帳號:guest(18.226.98.166)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張曉齡
作者(外文):Chang, Hsiao-Ling
論文名稱(中文):使用空間-頻域區塊編碼之MIMO-OFDM系統的低複雜度功率峰均比降低技術
論文名稱(外文):A Low-Complexity PAPR Reduction Scheme for MIMO-OFDM Systems Using Space-Frequency Block Coding
指導教授(中文):王晉良
指導教授(外文):Wang, Chin-Liang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:9664538
出版年(民國):98
畢業學年度:97
語文別:英文
論文頁數:51
中文關鍵詞:峰值對平均功率比多重輸入多重輸出正交分頻多工空間-頻域區塊碼
外文關鍵詞:PAPRMIMOOFDMSFBC
相關次數:
  • 推薦推薦:0
  • 點閱點閱:172
  • 評分評分:*****
  • 下載下載:7
  • 收藏收藏:0
多重輸入多重輸出之正交分頻多工系統有一個主要的缺點,是其輸出信號會產生相對高的功率峰均比使得訊號經過功率放大器時產生非線性失真。雖然已有許多降低其功率峰均比的技術被提出,但運算複雜度高。而且這些技術大部分不適用於使用空間-頻域區塊碼的系統。
在本論文中,我們針對空間-頻域區塊碼之多重輸入多重輸出正交分頻多工系統提出低複雜度功率峰均比的降低方法。我們首先藉由對輸入訊號乘上不同的旋轉向量來產生多個彼此可視為統計獨立的訊號,再運用空間-頻域區塊碼的線性特性分別把這些訊號分成多個子訊號。這些子訊號在經過快速傅立葉轉換後,我們再利用快速傅立葉轉換的特性在時域中進行等同於頻域的空間-頻域編碼,並藉由選擇屬於不同組的子訊號進行編碼以產生更多的候選訊號。在所提出的方法中,我們只須執行少量的快速傅立葉轉換就可在時域中產生大量彼此相關性小的候選訊號,進而選出具有最低功率峰均比的訊號作為傳輸訊號。此外我們更設定一個門檻值來避免產生不必要的候選訊號以降低在選擇最佳候選訊號的運算複雜度。經由模擬和比較結果我們可看出;相較於其他可適用於空間-頻域區塊碼的功率峰均比降低技術,我們所提出的方法可以低的複雜度達到不錯的功率峰均比降低的效能。
One inherent drawback associated with multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems is the high peak-to-average power ratio (PAPR) at the transmitter’s output, and this usually causes undesirable nonlinear distortions. There have been a number of PAPR reduction techniques proposed for MIMO-OFDM systems, but their computational complexity is too high to be useful for practical applications. Besides, most of them cannot be used for MIMO-OFDM systems with space frequency block coding (SFBC).
In this thesis, we propose a low-complexity PAPR reduction scheme for SFBC-based MIMO-OFDM systems. We first multiply the input sequence by a set of phase rotation vectors respectively and then utilize the linear property of SFBC to decompose each resulting sequence into several sub-sequences. After computing the inverse fast Fourier transform (IFFT) to convert each frequency-domain sub-sequence into a time-domain signal, we utilize the IFFT properties to do equivalent SFBC encoding operations in the time-domain for generating candidate signal sets, where the one with the lowest maximum PAPR is selected for transmission. Based on the proposed approach, we can obtain a large number of candidate signal sets by computing only a few IFFTs. Moreover, we reduce the complexity of selecting the optimal candidate signal set by setting a threshold to avoid generating unnecessary candidate signal sets. Simulation results show that, with lower computational complexity, the proposed scheme has comparable PAPR reduction performance to existing schemes for SFBC-based MIMO-OFDM systems.
摘 要
目 錄
第一章 簡介
第二章 功率峰均比以及其相關降低技術
第三章 應用於空間-頻域區塊編碼之 MIMO-OFDM系統之低複雜度功率峰均比降低技術
第四章 模擬結果及比較
第五章 結論
附錄 論文英文本
[1] R. D. Murch and K. B. Letaief, “Antenna Systems for Broadband Wireless Access,” IEEE Commun. Mag., vol. 40, Apr. 2002, pp. 31-37
[2] S. N. Diggavi et al., “Great Expectations: the Value of Spatial Diversity in Wireless Networks,” Proc. IEEE, vol. 92, no.2, Feb. 2004, pp. 219-270.
[3] L. Zheng and D. N. C. Tse, “Diversity and Multiplexing: a Fundamental Trade-Off in Multiple-Antenna Channels,” IEEE Trans. Info. Theory, vol. 49, May 2003, pp. 1073-96
[4] S. M. Alamouti, “A simple Transmit Diversity Technique for Wireless Communication,” IEEE JSAC, vol. 16, Oct. 1998, pp. 1451-1458
[5] G. J. Foschini, “Layered Space-Time Architecture for Wireless Communication in a Fading Environment When Using Multiple Antennas,” Bell Labs Tech. J., vol. 1, no. 2, 1996, pp.41-59
[6] R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communications. Boston: Artech House, 2000.
[7] H. Bolcskei, “MIMO–OFDM Wireless Systems: Basics, Perspectives and Challenges,” IEEE Wireless Commun ., vol. 13, Aug. 2006. pp. 31–37,
[8] G. L. Stüber, J. R. Barry, S. W. McLaughlin, Y. Li, M. A. Ingram, and T. G. Pratt, “Broadband MIMO–OFDM wireless communications,” in Proc. IEEE, Feb. 2004, vol. 92, pp. 271–294
[9] K. F. Lee and D.B. Williams, “A Space-Frequency Transmitter Diversity Technique for OFDM Systems.” Proc. IEEE Global Commun. Conf. , Nov. 27-Dec. 1, 2000, vol. 3, pp. 1473-1477
[10] R. W. Bauml, R. F. H. Fischer, and J. B. Huber, “Reducing the peak-to-average power ratio of multicarrier modulation by selected mapping,” Electron. Lett., vol. 32, pp. 2056-2057, Oct. 1996.
[11] A. D. S. Jayalath and C. Tellambura, “The use of interleaving to reduce the peak-to-average power ratio of an OFDM signal,” in Proc. 2000 IEEE Global Telecommun. Conf. (GLOBECOM ‘00), San Francisco, CA, Nov.-Dec. 2000, pp. 82-86.
[12] S. J. Heo, H. S. Noh, J. S. No, and D. J. Shin, “A modified SLM scheme with low complexity for PAPR reduction of OFDM systems,” IEEE Trans. Broadcast., vol. 53, no. 4, pp. 804–808, Dec. 2007
[13] D. W. Lim, J. S. No, C. W. Lim, and H. Chung, “A new SLM OFDM scheme with low complexity for PAPR reduction,” IEEE Signal Process. Lett., vol. 12, no. 2, pp. 93–96, Feb. 2005.
[14] C. L. Wang and Q. Y. Yuan, “Low-complexity selected mapping schemes for peak-to-average power ratio reduction in OFDM systems,” IEEE Trans. Signal Process., vol. 53, no. 12, pp. 4652–4660, Dec. 2005
[15] S. H. Müller and J. B. Huber, “OFDM with reduced peak-to-average power ratio by optimum combination of partial transmit sequences,” Electron Lett., vol. 33, pp. 368-369, Feb. 1997.
[16] S. H. Han and J. H. Lee, “PAPR reduction of OFDM signals using a reduced complexity PTS technique,” IEEE Signal Process. Lett., vol. 11, no. 11, pp. 887–890, Nov. 2004.
[17] A. Alavi, C. Tellambura, and I. Fair, “PAPR reduction of OFDM signals using partial transmit sequence: An optimal approach using sphere decoding,” IEEE Trans. Commun. Lett., vol. 9, no. 11, pp. 982–984, Nov. 2005.
[18] N. T. Hieu, S. W. Kiom, and H. G. Ryu, “PAPR reduction of the low complexity phase weighting method in OFDM communication system,” IEEE Trans. Consum. Electron., vol. 51, no. 3, pp. 776–782, Aug. 2005.
[19] L. Yang, R. S. Chen, Y. M. Siu, and K. K. Soo, “PAPR reduction of an OFDM signal by use of PTS with low computational complexity,” IEEE Trans. Broadcast., vol. 52, no. 1, pp. 83–86, Mar. 2006.
[20] Y. Xiao, X. Lei, Q. Wen, and S. Li, “A class of low complexity PTS techniques for PAPR reduction in OFDM systems,” IEEE Signal Process. Lett., vol. 14, no. 10, pp. 680–683, Oct. 2007.
[21] M.-S. Baek, M.-J. Kim, Y.-H. You, and H.-K. Song, “Semi-Blind Channel Estimation and PAR Reduction for MIMO-OFDM System with Multiple Antennas,” IEEE Trans. on Br., pp. 414–424, Dec. 2004.
[22] Y. L. Lee, Y. H. You, W. G. Jeon, J. H. Paik, and H. K. Song, “Peak-to-Average-Power Ratio in MIMO-OFDM Systems Using Selective Mapping .” IEEE Commun. Lett., vol. 7, pp. 575-577, Dec. 2003
[23] R.F.H. Fischer and M. Hoch, “Peak-to-Average Power Ratio Reduction in MIMO OFDM,” in Proc. 2007 IEEE Int. Commun. Conf. (ICC ‘07), Glasgow, Scotland, June 2007.
[24] R.F.H. Fischer and M. Hoch, “Directed Selected Mapping for Peak-to-Average Power Ratio Reduction in MIMO OFDM,” IEE Electron. Lett., pp. 1289–1290, Oct. 2006.
[25] R.F.H. Fischer and C. Siegl, “Peak-to-Average Power Ratio Reduction in Single- and Multi-Antenna OFDM via Directed Selected Mapping,” Submitted for publication, July 2007.
[26] L. Wang and Y. Wang, “MIMO-OFDM peak-to-average power ratio reduction by Two-Dimensional Permutation,” Electron. Letr., vol. 43, no. 10, pp. 579-580, May 2007.
[27] M. Tan, Z. Lationovic, and Y. Bar-Ness, “STBC MIMO-OFDM peak-to-average power ratio reduction by Cross-Antenna Rotation and Inversion,” IEEE Commun. Lett., vol. 7, pp. 575-577, Dec. 2003.
[28] B. J. A. Bassem, J. Slaheddine, and B. Ammar, “A PAPR reduction method for STBC MIMO-OFDM systems using SLM in combination with subband permutation,” Proc. Int. Conf. on Wireless and Mobile Commun. (ICWMC’07), Mar. 2007, pp. 88-88.
[29] Z. Latinovic and Y. B. Ness, “SFBC MIMO-OFDM peak-to-average power ratio reduction by Polyphase Interleaving and Inversion,” IEEE Commun. Lett., vol. 10, no. 4, pp. 266–268, Apr. 2006.
[30] G. Wunder and H. Boche, “Peak value estimation of bandlimited signals from their samples, noise enhancement, and a local characterization in the neighborhood of an extremum,” IEEE Trans. Signal Process., pp. 771-780, Mar.2003
[31] R. Gross and D. Veeneman, “Clipping distortion in DMT ADSL systems,” Electron. Lett., vol.29, pp. 2080-2081, Nov. 1993.
[32] D. J. G. Mestdagh, P. Spruyt, and B. Biran, “Analysis of clipping effect in DMT-based ADSL system,” in Proc. 1994 IEEE Int. Conf. Commun. (ICC ‘94), New Orleans, LA, May 1997, pp. 293-300.
[33] R. O’Neill and L. B. Lopes, “Envelop variations and spectral splatter in clipped multicarrier signals,” in Proc. 1995 IEEE Int. Symp. Personal, Indoor and Mobile Radio Commun. (PIMRC ‘95), Toronto, Canada, Sept. 1995, pp. 71-76.
[34] X. Li and L. J. Cimini, “Effects of clipping and filtering on the performance of OFDM,” IEEE Commun. Lett., vol. 2, pp. 131-133, May 1998.
[35] T. A. Wilkinson and A. E. Jones, “Minimization of the peak to mean envelope power ratio of multicarrier transmission schemes by block coding,” in Proc. 1995 IEEE Veh. Technol. Conf. (VTC ‘95), Chicago, IL, July 1995, pp. 825-829.
[36] X. Li and J. A. Ritcey, “M-sequences for OFDM PAPR reduction and error correction,” Electron. Lett., vol. 33, pp. 545-546, July 1997.
[37] C. Tellambura, “Use of m-sequences for OFDM peak to average power ratio reduction,” Electron. Lett., vol. 33, pp. 1300-1301, July 1997.
[38] T. A. Wilkinson and A. E. Jones, “Minimization of the peak-to-mean envelope power ratio of multicarrier transmission schemes by block coding,” in Proc. 1995 IEEE Veh. Technol. Conf. (VTC ‘95), Chicago, IL, July 1995, pp. 825-829.
[39] J. Tellado, “Peak to Average Power Ratio Reduction for Multicarrier Modulation,” PhD thesis, University of Stanford, Stanford, 1999.
[40] Brian Scott Krongold and Douglas L. Jones, “PAR reduction in OFDM via active constellation extension,” IEEE Trans. Broadcast., vol.49, no.3, pp. 258-268, Sep. 2003.
[41] F. Longo , R. Ansari, Y. Yao, and F. Sellone, “Erasure pattern selection with active constellation extension for peak-to-average power ratio reduction in OFDM,” IEEE Int. Conf. Electro/Infor. Technol., May 2007, pp. 53-58.
[42] Andreas Saul, “Generalized active constellation extension for peak reduction in OFDM systems,” In Proc. IEEE Int. Conf. Commun., 2005, vol. 3, May 2005, pp. 1974-1979.
[43] M. Sharif and B. Hassbi, “A deterministic algorithm that achieves the PMEPR of clogn for multicarrier signals,” In Proc. 2003 IEEE Int. Conf. Acoust., Speech, and Signal Process. (ICASSP 2003), Hong Kong, vol. 4, pp. 540-543.
[44] Y. J. Kou, W.-S. Lu, and A. Antoniou, “A new peak-to-average power ratio reduction algorithm for OFDM systems via constellation extension,” IEEE Trans. Wireless Commun., vol. 6, no.5, pp. 1823-1832, May 2007.
[45] S. M. Alamouti, “A simple transmit diversity technique for wirless communications,” IEEE J. Select. Areas Commun., vol. 16, pp. 1451-1458, Oct. 1998.
[46] C. Toker, S. Lambotharan, J.A. Chambers, “Closed-Loop Quasi-Orthogonal STBCs and Their Performance in Multipath Fading Enviroments and When Combined With Turbo Codes,” IEEE Trans. Commun., vol.3, no.6, pp. 1890-1896, November 2004.
[47] A. Burg, VLSI Circuits for MIMO Communication Systems, Ph.D. thesis, ETH Zurich, 2006.
[48] A.V. Oppenheim and R.W. Schafer, Discrete-Time Signal Processing, Prentice-Hall, Upper Saddle River, 1999
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *