帳號:guest(3.131.95.49)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):梁捷
作者(外文):Liang, Jie
論文名稱(中文):A single dopaminergic neuron modulates sleep behavior in Drosophila
論文名稱(外文):單一多巴胺神經元調控果蠅睡眠行為之研究
指導教授(中文):江安世
指導教授(外文):Chiang, Ann-Shyn
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:9680562
出版年(民國):98
畢業學年度:97
語文別:英文
論文頁數:32
中文關鍵詞:果蠅睡眠行為學腦神經科學多巴胺
外文關鍵詞:Drosophilasleepbehaviordopamine
相關次數:
  • 推薦推薦:0
  • 點閱點閱:267
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
Sleep is an important process essential for life and regulated by homeostasis and circadian. However, the mechanism and function of sleep are still unclear. The recently developed Drosophila model for sleep provides a powerful system to genetically and pharmacologically identify molecular that regulate sleep. Dopamine is an important neurotransmitter known to affect many behaviors, it also involves in sleep/wake cycle regulation in Drosophila. Although dopamine is associated with arousal threshold, the neural circuit which controls arousal threshold by release dopamine hasn’t been identified. Here, we investigated a dopaminergic single neuron, VPL, which released dopamine to regulate sleep strength. Sleep became fragment as the dopamine level was reduced in Murashka-1. On the other hand, when we reduced dopamine level in most dopaminergic neuron by TH-Gal4 driver, flies were significantly easy to initiate sleep and sleep strength was increased. These data indicated that dopamine may control different character of sleep in different neural circuits. The final sleep phenotype is the sum of performance of every single neuron which is involved in sleep behavior.
謝誌------------------------------------------------------2 中文摘要--------------------------------------------------3 Abstract--------------------------------------------------4 Introduction----------------------------------------------5 Materials and Methods-------------------------------------8 Results--------------------------------------------------11 Discussion-----------------------------------------------14 References-----------------------------------------------16 Figure---------------------------------------------------19 Appendix-------------------------------------------------29
1 Mahowald, M.W. & Schenck, C.H., Insights from studying human sleep disorders. Nature 437 (7063), 1279-1285 (2005). 2 Boutrel, B. & Koob, G.F., What keeps us awake: the neuropharmacology of stimulants and wakefulness-promoting medications. Sleep 27 (6), 1181-1194 (2004).
3 Siegel, J.M., The neurotransmitters of sleep. J Clin Psychiatry 65 Suppl 16, 4-7 (2004).
4 Ganguly-Fitzgerald, I., Donlea, J., & Shaw, P.J., Waking experience affects sleep need in Drosophila. Science 313 (5794), 1775-1781 (2006).
5 Rasch, B., Buchel, C., Gais, S., & Born, J., Odor cues during slow-wave sleep prompt declarative memory consolidation. Science 315 (5817), 1426-1429 (2007).
6 Koh, K., Evans, J.M., Hendricks, J.C., & Sehgal, A., A Drosophila model for age-associated changes in sleep:wake cycles. Proc Natl Acad Sci U S A 103 (37), 13843-13847 (2006).
7 Hendricks, J.C. et al., Rest in Drosophila is a sleep-like state. Neuron 25 (1), 129-138 (2000).
8 Shaw, P.J., Cirelli, C., Greenspan, R.J., & Tononi, G., Correlates of sleep and waking in Drosophila melanogaster. Science 287 (5459), 1834-1837 (2000).
9 Huber, R. et al., Sleep homeostasis in Drosophila melanogaster. Sleep 27 (4), 628-639 (2004).
10 Nitz, D.A., van Swinderen, B., Tononi, G., & Greenspan, R.J., Electrophysiological correlates of rest and activity in Drosophila melanogaster. Curr Biol 12 (22), 1934-1940 (2002).
11 Huber, R., Ghilardi, M.F., Massimini, M., & Tononi, G., Local sleep and learning. Nature 430 (6995), 78-81 (2004). 12 Hendricks, J.C. et al., A non-circadian role for cAMP signaling and CREB activity in Drosophila rest homeostasis. Nat Neurosci 4 (11), 1108-1115 (2001).
13 Cirelli, C. et al., Reduced sleep in Drosophila Shaker mutants. Nature 434 (7037), 1087-1092 (2005).
14 Kume, K., Kume, S., Park, S.K., Hirsh, J., & Jackson, F.R., Dopamine is a regulator of arousal in the fruit fly. J Neurosci 25 (32), 7377-7384 (2005).
15 Koh, K. et al., Identification of SLEEPLESS, a sleep-promoting factor. Science 321 (5887), 372-376 (2008).
16 Liu, W., Guo, F., Lu, B., & Guo, A., amnesiac regulates sleep onset and maintenance in Drosophila melanogaster. Biochem Biophys Res Commun 372 (4), 798-803 (2008).
17 Feany, M.B. & Quinn, W.G., A neuropeptide gene defined by the Drosophila memory mutant amnesiac. Science 268 (5212), 869-873 (1995).
18 Fujii, H. et al., Methamphetamine-induced hyperactivity and behavioral sensitization in PACAP deficient mice. Peptides 28 (9), 1674-1679 (2007).
19 Mertens, I., Husson, S.J., Janssen, T., Lindemans, M., & Schoofs, L., PACAP and PDF signaling in the regulation of mammalian and insect circadian rhythms. Peptides 28 (9), 1775-1783 (2007).
20 Nagy, A.D. & Csernus, V.J., The role of PACAP in the control of circadian expression of clock genes in the chicken pineal gland. Peptides 28 (9), 1767-1774 (2007).
21 Graves, L.A. et al., Genetic evidence for a role of CREB in sustained cortical arousal. J Neurophysiol 90 (2), 1152-1159 (2003).
22 Bernheimer, H., Birkmayer, W., Hornykiewicz, O., Jellinger, K., & Seitelberger, F., Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 20 (4), 415-455 (1973).
23 Cooper, R.L. & Neckameyer, W.S., Dopaminergic modulation of motor neuron activity and neuromuscular function in Drosphila melanogaster. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology 122 (2), 199-210 (1999).
24 Liu, T. et al., Increased dopamine level enhances male-male courtship in Drosophila. J Neurosci 28 (21), 5539-5546 (2008).
25 Schwaerzel, M. et al., Dopamine and octopamine differentiate between aversive and appetitive olfactory memories in Drosophila. J Neurosci 23 (33), 10495-10502 (2003).
26 Andretic, R., van Swinderen, B., & Greenspan, R.J., Dopaminergic modulation of arousal in Drosophila. Curr Biol 15 (13), 1165-1175 (2005).
27 Seugnet, L., Suzuki, Y., Vine, L., Gottschalk, L., & Shaw, P.J., D1 receptor activation in the mushroom bodies rescues sleep-loss-induced learning impairments in Drosophila. Curr Biol 18 (15), 1110-1117 (2008).
28 Akalal, D.B. et al., Roles for Drosophila mushroom body neurons in olfactory learning and memory. Learn Mem 13 (5), 659-668 (2006).
29 Dubnau, J., Grady, L., Kitamoto, T., & Tully, T., Disruption of neurotransmission in Drosophila mushroom body blocks retrieval but not acquisition of memory. Nature 411 (6836), 476-480 (2001).
30 Dubnau, J., Kitamoto, T., & Tully, T., Reversible disruption of synaptic transmission in Drosophila mushroom bodie blocks retrieval, but not acquisition or storage of olfactory memory. Journal of Neurochemistry 78, 12-12 (2001).
31 Liu, L., Wolf, R., Ernst, R., & Heisenberg, M., Context generalization in Drosophila visual learning requires the mushroom bodies. Nature 400 (6746), 753-756 (1999).
32 Tang, S. & Guo, A., Choice behavior of Drosophila facing contradictory visual cues. Science 294 (5546), 1543-1547 (2001).
33 McBride, S.M.J. et al., Mushroom body ablation impairs short-term memory and long-term memory of courtship conditioning in Drosophila melanogaster. Neuron 24 (4), 967-977 (1999).
34 Joiner, W.J., Crocker, A., White, B.H., & Sehgal, A., Sleep in Drosophila is regulated by adult mushroom bodies. Nature 441 (7094), 757-760 (2006).
35 Pitman, J.L., McGill, J.J., Keegan, K.P., & Allada, R., A dynamic role for the mushroom bodies in promoting sleep in Drosophila. Nature 441 (7094), 753-756 (2006).
36 Yuan, Q., Joiner, W.J., & Sehgal, A., A sleep-promoting role for the Drosophila serotonin receptor 1A. Curr Biol 16 (11), 1051-1062 (2006).
37 Dubnau, J. et al., The staufen/pumilio pathway is involved in Drosophila long-term memory. Curr Biol 13 (4), 286-296 (2003).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *