帳號:guest(3.147.89.85)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蘇政揚
作者(外文):Su, Cheng-Yang
論文名稱(中文):調控脈衝電壓及脈衝波間隔時間對高功率脈衝磁控濺鍍系統製備氮化鈦薄膜性質研究
論文名稱(外文):TiN thin film produced by High Power Impulse Magnetron Sputtering (HiPIMS) : Effect of varying pulse target voltage and pulse off-time
指導教授(中文):喻冀平
黃嘉宏
指導教授(外文):Yu, Ge-Ping
Huang, Jia-Hong
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:9711510
出版年(民國):100
畢業學年度:99
語文別:英文
論文頁數:78
中文關鍵詞:高功率脈衝磁控濺鍍氮化鈦靶材脈衝電壓脈衝間隔時間
外文關鍵詞:HiPIMSTiNPulse target voltagePulse off-time
相關次數:
  • 推薦推薦:0
  • 點閱點閱:76
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
The main objective of this study was to investigate the effect of varying pulse target voltage and pulse off-time on the composition, structures, mechanical properties and electrical properties of thin films produced by High Power Impulse Magnetron Sputtering (HiPIMS) technique. TiN films were deposited by HiPIMS system on (100) Si wafer, the structure and properties of deposited films were characterized using X-ray diffraction, scanning electron microscopy, nanoindentation, four-point probe, laser curvature measurement and Rutherford backscattering spectroscopy. The results showed that the crystallinity, grain size and the texture coefficient of (111) plane all increased when pulse target voltage increased from 550 V to 750 V. The packing factor increased significantly with raising pulse target voltage and reached 0.99. Hardness values, ranging from 16~25 GPa, indicated that hardness of the films was highly related to the pulse target voltage. The residual stress increased linearly from -4.76 to -7.88 GPa. When pulse off-time increased from 800 μs to 1700 μs, the crystallinity was improved and the grain size increased, too. However, the residual stress increased, too. The peak target current increased when extending pulse off-time which indicated that adjusting pulse off-time can also affect the plasma density.
本研究中成功的使用高功率脈衝磁控濺鍍技術 (HiPIMS) 鍍著奈米晶
氮化鈦薄膜於P型 (100) 矽基板上。本研究主要的目的為研究調控脈衝靶材
電壓及脈衝間隔時間對高功率脈衝磁控濺鍍技術鍍著之氮化鈦薄膜於成 分、結構、機械性質與導電性質上的影響。此研究可幫助我們了解高功率 脈衝磁控濺鍍應用於鍍膜製程上的特性。本研究的結果顯示,薄膜 (111)
平面的織構係數、結晶性以及晶粒大小皆隨著脈衝靶材電流由 550 V 上升 至 750 V ,或脈衝間隔時間由 800 μs 上升至 1700 μs 而增加。提昇脈衝靶
材電流能夠使得薄膜堆積因子顯著的增加直到其值接近於一,亦即塊材的 程度。在硬度方面,約介於14~25
GPa間,並與脈衝靶材電壓高度相關, 但對脈衝間隔時間的變化則不明顯。本實驗中所有試片的殘餘應力皆為壓 縮應力,且增加脈衝靶材電壓或脈衝間隔時間都會使殘餘應力增加。當脈 衝間隔時間增加時,靶材極限電流議會增加,顯示電漿氣體的補充足夠與 否可能是此情況下影響電漿密度的重要因素。在本實驗中,增加脈衝靶材 電壓與脈衝間隔時間都能使電漿密度增加,並因此能鍍著具優異機械與介 電性質的氮化鈦薄膜。
Chapter 1 Introduction
Chapter 2 Literature Review
2.1 Magnetron Sputtering
2.2 High Power Impulse Magnetron Sputtering, HiPIMS
2.2.1 Introduction of HiPIMS
2.2.2 Power supplies and processes
2.2.3 The effect of the pulse on/off time configuration on the plasma properties
2.2.4 Rarefaction in the HiPIMS plasma
2.3 Titanium Nitride, TiN
2.3.1 Structure of TiN
2.3.2 Preferred Orientation
2.3.3 Lattice Parameter
2.3.5 Resistivity
Chapter 3 Experimental Details
3.1 Measurement of Plasma Density
3.2 Preparation of substrate material
3.3 Coating Process
3.3.1 Ion-Bombardment pretreatment by HIPIMS
3.3.2 TiN Coating Process
3.4 Structure Characterization
3.4.1 X-ray Diffraction (XRD, θ/2θ Scan)
3.4.2 Field Emission Scanning Electron Microscopy
3.5 Composition Characterization
3.5.1 X-ray Photoelectron Spectroscopy (XPS)
3.5.2 Rutherford Backscattering Spectroscopy (RBS)
3.6 Property Characterization
3.6.1 Hardness (Nanoindentor, NIP)
3.6.2 Electrical Resistivity (Four-Point-Probe)
3.6.3 Residual Stress (Optical Laser Curvature Method)
Chapter 4 Results
4.1 Plasma Density
4.2 Compositions
4.2.1 X-ray Photoelectron Spectroscopy (XPS)
4.2.2 Rutherford Backscattering Spectroscopy (RBS)
4.3 Structure
4.3.1 Crystal Structure (XRD)
4.3.2 Microstructure (FE-SEM)
4.3.3 Packing Factor (RBS, FE-SEM)
4.4 Properties
4.4.1 Hardness (Nanoindentation, NIP)
4.4.2 Electrical Resistivity (Four-Point-Probe)
4.4.3 Residual Stress (Optical Laser Curvature Method).
Chapter 5 Discussion
5.1 Peak target current and deposition rate
5.2 Crystallinity
5.3 Texture coefficient
5.4 Residual stress
5.5 Packing factor and electrical resistivity
Chapter 6 Conclusions
Appendix
1. W.-J. Chou, “Processing and Properties of Metal Nitride Thin Films Deposited by PVD Methods”, PH.D. Thesis, National Tsing Hua University, Hsinchu, Taiwan (2003)
2. K.-W. Lau, “Effect of Nitrogen Flow Rate on the Structure and Properties of Nanocrystalline TiN film Deposite by Unbalanced Magnetron sputtering”, Master Thesis, National Tsing Hua University, Hsinchu, Taiwan (2002).
3. Rossnagel SM., “Sputter Deposition.”, “Opportunities for Innovation: Advanced Surface Engineering,” Sproul WD, Legg LO Switzerland, Technoic Publishing Co. (1995).
4. M. Ohring, “The Material Science of Thin Films”, Academic Press, San Diego (1992), p. 111.
5. C. Christou, Z.H. Barber, J. Vac. Sci. Technol. A 18 (2000) 2897.
6. I.Petrov,P.B.Barna,L.Hultman,J.E.Greene,J.Vac.Sci.Technol.A21(2003)S117.
7. A. Ricard, C. Nouvellon, S. Konstantinidis, J.P. Dauchot, M. Wautelet, M. Hecq, J. Vac.
Sci. Technol. A 20 (2002) 1488.
8. S. Konstantinidis, A. Ricard, M. Ganciu, J.P. Dauchot, C. Ranea, M. Hecq, J. Appl. Phys.
95 (2004) 2900.
9. J. Robertson, Mater. Sci. Eng. R37 (2002) 129.
10. Y. Lifshitz, S.R. Kasi, J.W. Rabalais, Phys. Rev. Lett. 62 (1989) 1290.
11. G.C.A.M. Janssen, J.D. Kamminga, Appl. Phys. Lett. 85 (2004) 3086.
12. Y. Pauleau, Vacuum 61 (2001) 175.
13. R. Koch, J. Phys. C.: Condens. Matter. 6 (1994) 9519.
14. H. Windischmann, Crit. Rev. Solid State Mater. Sci. 17 (1992) 547.
15. C.A. Davis, Thin Solid Films 226 (1993) 30.
16. P. Hovsepian, Arch. Metall. 33 (1988).
17. U. Helmersson, M. Lattemann, J. Bohlmark, A.P. Ehiasarian, J.T. Gudmundsson, Thin Solid Films 513 (2006) 1.68
18. H.R. Kaufman, J. Vac. Sci. Technol. 15 (1978) 272.
19. D.V. Mozgrin, I.K. Fetisov, G.V. Khodachenko, Plasma Phys. Rep. 21 (1995) 401.
20. S.P. Bugaev, N.N. Koval, N.S. Sochugov, A.N. Zakharov, XVIIth International on
Discharges and Electrical Insulation in Vacuum, 1996, p. 1074.
21. I.K. Fetisov, A.A. Filippov, G.V. Khodachenko, D.V. Mozgrin, A.A. Pisarev, Vacuum 53
(1999) 133.
22. B. Chapman, Glow Discharge Processes, John Wiley & Sons, 1981.
23. V. Kouznetsov, K. Macak, J.M. Schneider, U. Helmersson, I. Petrov, Surf. Coat. Technol.
122 (1999) 290.
24. P.S. McLeod, L.D. Hartsough, J. Vac. Sci. Technol. A, 14(1) (1997) 263
25. J. Stimmel, J. Vac. Sci. Technol. B, 4(6) (1986) 1377
26. Li-Jian Meng, M.P. dos Santos, Surf. Coat. Technol., 90 (1997) 64.
27. S. Logothetidis, I. Alexandrou, S. Kokkou, Surf. Coat. Technol., 80 (1996) 66.
28. Wen-Jun Chou, Ge-Ping Yu, Jia-Hong Huang, Surf. Coat. Technol., 149 (2002) 7.
29. K. Sarakinos, J. Alami, S. Konstantinidis, Surface & Coatings Technology 204 (2010)
1661–1684
30. J.A. Thornton, J. Vac. Sci. Technol. A 15 (1978) 171.
31. Ken Yukimura, Ryosuke Mieda, Kingo Azuma, Hiroshi Tamagaki, Tadao Okimoto,
Nuclear Instruments and Methods in Physics Research B 267 (2009) 1692–1695
32. D. J. Christie, J. Vac. Sci. Technol. A 23„2..., Mar/Apr 2005 33. A.P. Ehiasarian, R. New, W.-D. Munz, L. Hultman, U. Helmersson, V. Kouznetsov,Vacuum 65 (2002) 147.
34. J. Alami, K. Sarakinos, G. Mark, M. Wuttig, Appl. Phys. Lett. 89 (2006) 154104.
35. J.T. Gudmundsson, J. Alami, U. Helmersson, Surf. Coat. Technol. 161 (2002) 249.
36. J. Alami. PhD Thesis, Linkoping University, Linkoping, Sweden, 2005.
37. K. Sarakinos. PhD Thesis, RWTH Aachen University, Aachen, Germany, 2008.
38. J. Vlcek, P. Kudlacek, K. Burcalova, J. Musil, J. Vac. Sci. Technol. A 25 (2007) 42.69
39. A. Anders, J. Andersson, A.P. Ehiasarian, J. Appl. Phys. 102 (2007) 113303.
40. J. Musil, J. Lestina, J. Vlcek, T. Tolg, J. Vac. Sci. Technol. A 19 (2001) 420.
41. I.I. Aksenov, V.A. Belous, V.G. Padalka, Instrum. Exp. Tech. 21 (1978) 1416.
42. H. Takikawa, H. Tanoue, IEEE Trans. Plasma Sci. 35 (2007) 992.
43.D.J.Christie,F.Tomasel,W.D.Sproul,D.C.Carter,J.Vac.Sci.Technol.A22(2004)1415.
44. M.Ganciu,S.Konstantinidis,Y.Paint,J.P.Dauchot,M.Hecq,L.dePoucques,P.Vasina,M.
Mesko, J.-C. Imbert, J. Bretagne, M. Touzeau, J. Opt. Adv. Mat. 7 (2005) 2481.
45. S. Konstantinidis, J.P. Dauchot, M. Hecq, Thin Solid Films 515 (2006) 1182.
46. S. Konstantinidis, A. Hemberg, J.P. Dauchot, M. Hecq, J. Vac. Sci. Technol. B 25 (2007)
L19.
47. S. Konstantinidis. PhD Thesis, Universite de Mons - Hainaut, Mons, Belgium, 2004.
48. P. Vasina, M. Mesko, J.-C. Imbert, M. Ganciu, C. Boisse-Laporte, L. de Poucques, M.
Touzeau, D. Pagnon, J. Bretagne, Plasma Sources Sci. Technol. 16 (2007) 501.
49. A. Anders, G.Y. Yushkov, J. Appl. Phys. 105 (2009) 073301. 50. T. Welzel, T. Dunger, F. Richter, Plasma Processes Polym. 4 (2007) S931.
51. M. Kawamura, Y. Abe, H. Yanagisawa, K. Sasaki, Thin Solid Films 287, (1996) 115.
52. J.E. Sundgren, Thin Solid Films 128, (1985) 21.
53. Shozo Inoue, Takaaki Ohba, Hironori Takata, Keiji Koterazawa, Thin Solid Films
343-344, (1999) 230.
54. J. Stimmel, J. Vac. Sci. Technol. B 4(6), (1986) 1377.
55. J.E. Sundgren, B.O. Johansson, S.E. Karlsson and H.T.G. Hentzell, Thin Solid Films 105,
(1983) 367.
56. Wen-Jun Chou, Ge-Ping Yu, Jia-Hong Huang, Surf. Coat. Technol. 140, (2001) 206.
57. S.M. Rossnagel, J. Hopwood, J. Vac. Sci. Technol. B 12 (1994) 449.
58. S.M. Rossnagel, J. Hopwood, Appl. Phys. Lett. 63 (1993) 3285.
59. J.T. Gudmundsson, J. Alami, U. Helmersson, Appl. Phys. Lett. 78 (2001) 3427.70
60. K. Macak, V. Kouznetsov, J.M. Schneider, U. Helmersson, I. Petrov, J. Vac. Sci. Technol. A 18 (2000) 1533.
61. F. Chen, Introduction to Plasma Physics and Controlled Fusion, Second EditionPlenum Press, New York, 1984.
62. I. Langmuir, H. Mott-Smith, Gen. Electr. Rev. 25 (1924) 429. 63. A.D. Pajdarova, J. Vlcek, P. Kudlacek, J. Lukas, J. Phys. D: Appl. Phys. 18 (2009)
025008.
64. S.-H. Seo, J.-H. In, H.-Y. Chang, Plasma Sources Sci. Technol. 15 (2006) 256.
65. J. Bohlmark, J. Alami, C. Christou, A.P. Ehiasarian, U. Helmersson, J. Vac. Sci. Technol. A 23 (2005) 18.
66. S.P. Bugaev, V.G. Podkovyrov, K.V. Oskomov, S.V. Smaykina, N.S. Sochugov, Thin Solid
Films 389 (2001) 16.
67. H.R. Griem, Plasma Spectroscopy, McGraw-Hill, New York, 1964.
68. A.C.G. Mitchell, M.W. Zemansky, Resonance Radiation and Excited Atoms, Cambridge University Press, Cambridge, 1971.
69. O. Auciello, D.L. Flamm, Plasma Diagnostics, Volume 1: Discharge Parameters andChemistry, Academic Press, San Diego, 1989.
70. S. Konstantinidis, J.P. Dauchot, M. Ganciu, A. Ricard, M. Hecq, J. Appl. Phys. 99 (2006) 013307.
71. A.P. Ehiasarian, A. Vetushka, A. Hecimovic, S. Konstantinidis, J. Appl. Phys. 104 (2008) 83305.
72. K. Sarakinos, J. Alami, C. Klever, M. Wuttig, Rev. Adv. Mater. Sci. 15 (2007) 44.
73. S. Konstantinidis, J.P. Dauchot, M. Ganciu, M. Hecq, Appl. Phys. Lett. 88 (2006) 021501.
74. L. de Poucques, J.C. Imbert, C. Boisse-Laporte, J. Bretagne, M. Ganciu, L. Teule-Gay, M.
Touzeau, Plasma Sources Sci. Technol. 15 (2006) 661.
75. J. Bohlmark, M. Lattemann, J.T. Gudmundsson, A.P.Ehiasarian, Y.A. Gonzalvo, N.Brenning, U. Helmersson, Thin Solid Films 515 (2006) 1522. 71
76. M. Lattemann, A.P. Ehiasarian, J. Bohlmark, P.O.A. Persson, U. Helmersson, Surf. Coat. Technol. 200 (2006) 6495.
77. J. Andersson, A.P. Ehiasarian, A. Anders, Appl. Phys. Lett. 93 (2008) 071504.
78. S.M. Rossnagel, J. Vac. Sci. Technol. A 6 (1988) 19.
79. J. Andersson, A. Anders, Phys. Rev. Lett. 102 (2009) 045003.
80. A. Pflug, B. Szyszka, V. Sittinger, J. Niemann, Society of Vacuum Coaters 47th Annual Technical Conference Proceedings San Francisco, CA, 2003, p. 241.
81. R.A. Baragiola, E.V. Alonso, J. Ferron, A. Oliva - Florio, Surf. Sci. 90 (1979) 240.
82. Y.P.Y.P. Raizer, Gas Discharge Physics, Springer, Berlin, 1991. 83. L.M. Kishinevsky, Rad. Eff. 19 (1973) 23.
84. R.C. Weast, Handbook of Chemistry and Physics, CRC Press, Boca Raton, 1988–1989.
85. A. Anders, Appl. Phys. Lett. 92 (2008) 201501.
86. S.M. Rossnagel, H.R. Kaufman, J. Vac. Sci. Technol. A 5 (1987) 2276.
87. D.W. Hoffman, J. Vac. Sci. Technol. A 3 (1985) 561.
88. S. Kadlec, Plasma Processes Polym. 4 (2007) S149.
89. J.A. Bittencourt, Fundamentals of Plasma Physics, Third EdSpringer-Verlag, New York,2004.
90. T. Hurtig, Plasma Cloud Penetration Across Magnetic Barriers Stockholm: Royal Instituteof Technology, 2004.
91. M. Lattemann, A.P. Ehiasarian, J. Bohlmark, P.A.O. Persson, U. Helmersson, Surface &Coatings Technology 200 (2006) 6495–6499.
92. A. P. Ehiasariana, J. G. Wen, I. Petrov, JORNAL OF APPLIED PHYSICS 101, 054301 (2007).
93. P. Scherrer, Gott. Nachr, 2 (1918) 98.
94. G. G. Stoney, Proc. R. Soc. Lond., A82 (1909) 172.
95. J. E. Greene, J.-E. Sundgren, L. Hultman, I. Petrov, and D.B. Bergstrom, Appl. Phys.Lett., 67 (1995) 2928. 72
96. L. Hultman, J.-E. Sundgren, J. E. Greene, D.B. Bergstrom, and I. Petrov, J. Appl. Phys., 78 (1998) 5395.
97. D. S. Rickerby, A. M. Jones, and B. A. Bellamy, Surf. Coat. Technol., 37 (1989) 4375.
98. U. C. Oh, J. H. Je, J. Appl. Phys., 74 (1993) 1692.
99. N. Schell, W. Matz, J. Bottiger, J. Chevallier, and P. Kringhoj, J. Appl. Phys., 91 (2002)2037.
100.U. C. Oh, J. H. Je, and J.Y. Lee, J. Mater. Res., 10 (1995) 634.
101.U. C. Oh, J. H. Je, and J.Y. Lee, J. Mater. Res., 10 (1998) 634.
102.Wen-Jun Chou, Ge-Ping Yu, Jia-Hong Huang, Surface and Coatings Technology 140
(2001). 206-214.
103.H. Oettel, R. Wiedemann, S. PreiBler, Surf. Coat. Technol., 74-75 (1995) 273.
104.Joshua Pelleg, L.Z. Zevin, S. Lungo, Thin Solid Films, 197 (1991) 117.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *