帳號:guest(3.145.154.180)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):羅士杰
作者(外文):Lou, Shyn-Jie
論文名稱(中文):The Mechanosensory Representations in the Drosophila Higher Brain Centers
論文名稱(外文):果蠅腦內機械感知神經網路圖譜
指導教授(中文):江安世
指導教授(外文):Chiang, Ann-Shyn
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:9680516
出版年(民國):98
畢業學年度:97
語文別:英文
論文頁數:31
中文關鍵詞:果蠅機械感知圖譜神經
外文關鍵詞:DrosophilamechanosensoryJohnston's organAMMCCVLP
相關次數:
  • 推薦推薦:0
  • 點閱點閱:386
  • 評分評分:*****
  • 下載下載:10
  • 收藏收藏:0
為了理解大腦如何接收、比較和運算各種感覺傳入的訊息,我們必需了解各個神經網路在腦中運作時所扮演的角色。利用果蠅當作模式生物去研究大腦的功能,嗅覺神經是一個最熱門同時也是目前最了解的系統,然而在果蠅其他的大腦感知神經系統中,我們知道的仍然不多。機械感知神經系統在果蠅中參與了聲音的接收、風和重力的感受。在此,我們研究果蠅腦中機械感知神經網路,其中包括了聽覺神經網路、重力感知神經網路和風感知神經網路。以上所有的機械感知神經都位於果蠅觸角的第二節,被稱為「強斯頓器官」。果蠅利用這部位可以感受到機械性的訊息,並且送到腦中「觸角機械感知和運動中樞」。雖然聽覺神經網路在從觸角傳到腦中的第一層已經被研究清楚了,但是到腦中之後的神經網路仍然是一個謎。在這個研究中,我們利用光激發螢光蛋白這個技術去尋找可能的下游神經網路,並且用功能性影像分析去鑑定這些可能的神經是不是對於這些機械性刺激有反應。最後,我們找到了一種從單邊觸角機械感知和運動中樞連接到兩邊前腦下側區域的神經元,表示這個區域可能是處理機械感知訊息的第二站,相對於蕈狀體在果蠅嗅覺系統中的角色。我們更進一步地找到了四種形態上完全不同的神經元分佈於前腦下側區域,其中一種為局部調節神經,其他三種接收訊息後分別送到三個腦中更高階的處理區域。整理得到的結果,我們可以得到機械感知的訊息匯合於前腦下側區域,並且訊息又分散到至少三個以上不同的區域。這些將會幫助我們更了解機械感知神經組成的網路,並且知道訊息如何在果蠅腦中處理。
To understand how a brain receive, compare, and process all kinds of sensory inputs, we have to identify every circuit involve in the processing pathway. By using Drosophila as a model system to study brain function, the olfactory system is the most popular topic and became a clearly understood system. However, little was known in other sensory pathway in the Drosophila brain. Mechanosensory system is involved in sensing sound, wind and gravity. Here, we study the mechanical sensory and processing circuits included auditory circuits and wind sensing circuits. All of these mechanosensory neurons were located in the secondary segment of antenna, called the Johnston’s organ (JO), detecting signals and projecting axonal terminals to a specific brain region--the antennal mechanosensory and motor center (AMMC). The signals are thus relayed from the antennae into the brain. Although the auditory circuits at the first level of are well known, the processing center at the next level is unclear in the Drosophila brain. In this study, we utilize the PaGFP technique to search candidate circuits involved in mechanical signal processing at the second level. Then, we used functional imaging to verify these candidate circuits do response to mechanostimulus. In this study, we found a bilateral neuron connect one side of the AMMC and send to the both side of caudo-ventrolateral protocerebrum (CVLP) regions indicating that the CVLP may act as a second level of mechanosensory center correspondence to the mushroom body in the Drosophila olfactory system. We further found four types of morphological distinct neurons innervate the CVLP region, one may act as local regulatory neurons and others receive signals and send to three different parts of higher brain regions. Taken together, our finding show the mechanosensory information is converged to the CVLP and diverged to at least three parts of higher brain regions. These will help us to understand how the mechaosensory circuits are constructed and signals processed in the Drosophila brain.
謝誌----------------------------------------------3
摘要----------------------------------------------4
Abstract---------------------------------------------------------------------------5
1. Introduction-----------------------------------------------------------------6
2. Materials and Methods--------------------------------------------------10
3. Results-----------------------------------------------------------------------13
4. Discussion-------------------------------------------------------------------17
5. Reference--------------------------------------------------------------------20
6. Figures-----------------------------------------------------------------------22
7. Appendix--------------------------------------------------------------------28
1、Asztalos, Z., Arora, N., and Tully, T. (2007). Olfactory jump reflex habituation in Drosophila and effects of classical conditioning mutations. J Neurogenet 21, 1-18.
2、Basler, K., and Struhl, G. (1994). Compartment boundaries and the control of Drosophila limb pattern by hedgehog protein. Nature 368, 208-214.
3、Bennet-Clark, H.C., and Ewing, A.W. (1970). The love song of the fruit fly. Sci Am 223, 85-90 passim.
4、Caldwell, J.C., and Eberl, D.F. (2002). Towards a molecular understanding of Drosophila hearing. J Neurobiol 53, 172-189.
5、Eberl, D.F. (1999). Feeling the vibes: chordotonal mechanisms in insect hearing. Curr Opin Neurobiol 9, 389-393.
6、Eberl, D.F., Duyk, G.M., and Perrimon, N. (1997). A genetic screen for mutations that disrupt an auditory response in Drosophila melanogaster. Proc Natl Acad Sci U S A 94, 14837-14842.
7、Feinberg, E.H., Vanhoven, M.K., Bendesky, A., Wang, G., Fetter, R.D., Shen, K., and Bargmann, C.I. (2008). GFP Reconstitution Across Synaptic Partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron 57, 353-363.
8、Gopfert, M.C., and Robert, D. (2002). The mechanical basis of Drosophila audition. J Exp Biol 205, 1199-1208.
9、Gordon, M.D., and Scott, K. (2009). Motor control in a Drosophila taste circuit. Neuron 61, 373-384.
10、Hudspeth, A.J., and Konishi, M. (2000). Auditory neuroscience: development, transduction, and integration. Proc Natl Acad Sci U S A 97, 11690-11691.
11、Kamikouchi, A., Inagaki, H.K., Effertz, T., Hendrich, O., Fiala, A., Gopfert, M.C., and Ito, K. (2009). The neural basis of Drosophila gravity-sensing and hearing. Nature 458, 165-171.
12、Kamikouchi, A., Shimada, T., and Ito, K. (2006). Comprehensive classification of the auditory sensory projections in the brain of the fruit fly Drosophila melanogaster. J Comp Neurol 499, 317-356.
13、Patterson, G.H., and Lippincott-Schwartz, J. (2002). A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297, 1873-1877.
14、Reiff, D.F., Ihring, A., Guerrero, G., Isacoff, E.Y., Joesch, M., Nakai, J., and Borst, A. (2005). In vivo performance of genetically encoded indicators of neural activity in flies. J Neurosci 25, 4766-4778.
15、Tauber, E., and Eberl, D.F. (2003). Acoustic communication in Drosophila. Behav Processes 64, 197-210.
16、Wang, Y., Wright, N.J., Guo, H., Xie, Z., Svoboda, K., Malinow, R., Smith, D.P., and Zhong, Y. (2001). Genetic manipulation of the odor-evoked distributed neural activity in the Drosophila mushroom body. Neuron 29, 267-276.
17、Yorozu, S., Wong, A., Fischer, B.J., Dankert, H., Kernan, M.J., Kamikouchi, A., Ito, K., and Anderson, D.J. (2009). Distinct sensory representations of wind and near-field sound in the Drosophila brain. Nature 458, 201-205.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *