.1.2熱載子注入( Hot Carrier Effect).......... 24
3.2 測試元件...................................... .27
3.3 元件量測數據與趨近模型......................... 29
3.3.1 製程參數萃取............................ 29
3.3.2 傅勒-諾德翰穿隧電流驅進模型............. 31
3.3.3 N-型電晶體閘極電流趨近模型.............. 32
3.3.4 P-型電晶體閘極電流趨近模型.............. 34
3.4 結論........................................... 41
第四章 非揮發性類比記憶體電路設計與量測............... 42
4.1 非揮發性記憶體電路設計......................... 42
4.1.1 電流比較器.............................. 43
4.1.2單增益緩衝放大器......................... 45
4.1.3 整體電路架構............................ 46
4.2 初版晶片量測結果與改良......................... 47
4.3 電路模擬討論................................... 51
4.4 晶片佈局圖與實體晶片........................... 55
4.5 晶片量測結果討論............................... 57
4.5.1量測環境架設............................. 57
4.5.2 實驗量測結果............................ 58
4.6 總結........................................... 67
第五章 電路非理想特性之改善........................... 68
5.1佈局後整體模擬與量測比較討論.................... 68
5.2整體電路問題討論與改善..............................71
5.2.1討論與改善輸出電流IOUT攀升之問
題 .......................................71
5.2.2討論與改善時脈饋入(clock feedthrough)效應之問
題 ..........................................77
5.2.3討論與改善寫入時間的縮短................. 79
5.3完整電路改良後之模擬........................... 79
5.4.總結.......................................... 85
第六章 類比記憶體陣列................................. 86
6.1陣列電路設計................................... 86
6.1.1邏輯閘控制電路 ...........................88
6.1.2電壓準位平移器 ...........................90
6.2 子電路模擬................................... 93
6.2.1邏輯閘控制電路模擬....................... 93
6.2.2電壓準位平移器模擬....................... 94
6.2.3記憶體單元電路模擬....................... 95
6.3.總結......................................... 99
第七章 結論和未來方向................................ 100
7.1結論.......................................... 100
7.2未來方向....................................... 100
參考文獻............................................. 102
[1]M. Holler, S. Tam, H. Castro, and R. Benson, "An Electrically Trainable Artifical Nerual Network with 10240 ‘Floating Gate’ Synapse," Proc. Of the int. Joint Conf. on Neurak Networks, Vol. II, 1989, pp. 191-196.
[2]H.V. Tran, et al., "A 2.5V 156-level Non-volatile Analog Storage Device Using EEPORM Technology," Proceeding of IEEE Internalf Solid-State Circuits Conf., 1996, pp. 270-171.
[3]C. Diorio, et al., "Adaptive CMOS: from biological inspiration to systems-on-a-chip," Proceedings of the IEEE, vol. 90, pp. 345-357, 2002.
[4]G. Serrano, et al., "Automatic Rapid Programming of Large Arrays of Floating-gate Elements," IEEE Int. Symp. On Circuits and Syst., vol. 1, no., pp. I-373-I-376 Vol.1, 23-26, May 2004.
[5]S. Atsumi, et al., "Fast programmable 256K read only memory with on-chip test circuits," IEEE Journal of Solid-State Circuits, vol. 20, pp. 422-427, 1985.
[6]H. A. R. Wegener, A. J. Lincoln, H. C. Pao, M. R. O’Connell, and R. E. Oleksiak, “The variable threshold transistor, a new electrically alterable non-destructive read-only storage device,” IEEE IEDM Tech. Dig., Washington, D.C., 1967.
[7]X. Wang, J. Liu, W. Bai and D. L. Kwong, “A novel MONOS-type non-volatile memory using high-k dielectrics for improved data retention and programming speed,” IEEE Trans. Electron Devices, vol. 51, pp. 597-602, April 2004.
[8]J. Van Houdt, et al., "The HIMOS flash technology: the alternative solution for low-cost embedded memory," Proceedings of the IEEE, vol. 91, pp. 627-635, 2003.
[9]D. Kim, et al., "Stacked gate mid-channel injection flash EEPROM cell. I. Programming speed and efficiency versus device structure," IEEE Transactions on Electron Devices, vol. 45, pp. 1696-1702, 1998.
[10]S. Ogura, et al., "Low voltage, low current, high speed program step split gate cell with ballistic direct injection for EEPROM/Flash," IEDM Tech. Dig, p. 987¡V990, 1998.
[11]C. Diorio, et al., "A floating-gate MOS learning array with locally computed weightupdates," IEEE Transactions on Electron Devices, vol. 44, pp. 2281-2289, 1997.
[12]K. Kim, et al., "An 8-bit-resolution, 360-μs write time nonvolatile analog memorybased on differentially balanced constant-tunneling-current scheme(DBCS)," IEEE Journal of Solid-State Circuits, vol. 33, pp. 1758-1762, 1998.
[13]K.-H. Kim and K. Lee, “A true nonvolatile analog memory cell using coupling charge balancing,” in ISSCC Dig. Tech. Papers, pp. 268–269, 1996.
[14]C. Diorio, et al., "A high-resolution non-volatile analog memory cell," Proceedings of the IEEE International Symposium on Circuits and Systems, vol. 3, pp. 2233–2236 , 1995.
[15]S. Kinoshita, et al., "New non-volatile analog memory circuits using PWM methods," IEICE TRANSACTIONS ON ELECTRONICS E SERIES C, vol. 82, pp. 1655-1661, 1999.
[16]S. Kinoshita, et al., "A PWM analog memory programming circuit for floating-gate MOSFETswith 75-μs programming time and 11-bit updating resolution," IEEE Journal of Solid-State Circuits, vol. 36, pp. 1286-1290, 2001.
[17]R. Harrison, et al., "A CMOS programmable analog memory-cell array using floating-gate circuits," IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 48, pp. 4-11, 2001.
[18]P. Smith, et al., "Accurate programming of analog floating-gate arrays," in Proceedings of the IEEE International Symposium on Circuits and Systems, vol. 5, (Scottsdale, AZ), pp. V-489-V-492 , May 2002.
[19]S. Tam, P. K. Ko. And C. Hu, “Lucky-Electron Model of Channel Hot-electron injection in MOSFET’s,” IEEE Trans. Electron Devices, Vol.
ED-31, No. 9, pp. 1116-1125, 1984.
[20]K. Hasnat, CF Yeap, S. Jallepalli, WK Shih, SA Hareland, VM Agostinelli, AF Tasch,and CM Maziar, “A Pseudo-Lucky electron model for simulation of electron fate current in submicron N-MOSFET's,” IEEE Tran. Electron devices, vol.43, no.8, pp.1264-1266, August 1996.
[21]K. Lee, et al., "Self-convergent scheme for logic-process-based multilevel/analog memory," IEEE Transactions on Electron Devices, vol. 52, pp. 2676-2681, 2005.
[22]James Brennan, Jr, Sartoga, Calif. “Negative voltage switching circuit”, the U.S. patents 5,701,272, 1997.
[23]闕隆ㄧ,嵌入式快閃式記憶體中新行參考電壓和字線解碼電路的設計,碩士論文,國立清華華大學,2002。
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *