帳號:guest(18.217.228.35)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊宗霖
作者(外文):Yang, Zong-Lin
論文名稱(中文):以電性崩潰為響應機制之微型氣體感測器
論文名稱(外文):Miniaturized Ionization Gas Sensor based on Electric Breakdown
指導教授(中文):盧向成
指導教授(外文):Lu, Shiang-Cheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:9663542
出版年(民國):98
畢業學年度:98
語文別:中文
論文頁數:77
中文關鍵詞:氣體感測器離子化崩潰電壓微機電系統帕斯臣曲線
外文關鍵詞:gas sensorionizationbreakdown voltageMEMSPaschen's curve
相關次數:
  • 推薦推薦:0
  • 點閱點閱:72
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
目前的氣體感測器可由感測機制分成各種不同的類型,離子化氣體感測器運用各種氣體對應不同的崩潰電場作為感測機制。此篇論文呈現了一個成功操作的離子化氣體感測器,此感測元件以鎳金屬作電極材料,並設計了3-30um不同間距的電極,並用微機電製程使其微形晶片化。我們量測了各種氣體在一大氣壓下不同間距的崩潰電壓如:氦氣、氬氣、空氣、二氧化碳及氧氣。此感測器表現了高敏感度、高選擇度且不受環境溫度、溼度及氣體流動的影響。實驗數據呈現的趨勢與 Paschen’s curve十分吻合。
Gas sensor operate by a variety of fundamentally various mechanism. Ionization gas sensor operate by fingerprinting the electrical breakdown characteristics of distinct gases. This work presents the successful operation of an ionization gas sensor with gap spacing of 3-30 um and using nickel as electrodes material. The device is chip based and fabricated using micro-electro-mechanical system. We report the breakdown voltage of Helium, Argon, air, Carbon dioxide, Nitrogen and Oxygen of 3-30 um gap spacing in 760 torr. The sensor show good sensitivity and selectivity, and unaffected by temperature, humidity, and gas flow. The experimental data show alike tendency of Paschen’s curve.
第一章 緒論 1
1-1 研究動機 1
1-2 微機電技術簡介 4
1-2-1 面型微加工技術 4
1-2-1 互補式金氧半導體微機電系統(CMOS-MEMS) 5
1-3 文獻回顧 8
第二章 感測器之原理與設計 15
2-1 感測器之原理與設計 15
2-1-1 氣體放電概論 15
2-1-2 均勻電場下之崩潰電壓推導 19
2-1-3 感測器之運作機制 25
2-1-4 感測電極的設計 27
2-2 電路設計與原理 37
2-2-1 整體感測電路原理與架構 37
2-2-2 電路模擬結果與佈局 45
第三章 奈米碳管於氣體感測器之應用 47
3-1 奈米碳管簡介 47
3-2 電泳法沉積奈米碳管 48
3-2-1 電泳沉積簡介 48
3-2-2 電泳沉積原理 49
3-2-3 奈米碳管的純化、裁切與過濾 51
3-2-4 電泳法沉積流程 53
第四章 量測結果 54
4-1 鎳電極部份 54
4-2 TSMC 2P4M 0.35um製程晶片電極量測結果 62
4-3 電路量測結果 64
4-4 電泳法沉積結果 67
第五章 結論 70
5-1 研究成果與討論 70
5-2 未來工作 72
參考文獻 73
[1] 行政院環保暑-空氣品質監測網 http://taqm.epa.gov.tw/taqm/zh-tw/default.aspx
[2] A. Modi, N. Koratkar, E. Lass, B. Wei, and P. M. Ajayan, “Miniaturized gas ionization sensors using carbon nanotubes,” Nature, vol. 424, no. 6945, pp. 171–174, Jul. 10, 2003.
[3] J. H. Smith, S. Montague, J. J. Sniegowski, J. R. Murray, et al., “Embedded micromechanical devices for the monolithic integration of MEMS with CMOS,” in Proc. Int. Electron Devices Meeting, Washington, DC, pp.609-612, Dec. 10–13, 1995.
[4] 楊明長,曾坤億,王瓊,,“一氧化碳感測器之原理與應用”, 化工技術,8卷,2期,頁158-167,2000
[5] 邱秋燕,電流式二氧化硫氣體感測器之研究,國立成功大學化學工程研究所博士論文,1998。
[6] G. Sberveglieri et al “Recent Developments in Semiconducting Thin-Film Sensors”, Sensor and Actuator B, vol. 23, pp. 103-109, 1995
[7] W. Gopel, “SnO2 Sensor Current Status and Future Prospects”, Sensor and Actuator B, vol. 26, pp. 1-12, 1995
[8] G. Martinelli et al, ”Thick-Film Gas Sensor”, Sensor and Actuator B, vol. 23, pp. 157-161, 1995
[9] 蔡嬪嬪,曾漢亮,”氣體感測器之簡介、應用及市場”,材料與設計,68期,頁50-56,1992
[10] Yuri. P. Raizer, “Gas discharge physics”(Springer-Verlag, New York, 1991)
[11] R. B. Sadeghian, M. Kahrizi, ”A novel miniature gas ionization sensor based on freestanding gold nanowires”, Sensor and Actiator A, vol. 137, pp. 248-255, 2007.
[12] A. M. Howatson, “An Introduction to Gas Discharges”, 2nd ed. , Pergamon Press, Oxford, New York, 1976.
[13] J. M. Meek, J. D. Craggs, “Electric Breakdown of Gases”, (John Wiley & Sons, 1978)
[14] J. Wu, H. Liu, Y. Wang, D. Xu and Y. Zhang, “A MEMS-Based Ionization Gas Sensor Using Carbon Nanotubes and Dielectric Barrier”, 3rd IEEE Int. Conf. on Nano/Micro Engineered and Molecular System, Sanya, China, Jan 6-9, 2008.
[15] L. Liao, H. B. Lu, M. Shuai, Y. L. Liu, C. Liu, Z. X. Shen,”A novel gas sensor based on field ionization from ZnO nanowires: moderate wprking voltage and high stability”, Nanotechnology, vol. 19, pp.175501-175505.
[16] Z. Hou. J. Wu, W. Zhou, X Wei, D. Xu, Y. Zhang and B. Cai,”A MEMS-Based Ionization Gas Sensor Using Carbon Nanotubes”, IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 54, NO. 6, 2007
[17] P. G. Slade and E. D. Taylor, ”Electrical Breakdown in Atmospheric Air Between Closed Spaced(0.2um-40um)Electrical Contacts”, Ieee Tranactions on Components and Packaging Technology, vol. 25, NO. 3, pp. 390-396, 2002.
[18] R. B. Sadeghian and M. Kahrizi, ”A Low Voltage Gas Ionization Sensor based on Sparse Gold Nanowires.”, Ieee Sensor, 2007
[19] Z. Hou, D. Xu, B. Cai, “Ionization gas sensing in a microelectrode system with carbon nanotubes”, Applied Physics Letters, vol. 89, 213502, pp. 1-3, 2006.
[20] Z. Yong, L. Junhua, L. Xin, T. Xiaojun and Z. Changchun,”Study of improving identification accuracy of carbon nanotube film cathode gas sensor”, Sensor and Actuators A, vol. 125, pp. 15-24, 2005.
[21] J. Huang, J. wang, C. GU, K. Yu, F, Meng and J. Liu, “A novel highly sensitive gas ionization sensor for ammonia detection”, Sensor and Actuator A, vol. 150, pp. 218-223, 2009.
[22] Iijima S. , “Helical microtubes of graphitics carbon”, Nature, vol. 354, pp. 56, 1991.
[23] Iijima S. , T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter”, Nature, vol. 363, pp. 603, 1993.
[24] Kroto H. W. , J. R. Health, S. C. O’Brien, R. F. Smalley, “C60:Buckminsterfullerence”, Nature, vol. 318, pp. 162, 1985.
[25] Rodriguez, N. M. , Alan Chambers and R. Terry K. “Catalyst Engineering of Carbon Nanotubes”, Lanmuir, vol. 11, pp. 3862, 1995.
[26] Tiselius A. , J. Bio, “Tricalcium Phosphate as an Adsorbent in the Chromatography of Proteins”, Chem, vol. 48, pp. 171, 1950.
[27] Yamamoto K. , S. Akita and Y. Nakayama, “Orientation of Carbon Nanotubes Using Elecphoresis”, Jpn. J. Appl. Phys. vol. 35, pp. 917, 1996.
[28] Yamamoto K. , S. Akita and Y. Nakayama, “Orientation and purification of carbon nanotubes using ac electrophoresis”, . J. Phys. D, vol. 31, pp. 34, 1998.
[29] Sarkar P. , P. S. Nicholson, “Electrophoretic deposition(EPD): mechanisms, kinetics”, J. Am. Ceram. Soc, vol. 79, pp.1987, 1996.
[30] J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. Kelley Bradley, P. J.Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F.Rodriguez-Macias, Y.S. Shon, T. R. Lee, D. T. Colbert, and R. E.Smalley, Secince, vol. 280, pp. 1253-1256 , 1998.
[31] Aldo R. Boccaccini, Johann Cho, Judith A. Roether, Boris J. C. Thomas, E. Jane Minay, Milo S. P. Shaffer, “Electrophoretic deposition of carbon nanotubes”, Carbon, vol. 44, pp. 3149-3160, 2006.
[32] B. J. C. Thomas and A. R. Boccaccini, “Multi-Walled Carbon Nanotube Coatings Using Electrophoretic Deposition”, J. Am. Ceram. Soc. , vol. 88, pp. 980-982, 2005.
[33] M. S. P. Shaffer, X. Fan and A. H. Windle, “Dispersion and packaging of carbon nanotubes”, Carbon, vol. 36, No. 11, pp. 1603-1612, 1998.
[34] Huizhong Ma, Lan Zhang, Junjie Zhang, Liwei Zhang, Ning Yao, Binglin Zhang, “Electron field emission properties of carbon nanotubes deposition flexible film”, Applied Surface Science, vol. 251, pp. 258-261, 2005.
[35] S. J. Oh, J. Zhang, Y. Cheng, H. Shimoda, O. Zhou, “Liquid-phase fabrication of patterned carbon nanotube field emission cathodes”, Applied Physics Letters, vol. 84, No. 19,pp. 3738-3749, 2004.
[36] K. Yu, Z. Zhu, Q. Li, W. Lu, “Electronic properties and field emission of carbon nanotube film treated by hydrogen plasma”, Applied Physics A, vol. 77, pp. 811-817, 2003.
[37] K. Esumi, M. Ishigama, A. Nakajima, K. Sawada and H. Honda, “Chemical treatment of carbon nanotubes”,Letters to the Editor, pp. 279-281, 1995.
[38] C. Y. Lee, H. M. Tsai, H. J. Chuang, Seu Yi Li, P. Lin and T. Y. Tseng, ”Characteristics and electrochemical performance of supercapacitors with Manganese Oxide-Carbon nanotube nanocomposite electrodes”, Jounal of The Electrochemical Society, vol. 152, pp. A716-A720, 2005.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *