帳號:guest(3.147.76.135)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳仁傑
作者(外文):Wu, Jen Chieh
論文名稱(中文):Investigation on the role of p38 MAPK activation in doxorubicin-elicited apoptosis in CL3 lung cancer cells
論文名稱(外文):活化p38 MAPK激酶調控阿黴素誘發CL3 肺癌細胞凋亡之研究
指導教授(中文):楊嘉鈴
指導教授(外文):Yang, Jia-Ling
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:9680681
出版年(民國):99
畢業學年度:98
語文別:英文
論文頁數:51
中文關鍵詞:阿黴素p38 MAPKCL3肺癌細胞凋亡激酶
相關次數:
  • 推薦推薦:0
  • 點閱點閱:165
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
小紅莓(Doxorubicin)又稱阿黴素(Adriamycin),為一廣泛所使用的肺癌化療用藥。然而,阿黴素於臨床運用上所面對的重大難題為其藥物抗性的產生。先前的研究指出阿黴素處理下激活的 p38 有絲分裂原活化蛋白質激酶 (p38 MAPK) 可助於細胞存活或造成死亡。為了能夠深入了解 p38 MAPK 於阿黴素造成的藥物敏感性的作用,我們以 CL3 非小細胞肺癌細胞株來探討此問題。我們使用 MTT 比色法,發現阿黴素誘發細胞死亡與處理的藥劑量及時間成正相關。 從免疫點墨實驗中得知, 阿黴素激活CL3的 p38 MAPK 生物訊號是暫時性的。加入一 p38 MAPK 抑制劑SB202190共同處理時,會顯著加強阿黴素誘導的細胞毒性。利用流式細胞儀偵測法,我們發現 SB202190 可以顯著地增加阿黴素誘發的細胞凋亡。以專一性的小干擾 RNA (si-p38α/β) 轉染細胞,移除內生之 p38 MAPK 異構體 α 及 β 型,同樣可以增強阿黴素誘導的細胞凋亡。在SB202190共處理或轉染 si-p38α/β 下,可以增強阿黴素所誘發的硫光胺酸蛋白酶-3活化。 阿黴素可誘導抗凋亡因子 Bcl-2 蛋白與前凋亡因子 Bim 蛋白量的增加,然而同時處理 SB202190 狀況下可明顯降低前者,但非後者之蛋白質量。 阿黴素也可以誘發 Bcl-2(Ser70) 的磷酸化但在 SB202190 影響下卻只有些微的降低。SB202190 共處理降低阿黴素誘發Bcl-2 蛋白質的現象,也在粒腺體胞器萃取液中獲得驗證。總括而言,這篇研究指出 p38 MAPK 的活化促使粒腺體蛋白 Bcl-2 量上升,且可能影響Bcl-2(Ser70)的磷酸化,因而協助CL3 肺癌細胞抵抗阿黴素造成的細胞凋亡。
Doxorubicin, also called adriamycin, is a widely used therapeutic agent in lung cancer. However, the development of drug resistance is a major problem for clinical applications of doxorubicin. Activation of the p38 mitogen-activated protein kinase (MAPK) has been reported to contribute to survival or apoptosis following doxorubicin treatment. To gain insight into the role of p38 MAPK in doxorubicin sensitivity, we explore this issue in a non-small cell lung cancer cell line, CL3. We found that doxorubicin dose- and time-dependently induces cell death by using MTT assay. Doxorubicin transiently activates the p38 MAPK signaling as measured by immunoblotting. Co-administering SB202190, a 38 MAPK inhibitor, markedly enhanced the doxorubicin-induced cytotoxicity. Using a flow cytometry-based methodology, we found that SB202190 significantly increased the doxorubicin-induced apoptosis. Depleting α or β isoforms of p38 MAPK by transfection of specific small interfering RNAs (si-p38α/β) also augmented the apoptosis caused by doxorubicin. SB202190 co-treatment or introducing si-p38α/β could enhance the doxorubicin-induced caspase-3 activation. Doxorubicin increased the protein levels of anti-apoptotic Bcl-2 and apoptotic Bim, and SB202190 co-treatment markedly reduced the former but not the later. Doxorubicin also induced the amounts of phospho-Bcl-2(Ser70) that could only be slightly decreased by SB202190. The down-regulation of doxorubicin-induced Bcl-2 by SB202190 co-treament was verified in the mitochondrial fraction. Together, this study suggests that p38 MAPK activation is necessary for the increased mitochondrial Bcl-2, which may involve Ser70 phosphorylation, thereby supporting CL3 lung cancer cells to against apoptosis following doxorubicin.
Contents
誌謝詞........................................................................................................................I
中文摘要...................................................................................................................II
Abstract....................................................................................................................III
Abbreviations...........................................................................................................IV
Chapter 1. Literature Review and Research Aims.................................................1
1. Cancer..........................................................................................................1
1.1 Lung cancer............................................................................................1
1.2 NSCLC chemotherapy...........................................................................3
2. Doxorubicin.................................................................................................4
2.1 Roles of doxorubicin in chemotherapy..........................................5
2.2 Limitation of doxorubicin..............................................................6
3. Mitogen-activated protein kinase signaling.....................................................6
3.1 Activation and roles of the MAPK cascade...........................................7 3.2 p38 MAPK signaling.............................................................................8
3.3 p38 MAPK signaling and cancer...........................................................9
3.4 MAPK signal in chemotherapy............................................................10
4. The Bcl-2 family.............................................................................................11
4.1 Bcl-2 and cancer...................................................................................12
4.2 The roles of MAPK in regulating Bcl-2...............................................13
5. Research aims.................................................................................................14
Chapter 2. Materials and Methods.........................................................................16
1. Cell culture.................................................................................................16
2. Drug treatment............................................................................................16
3. Viability assay ............................................................................................17
4. Small interfering RNA, and transfection....................................................17
5. Flow cytometry............................................................................................18
6. Sub-cellular fractionation............................................................................18
7. Cell lysate preparation.................................................................................19
8. Antibodies and immunoblotting..................................................................20
9. Statistical analysis.......................................................................................20
Chapter 3. Results .....................................................................................................21
1. Cytotoxicity and the activation of p38 MAPK signaling caused by doxorubicin in CL3 cells...............................................................................21
2. Inhibition of the p38 MAPK activity using SB202190 augments the doxorubicin-induced cytotoxicity and apoptosis in CL3 cells......................22
3. Depletion of p38α/β MAPK using specific siRNA enhances the doxorubicin-induced apoptosis in CL3 cells.................................................23
4. The p38 MAPK activity prevents the activation of caspase-3 in doxorubicin-treated CL3 cells.......................................................................24
5. Inhibition of p38 MAPK activity decreases the doxorubicin-induced mitochondrial Bcl-2 protein level in CL3 cells.............................................24
Chapter 4. Discussion................................................................................................27
Conclusion..................................................................................................................32
References...................................................................................................................33
Figures.........................................................................................................................42
Supplement Figure.....................................................................................................50
Appendix.....................................................................................................................51
Allen J, Jahanzeb M (2008). Extensive-stage small-cell lung cancer: evolution of systemic therapy and future directions. Clin Lung Cancer 9: 262-70.

Blagosklonny MV (2001). Unwinding the loop of Bcl-2 phosphorylation. Leukemia 15: 869-74.

Bradham C, McClay DR (2006). p38 MAPK in development and cancer. Cell Cycle 5: 824-8.

Brantley-Finley C, Lyle CS, Du L, Goodwin ME, Hall T, Szwedo D et al (2003). The JNK, ERK and p53 pathways play distinct roles in apoptosis mediated by the antitumor agents vinblastine, doxorubicin, and etoposide. Biochem Pharmacol 66: 459-69.

Breitschopf K, Haendeler J, Malchow P, Zeiher AM, Dimmeler S (2000). Posttranslational modification of Bcl-2 facilitates its proteasome-dependent degradation: molecular characterization of the involved signaling pathway. Mol Cell Biol 20: 1886-96.

Bruey JM, Ducasse C, Bonniaud P, Ravagnan L, Susin SA, Diaz-Latoud C et al (2000). Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol 2: 645-52.

Burdett (2008). Chemotherapy in addition to supportive care improves survival in advanced non-small-cell lung cancer: a systematic review and meta-analysis of individual patient data from 16 randomized controlled trials. J Clin Oncol 26: 4617-25.

Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR (2010). The BCL-2 family reunion. Mol Cell 37: 299-310.

Chuang SM, Liou GY, Yang JL (2000a). Activation of JNK, p38 and ERK mitogen-activated protein kinases by chromium(VI) is mediated through oxidative stress but does not affect cytotoxicity. Carcinogenesis 21: 1491-500.

Chuang SM, Wang IC, Yang JL (2000b). Roles of JNK, p38 and ERK mitogen-activated protein kinases in the growth inhibition and apoptosis induced by cadmium. Carcinogenesis 21: 1423-32.

De Chiara G, Marcocci ME, Torcia M, Lucibello M, Rosini P, Bonini P et al (2006). Bcl-2 Phosphorylation by p38 MAPK: identification of target sites and biologic consequences. J Biol Chem 281: 21353-61.

Delbaldo C, Michiels S, Syz N, Soria JC, Le Chevalier T, Pignon JP (2004). Benefits of adding a drug to a single-agent or a 2-agent chemotherapy regimen in advanced non-small-cell lung cancer: a meta-analysis. JAMA 292: 470-84.

Deng X, Gao F, Flagg T, May WS, Jr. (2004). Mono- and multisite phosphorylation enhances Bcl2's antiapoptotic function and inhibition of cell cycle entry functions. Proc Natl Acad Sci U S A 101: 153-8.

Deng X, Ruvolo P, Carr B, May WS, Jr. (2000). Survival function of ERK1/2 as IL-3-activated, staurosporine-resistant Bcl2 kinases. Proc Natl Acad Sci U S A 97: 1578-83.

Dhillon AS, Hagan S, Rath O, Kolch W (2007). MAP kinase signalling pathways in cancer. Oncogene 26: 3279-90.

Ellerby HM, Martin SJ, Ellerby LM, Naiem SS, Rabizadeh S, Salvesen GS et al (1997). Establishment of a cell-free system of neuronal apoptosis: comparison of premitochondrial, mitochondrial, and postmitochondrial phases. J Neurosci 17: 6165-78.

Esteva FJ, Valero V, Pusztai L, Boehnke-Michaud L, Buzdar AU, Hortobagyi GN (2001). Chemotherapy of metastatic breast cancer: what to expect in 2001 and beyond. Oncologist 6: 133-46.

Fabian MA, Biggs WH, 3rd, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG et al (2005). A small molecule-kinase interaction map for clinical kinase inhibitors. Nat Biotechnol 23: 329-36.

Garrido C, Bruey JM, Fromentin A, Hammann A, Arrigo AP, Solary E (1999). HSP27 inhibits cytochrome c-dependent activation of procaspase-9. FASEB J 13: 2061-70.

Gaundar SS, Bendall LJ (2010). The potential and limitations of p38MAPK as a drug target for the treatment of hematological malignancies. Curr Drug Targets 11: 823-33.

Gewirtz DA (1999). A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 57: 727-41.

Greenberg AK, Basu S, Hu J, Yie TA, Tchou-Wong KM, Rom WN et al (2002). Selective p38 activation in human non-small cell lung cancer. Am J Respir Cell Mol Biol 26: 558-64.

Grethe S, Coltella N, Di Renzo MF, Porn-Ares MI (2006). p38 MAPK downregulates phosphorylation of Bad in doxorubicin-induced endothelial apoptosis. Biochem Biophys Res Commun 347: 781-90.

Ishikawa Y, Kusaka E, Enokido Y, Ikeuchi T, Hatanaka H (2003). Regulation of Bax translocation through phosphorylation at Ser-70 of Bcl-2 by MAP kinase in NO-induced neuronal apoptosis. Mol Cell Neurosci 24: 451-9.

Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009). Cancer statistics, 2009. CA Cancer J Clin 59: 225-49.

Kaye S, Merry S (1985). Tumour cell resistance to anthracyclines--a review. Cancer Chemother Pharmacol 14: 96-103.

Kim JH, Lee SC, Ro J, Kang HS, Kim HS, Yoon S (2010). Jnk signaling pathway-mediated regulation of Stat3 activation is linked to the development of doxorubicin resistance in cancer cell lines. Biochem Pharmacol 79: 373-80.

Lee ER, Kim JY, Kang YJ, Ahn JY, Kim JH, Kim BW et al (2006). Interplay between PI3K/Akt and MAPK signaling pathways in DNA-damaging drug-induced apoptosis. Biochim Biophys Acta 1763: 958-68.

Lee JC, Laydon JT, McDonnell PC, Gallagher TF, Kumar S, Green D et al (1994). A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372: 739-46.

Lessene G, Czabotar PE, Colman PM (2008). BCL-2 family antagonists for cancer therapy. Nat Rev Drug Discov 7: 989-1000.

Levitzki A, Klein S (2010). Signal transduction therapy of cancer. Mol Aspects Med.

Li JP, Yang JL (2007). Cyclin B1 proteolysis via p38 MAPK signaling participates in G2 checkpoint elicited by arsenite. J Cell Physiol 212: 481-8.

Lou H, Kaur K, Sharma AK, Singal PK (2006). Adriamycin-induced oxidative stress, activation of MAP kinases and apoptosis in isolated cardiomyocytes. Pathophysiology 13: 103-9.

Ludwig JA, Weinstein JN (2005). Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer 5: 845-56.

Maundrell K, Antonsson B, Magnenat E, Camps M, Muda M, Chabert C et al (1997). Bcl-2 undergoes phosphorylation by c-Jun N-terminal kinase/stress-activated protein kinases in the presence of the constitutively active GTP-binding protein Rac1. J Biol Chem 272: 25238-42.

Mi J, Zhang X, Rabbani ZN, Liu Y, Reddy SK, Su Z et al (2008). RNA aptamer-targeted inhibition of NF-kappaB suppresses non-small cell lung cancer resistance to doxorubicin. Mol Ther 16: 66-73.

Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004). Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56: 185-229.

Nebreda AR, Porras A (2000). p38 MAP kinases: beyond the stress response. Trends Biochem Sci 25: 257-60.

Nicholson DW (2000). From bench to clinic with apoptosis-based therapeutic agents. Nature 407: 810-6.

Panaretakis T, Pokrovskaja K, Shoshan MC, Grander D (2002). Activation of Bak, Bax, and BH3-only proteins in the apoptotic response to doxorubicin. J Biol Chem 277: 44317-26.

Phong MS, Van Horn RD, Li S, Tucker-Kellogg G, Surana U, Ye XS (2010). The p38 MAPK promotes cell survival in response to DNA damage but is not required for G2 DNA damage checkpoint in human cancer cells. Mol Cell Biol.

Plumb JA, Milroy R, Kaye SB (1989). Effects of the pH dependence of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide-formazan absorption on chemosensitivity determined by a novel tetrazolium-based assay. Cancer Res 49: 4435-40.

Poizat C, Puri PL, Bai Y, Kedes L (2005). Phosphorylation-dependent degradation of p300 by doxorubicin-activated p38 mitogen-activated protein kinase in cardiac cells. Mol Cell Biol 25: 2673-87.

Raman M, Chen W, Cobb MH (2007). Differential regulation and properties of MAPKs. Oncogene 26: 3100-12.

Reinhardt HC, Aslanian AS, Lees JA, Yaffe MB (2007). p53-deficient cells rely on ATM- and ATR-mediated checkpoint signaling through the p38MAPK/MK2 pathway for survival after DNA damage. Cancer Cell 11: 175-89.

Simunek T, Sterba M, Popelova O, Adamcova M, Hrdina R, Gersl V (2009). Anthracycline-induced cardiotoxicity: overview of studies examining the roles of oxidative stress and free cellular iron. Pharmacol Rep 61: 154-71.

Sun S, Schiller JH, Gazdar AF (2007). Lung cancer in never smokers--a different disease. Nat Rev Cancer 7: 778-90.

Tang D, Wu D, Hirao A, Lahti JM, Liu L, Mazza B et al (2002). ERK activation mediates cell cycle arrest and apoptosis after DNA damage independently of p53. J Biol Chem 277: 12710-7.

Taylor RC, Cullen SP, Martin SJ (2008). Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9: 231-41.

Thornton TM, Pedraza-Alva G, Deng B, Wood CD, Aronshtam A, Clements JL et al (2008). Phosphorylation by p38 MAPK as an alternative pathway for GSK3beta inactivation. Science 320: 667-70.

Thun MJ, DeLancey JO, Center MM, Jemal A, Ward EM (2010). The global burden of cancer: priorities for prevention. Carcinogenesis 31: 100-10.

Torcia M, De Chiara G, Nencioni L, Ammendola S, Labardi D, Lucibello M et al (2001). Nerve growth factor inhibits apoptosis in memory B lymphocytes via inactivation of p38 MAPK, prevention of Bcl-2 phosphorylation, and cytochrome c release. J Biol Chem 276: 39027-36.

Venkatakrishnan CD, Tewari AK, Moldovan L, Cardounel AJ, Zweier JL, Kuppusamy P et al (2006). Heat shock protects cardiac cells from doxorubicin-induced toxicity by activating p38 MAPK and phosphorylation of small heat shock protein 27. Am J Physiol Heart Circ Physiol 291: H2680-91.

Vicent S, Garayoa M, Lopez-Picazo JM, Lozano MD, Toledo G, Thunnissen FB et al (2004). Mitogen-activated protein kinase phosphatase-1 is overexpressed in non-small cell lung cancer and is an independent predictor of outcome in patients. Clin Cancer Res 10: 3639-49.

Vogler M, Dinsdale D, Dyer MJ, Cohen GM (2009). Bcl-2 inhibitors: small molecules with a big impact on cancer therapy. Cell Death Differ 16: 360-7.

Wada T, Penninger JM (2004). Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23: 2838-49.

Wagner EF, Nebreda AR (2009). Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 9: 537-49.

Wei Y, Pattingre S, Sinha S, Bassik M, Levine B (2008). JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 30: 678-88.

Weinmann M, Jeremic B, Bamberg M, Bokemeyer C (2003a). Treatment of lung cancer in elderly part II: small cell lung cancer. Lung Cancer 40: 1-16.

Weinmann M, Jeremic B, Toomes H, Friedel G, Bamberg M (2003b). Treatment of lung cancer in the elderly. Part I: non-small cell lung cancer. Lung Cancer 39: 233-53.

Weiss RB, Sarosy G, Clagett-Carr K, Russo M, Leyland-Jones B (1986). Anthracycline analogs: the past, present, and future. Cancer Chemother Pharmacol 18: 185-97.

Yamamoto K, Ichijo H, Korsmeyer SJ (1999). BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M. Mol Cell Biol 19: 8469-78.

Yang PC, Luh KT, Wu R, Wu CW (1992). Characterization of the mucin differentiation in human lung adenocarcinoma cell lines. Am J Respir Cell Mol Biol 7: 161-71.

Yeh PY, Chuang SE, Yeh KH, Song YC, Chang LL, Cheng AL (2004). Phosphorylation of p53 on Thr55 by ERK2 is necessary for doxorubicin-induced p53 activation and cell death. Oncogene 23: 3580-8.

Yen AH, Yang JL (2010). Cdc20 proteolysis requires p38 MAPK signaling and Cdh1-independent APC/C ubiquitination during spindle assembly checkpoint activation by cadmium. J Cell Physiol 223: 327-34.

Yip KW, Reed JC (2008). Bcl-2 family proteins and cancer. Oncogene 27: 6398-406.

Youle RJ, Strasser A (2008). The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9: 47-59.

Zarubin T, Han J (2005). Activation and signaling of the p38 MAP kinase pathway. Cell Res 15: 11-8.

Zhao Y, You H, Yang Y, Wei L, Zhang X, Yao L et al (2004). Distinctive regulation and function of PI 3K/Akt and MAPKs in doxorubicin-induced apoptosis of human lung adenocarcinoma cells. J Cell Biochem 91: 621-32.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *