帳號:guest(18.119.105.239)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃烱坤
作者(外文):Huang, Chiung-Kun
論文名稱(中文):開發金奈米粒子生物光學感測器進行農藥篩檢之分析研究
論文名稱(外文):Gold nanoparticles-based optical biosensor for rapid screen analysis of pesticides
指導教授(中文):孫毓璋
指導教授(外文):Sun, Yuh-Chang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:9712515
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:116
中文關鍵詞:奈米金粒子乙醯膽酯酶有機磷劑農藥胺基甲酸鹽劑農藥
外文關鍵詞:Gold nanoparticlesAcetylcholinesteraseorganophosphorous pesticidescarbamate pesticides
相關次數:
  • 推薦推薦:0
  • 點閱點閱:258
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
  自從二次世界大戰以後,農民為了要減少病蟲害及提高產量,即開始大量使用農藥。在種類繁多的農藥中,部分農藥具神經毒性之農藥,如有機磷劑與胺基甲酸鹽劑農藥,由於農藥被廣泛且大量的使用,因此,這些具危害性農藥的殘留問題長期以來也一直都是大眾普遍關心的議題。為滿足一般民眾對快速、簡單且便宜的農產品及飲用水中農殘留篩檢技術的需求,目前已有相當多的文獻針對此一議題出解決各式各樣的分析方法。然而,大部分被提出的篩檢方法往往因為所費昂貴、耗時且操作不易等問題,尚無法滿足現場試驗的需求。因此,研發出一套快速、便宜且操作簡易的現場農產品與飲用水農藥殘留篩檢方法,對分析化學家而言,至今仍是一極為重要的課題。

  根據文獻報導可知,thiocholine會藉由金□硫醇(gold-thio)鍵的形成,而改變金奈米粒子間的靜電作用力,使得金奈米粒子開始聚集,進而造成奈米粒子電漿共振吸收峰發生紅位移的現象;除此之外,thiocholine亦會藉由金-硫醇(gold-thio)鍵的形成,使得原修飾在金奈米粒子上的rhodamine B (RB)脫落,並放射出螢光訊號。根據上述金奈米粒子的特性,本研究中係利用acetylcholinesterase(AChE)水解酶水解acetylthiocholine(AtCH)的反應來產生thiocholine,並藉由thiocholine與單純金奈米粒子或修飾RB金奈米粒子間的作用,再搭配有機磷劑與胺基甲酸鹽劑農藥與AChE間的抑制作用,成功地發展出三套分別利用肉眼,UV/Vis分光光度計及螢光分析儀篩檢有機磷劑與胺基甲酸鹽劑農藥的分析方法。由實驗結果得知,本研究發展的方法確實可用來進行蔬菜及自來水中6種農藥最大容許殘留限制濃度的篩檢。
Since World War II, the use of pesticides has increased to not only reduce the agricultural labor but also increase productivity. However, the residual neurotoxic pesticides, such as organophosphorous or carbamate pesticides, in foods has become a major public health issue with a high degree of attention. Accordingly, the development and validation of a rapid, simple, and inexpensive method for screening analysis of the residual pesticides in foods has attracted wide attention. However, most of the currently reported screening methods are costly, time consuming, and inconvenient, especially for the in-situ test. Therefore, a rapid, in situ, inexpensive and simple method for screening the residual pesticides in foods and drinking water is still highly demanded.

Because the presence of thiocholine can cause the aggregation of gold nanoparticles (AuNPs) due to the electrostatic and gold-thiol interaction, which can result in a red-shift of the plasmon absorption. In addition to the aggregation of AuNPs, thiocholine can also cause the release of rhodamine B (RB) from the surface of AuNPs. To establish a series of AuNPs-based optical screening analytical methods, an enzymatic inhibition reaction coupling to the gold nanoparticles-based colorimetric and fluorometric detections were developed to determine several neurotoxic organophosphorous (OPPs) and carbamate pesticides.

To induce the aggregation of AuNPs and the release of RB from RB-AuNPs, in this study, thiocholine was formed based on the hydrolysis reaction of acetylthiocholine (AtCH) catalyzed by the enzyme, acetylcholinesterase (AChE). Meanwhile, because both OPPs and carbamate can inhibit the activity of AChE, the existence of pesticide residues described above was found can slow down and even prevent the aggregation of AuNPs. On the basis of this reaction mechanism, various analytical schemes were designed to detect OPPs and carbamate pesticides by the color change with naked eye (visual inspection), UV/Vis spectrophotometric measurement, or by the change in fluorescence intensity with fluorometric measurement. Based on the experimental results, our developed screening methods were found applicable to detect the maximum residual concentrations of six pesticides in tap water and vegetables.
中文摘要…………………………………………………………………Ⅰ
英文摘要…..……………………………………………………………Ⅱ
目錄………………………………………………………………………Ⅳ
圖目錄……………………………………………………………………Ⅶ
表目錄……………………………………………………………………Ⅹ
第一章 前言……………………………………………………………1
1.1 農藥介紹……………………………………………………………1
1.2 農藥危害……………………………………………………………6
1.3 乙醯膽鹼酯酶(Acetylcholinesterase, AChE)…………………11
1.4 神經毒性農藥-乙醯膽鹼酯酶抑制型殺蟲劑……………………12
1.4.1 有機磷農藥………………………………………………………15
1.4.2 胺基甲酸鹽劑農藥………………………………………………16
1.5 農藥殘留安全容許量發展趨勢介紹………………………………17
1.5.1 農藥殘留限制訂定………………………………………………18
1.5.2 各國容許農藥於食品中最大殘留限值…………………………19
1.6 農藥檢驗……………………………………………………………21
1.6.1 農藥檢驗的需求…………………………………………………21
1.6.2 傳統及標準檢驗方法……………………………………………21
1.6.3 感測器檢測技術…………………………………………………23
1.6.3.1 電化學感測器…………………………………………………23
1.6.3.2 生物感測器……………………………………………………25
1.7 研究目的及方法……………………………………………………34
第二章 分析儀器與原理………………………………………………37
2.1 紫外光/可見光吸收光譜儀………………………………………37
2.2 盤式吸收螢光分析儀……………………………………………39
2.2.1螢光偵測…………………………………………………………39
2.2.2 吸收光譜儀………………………………………………………43
2.3動態光散射式粒徑分析儀(Dynamic Light Scatting)…………45
第三章 材料與方法……………………………………………………47
3.1 實驗原理……………………………………………………………47
3.2 試劑…………………………………………………………………49
3.3 儀器與器材…………………………………………………………50
3.4 蔬菜基質萃取………………………………………………………51
3.5 AChE活性鑑定………………………………………………………52
3.6 試劑配製……………………………………………………………54
3.7 實驗步驟與操作……………………………………………………56
3.8 UV/Vis篩檢系統……………………………………………………56
3.8.1 UV/Vis篩檢系統原理……………………………………………57
3.8.2 UV/Vis篩檢系統最佳操作參數探討……………………………57
3.9 肉眼篩檢觀測系統…………………………………………………61
3.9.1 肉眼篩檢系統實驗設計與最佳操作參數探討…………………61
3.10 螢光篩檢系統……………………………………………………62
3.10.1 13 nm 金奈米粒子合成………………………………………63
3.10.2 於金奈米粒子表面修飾Rhodamine B…………………………64
3.10.3螢光偵測系統實驗設計與最佳操作參術探討…………………64
第四章 結果與討論……………………………………………………66
4.1共同實驗參數條件探討……………………………………………67
4.1.1 AtCH與AChE使用濃度最佳化……………………………………68
4.1.2 肉眼及UV/Vis篩檢系統數據截取時間的選擇…………………70
4.1.3量測AuNPs聚集程度的表示法……………………………………73
4.1.4 AChE水解AtCH所需的時間………………………………………73
4.1.5有機磷劑農藥氧化/衍生化與AChE抑制反應所需時間…………74
4.1.6有機磷劑農藥氧化/衍生化反應所需時間………………………75
4.2比色法之肉眼篩檢系統分析效能評估……………………………77
4.2.1結球萵苣萃取液干擾肉眼篩檢系統……………………………77
4.2.2 不同蔬菜萃取液中農藥篩檢能力評估…………………………78
4.2.3 不同農藥篩檢能力評估…………………………………………81
4.3 UV-Vis比色篩檢系統………………………………………………83
4.3.1 UV/Vis篩檢系統實驗條件………………………………………83
4.3.2 UV-Vis篩檢系統效能測試………………………………………85
4.4 Fluorescence篩檢系統……………………………………………91
4.4.1以RB修飾自行合成13 nm AuNPs…………………………………91
4.4.2 螢光讀取時間的評………………………………………………92
4.4.3 AtCH與AChE使用濃度選擇………………………………………94
4.4.4 螢光篩檢系統效能測試…………………………………………97
4.4.5 分析蔬菜萃取液中農藥可行性評估……………………………99
4.5 蔬菜萃取液干擾效應探討………………………………………103
第五章 結論…………………………………………………………109
第六章 參考文獻………………………………………………………111
1.Zhu, G.; Jin, M.; Gui, W.; Guo, Y.; Jin, R.; Wang, C.; Liang, C.; Liu, Y.; Wang, S. Food Chem. 2008, 107, 1737-1742.
2.林育如,海洋大學食品科學系,2006。
3.李宏萍,農業生技產業季刊 NO.20,行政院農業委員會農業藥物毒物試驗所, 2009。
4.陳玉時,國立東華大學化學研究所,2000。
5.農藥作用機制分類檢索,行政院農業委員會農業藥物物試驗所農藥化學組,2008。 (http://pcddsv.tactri.gov.tw/moa/tactri_moa_2008.pdf)
6.行政院農業委員會動植物防疫檢疫局,農藥資訊服務網(http://pesticide.baphiq.gov.tw/web/Insecticides_MenuItem1.aspx; http://www.tactri.gov.tw/htdocs/publish/diseases(chi).asp)
7.台北市醫事檢驗師公會 醫檢會刊,2009年8月刊。
8.Classified lists of pesticides, Alan Wood’s Web site (http://www.alanwood.net/pesticides/class_pesticides.html)
9.Yang, C. C.; Wu, J. F.; Ong, H. C.; Hung, S. C.; Kuo, Y. P.; Sa, C. H.; Chen, S. S.; Deng, J.F. Trac-Trends Anal. Chem. 1996, 34, 651-663.
10.行政院農委會農業推廣充電站(http://agrext.coa.gov.tw/agrext/blog/watergirl/post/1391.html)
11.農藥管理法,全國法規資料庫。(http://law.moj.gov.tw/Index.aspx)
12.林頎生,國立屏東科技大學食品科學系,2004。
13.行政院農委會農業藥物毒物試驗所,植物保護圖鑑系列。(http://www.tactri.gov.tw/htdocs/publish/diseases(chi).asp)
14.林孟山,私立淡江大學化學學系,2004。
15.蔡曉忠,國立清華大學原子科學系,2003。
16.陳玉時,呂淑佩,蘇宏基, J. Chin. Chem. Soc. 2001, 59, 273-278.
17.美國疾病管制局(http://www.atsdr.cdc.gov/csem/cholinesterase/cholinesterase_inhibitors.html)
18.Chemistry Department University of Scranton Scranton, PA , USA . (http://academic.scranton.edu/faculty/CANNM1/biochemistry/biochemistrymodule.html)
19.Hermona, S.; Shlomo, S. Nat. Rev. Neurosci. 2001, 2, 294-302.
20.方澤沛,國立成功大學醫學院 環境醫學研究所,2001。
21.林敬荏,國立陽明大學環境衛生研究所,2002。
22.PATRICK, G. L. An Introduction to Medicinal Chemistry; Oxford University Press: New Tork, 1995
23.張博智,中國文化大學生物科技研究所,2000。
24.小小神經科學 (http://www.dls.ym.edu.tw/neuroscience/weap_c.html)
25.綠十字健康網 (http://www.greencross.org.tw)
26.何唐興,國立清華大學,2008。
27.Hayes, W. J.; Laws, E. R. Handbook of Pesticide Toxicology, volume 2, Academic Press Inc., 1991; pp 917-937.
28.陳玉時,呂淑佩,蘇宏基, J. Chin. Chem. Soc. 2001, 59, 273-278.
29.Young, A. K.; Hye, S. L.; Yong, C. P.; Yong, T. L. Environ. Res. 2000, 84, 303-309.
30.Lee, H. S. Chemosphere 2002, 46, 571-576.
31.加保扶農藥有效成分檢驗方法,行政院農業委員會 86 農糧字第 86116775A號公告。
32.方澤沛,國立成功大學醫學院環境醫學研究所,2001。
33.加保扶(Carbofuran) 農藥有效成分檢驗方法,行政院農業委員會 86 農糧字第 86116775A號公告。
34.Ahmed, F. E. Environmental contaminants in food; Moffat, C. F.; Whittle, K. J. eds. Sheffield: Sheffield Academic Press., 1999; pp 500.
35.段淑人,農藥殘留管制及殘留安全容許量,行政院農業委員會農業藥物毒物試驗所殘毒管制組。
36.日本衛生處生活環境水質部水質管理委員會會議(www.mhlw.go.jp/shingi/2002/11/s1108-5g.html)
37.歐洲議會及理事會第(EC) No 396/2005號規章,動植物源食品及飼料之農藥殘留最高限制標準(http://ec.europa.eu/sanco_pesticides/public/index.cfm)
38.行政院農業委員會農業藥物毒物試驗所,農產品中農藥殘留安全標準查詢(http://www.tactri.gov.tw/htdocs/agripp/mrl.asp)
39.Carla, S.; Yolanda, P. Trends Anal. Chem. 2007, 26, 103-115.
40.蘇佑仁,私立淡江大學化學系,2002。
41.Silvana, A.; John, N.; Cristina, I.; Matthew, T. R. J. Environ. Monit. 2009, 12, 27-40.
42.Wang, J.; Pumera, M.; Collins, G.; Mulchandani, A.; Lin, Y.; Olsen, K. Anal.Chem. 2002, 74, 1187-1191.
43.Liu, G. D.; Lin, Y. H. Anal. Chem. 2005, 77, 5894-5901.
44.Martinez, R. C.; Gonzalo, E. R.; García, F. G.; Méndez, J. H. J. Chromatogr. A 1993, 644, 49-58.
45.Wang, J.; Chatrathi, M.; Mulchandani, A.; Chen, W. Anal. Chem. 2001, 73, 1804-1808.
46.Rogers, K. R. Anal. Chim. Acta 2006, 568, 222-231.
47.Liu, G. D.; Lin, Y. H. Anal. Chem. 2006, 78, 835-843.
48.Evtugyn, G. A.; Budnikov, H. C.; Nikolskaya, E. B. Talanta 1998, 46, 465-484.
49.Sadik, O.; Land, W.; Wang, J. Electroanalysis 2003, 15, 1149-1159.
50.Mulchandani, A.; Kaneva, I.; Chen, W. Anal. Chem. 1998, 70, 5042-5046.
51.Wang, J.; Mulchandani, A.; Chen, L.; Mulchandani, P.; Chen, W. Anal. Chem. 1999, 71, 2246-2249.
52.Mulchandani, A.; Mulchandani, P.; Kaneva, I.; Chen, W. Anal. Chem. 1998, 70, 4140-4145.
53.Deo, R. P.; Wang, J.; Block, I.; Mulchandani, A., Joshi, K. A.; Trojanowicz, M.; Scholz, F.; Chen, W.; Lin, Y. Anal. Chim. Acta 2005, 530, 185-189.
54.Olga, S.; Jon, R. K. Electrochem. Commun. 2007, 9, 935-940.
55.Vered, P. Y.; Eugenii, K.; Julian, W.; Itamar, W. J. AM. CHEM. SOC. 2003, 125, 622-623.
56.Andreescu, S.; Marty, J. L. Biomolecular Engineering 2006 1-15.
57.Kumaran, S.; Morita, M. Talanta 1995, 4, 649-655.
58.Andres, R.T.; Narayanaswamy, R. Talanta 1997, 44, 1335-1352.
59.Reybier, K.; Zairi, S.; Jaffrezic-Renault, N.; Fahys, B. Talanta 2002, 56, 1015-1020.
60.Ristori, C.; Del, C. C.; Martini, M.; Ancarani, A. Anal. Chim. Acta 1996, 325, 151-160.
61.Lin, Y.; Yantasee, W.; Lu, F.; Wang, J.; Musameh, M.; Tu, Y.; Ren, Z. In Dekker Encyclopedia of Nanoscience and Nanotechnology; Schwarz, J. A.; Contescu, C. I.; Putyera, K.; Eds.; Marcel Dekker Inc.: New York, 2004; pp 361.
62.Wang, J. Electroanalysis 2005, 17, 7-14.
63.Zhao, Q.; Gan, Z.; Zhuang, Q. Electroanalysis 2002, 14, 1609-1613.
64.Liu, G. D.; Lin, Y. H.; Jun, W.; Richard, B.; Catherine, P.; Charles, T.; Paul, L. G.; Yuehe, L. Chem. Eur. J. 2008, 14, 9951–9959.
65.Christian, J. S.; Sun M.; Scott, R. C.; Lee, E. H.; James, J. S. Appl. Microbiol. Biotechnol. 2007, 76, 561-568.
66.Guo, Y. R.; Liu, S. Y.; Gui, W. J.; Zhu, G. N. Anal. Biochem. 2009, 389, 32-39.
67.Zhou, P.; Lu, Y.; Zhu, J.; Hong, J.; Li, B.; Zhou, J.; Gong, D.; Angel, M. J. Agric. Food Chem. 2004, 52, 4355–4359.
68.George, L. E. Arch. Biochem. Biophys. 1959, 82, 70-77.
69.Naoki, N.; Akihiro, T.; M. A. Hossain; Teruko, Y.; Tatsuro, E.; Kagan, K.; Yuzuru, T.; Eiichi, T. Food Control 2007, 18, 914-920.
70.Tsai, H. C.; Doong, R. A. Biosens. Bioelectron. 2005, 20, 1796-1804.
71.Lin, T. J.; Huang, K. T.; Liu, C. Y. Biosens. Bioelectron. 2006. 22. 513-518.
72.Ana, V.; Laura, S.; Valeri, P. Anal.Chem. 2009, 81, 268-272.
73.No, H. Y.; Kima, Y. A.; Lee, Y. T.; Lee, H. S. Anal. Chim. Acta 2007, 594, 37-43.
74.Miroslav, P.; Jana, Z. K.; Kamil, K.; Jiri, P.; Ondrej, H.; Jan, K.; Jiri, C. Talanta 2010, 81, 621–624.
75.方俊民實驗室高中化學課程系列講座,國立台灣大學化學系(http://www.chemedu.ch.ntu.edu.tw/lecture1/UV-Vis.htm)
76.博精儀器公司(http://www.54pc.com/upload/2009914153132.pdf)
77.北區技專院校教學資源中心 (http://140.124.9.18/course/file/file/17/1793.pdf)
78.王昭凱,紫外光與可見光光譜儀實驗教學手冊,輔英科技大學應用化學系(http://blog.elearning.tw/fy082/doc/4765)
79.SDSU College of Science (http://www.sci.sdsu.edu/TFrey/Bio750/UV-VisSpectroscopy.html)
80.陳巧于,國立清華大學生醫工程與環境科學所,2009。
81.Thermo scientific (https://www.thermoscientific.com/wps/portal/ts/products/detail?navigationId=L10986&categoryId=87231&productId=12703798)
82.Skoog, D. A.; Holler, F. J.; Nieman, T. A. Principles of instrumental analysis 4th Ed.; Saunders College Pub., 1992
83.HORIBA scientific (http://www.horiba.com/jp/scientific/products-jp/fluorescence-spectroscopy/steady-state/principle/1/) ;Olympus (http://www.olympusmicro.com/primer/java/jablonski/jabintro/index.html)
84.Zetasizer Nano User Manual, Malvern Instruments Ltd
85.Chen, S. J.; Chang, H. T. Anal.Chem. 2004, 76, 3727-3734.
86.Moreno, M. J.; Abad, A.; Pelegrí, R.; Martínez, M. I.; Sáez, A.; Gamón, M.; Montoya, A. J. Agric. Food chem. 2001, 49, 1713-1719.
87.Yang, Y. H.; Guo, M. M.; Yang, M. H.; Wang, Z.; Shen, G.;Yu, R. Int. J. Environ. Anal. Chem. 2005, 85, 163-175.
88.Qu, Y. H.; Sun, Q.; Xiao, F.; Shi, G.; Jin, L. Bioelectrochemistry. 2010, 77, 139-144.
89.Ortelli, D.; Edder, P.; Corvi, C. Anal. Chim. Acta 2004, 520, 33-45.
90.Zhao, W.; Ge, P. Y.; Xu, J. J.; Chen, H. Y. Environ. Sci. Technol. 2009, 43, 6724–672.
91.Ozbeo, A.; Uygun, U. Food chem. 2007, 104, 237-241.
92.Determination of acetylcholinesterase activity, University of plymouth
93.五鼎生物技術 (www.apexbio.com.tw)
94.Huang, C. C.; Chang, H. T. Anal. Chem. 2006, 78, 8332-8338.
95.Chen, J. L.; Zheng, A. F.; Chen, A. H.; Gao, Y. C.; He, C. Y.; Kai, X.; Wu, G. H.; Chen, Y. C. Anal. Chim. Acta 2007, 599, 134-142.
96.佘瑞琳,張英德,張煥宗,陳竹亭,J. Chin. Chem. Soc. 2004, 62, 563-568.
97.Chen, S. J.; Chang, H. T. Anal. Chem. 2004, 76, 3727-3734.
98.Wang, M.;Gu, X.; Zhang, G.; Zhang, D.; Zhu, D. Langmuir 2009, 25, 2504-2507.
99.Liu, C. W.; Hsieh, Y. T.; Huang, C. C.; Lina, Z. H.; Chang, H. T. Chem. Commun. 2008, 2242-2244.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 利用Neutralizer-(micro-column)-ICP-MS連線系統測定高濃度酸中超微量雜質元素之分析研究
2. 利用批次及離體模式進行online HPLC-UV/nano-TiO2/HCOOH PCRD-ICP-MS系統在自然水樣及尿液中連線測定硒物種之研究
3. 磁性奈米粒子及其複合材料之製備應用與氧化鋅奈米粒子細胞毒性之研究
4. 建立HPLC-UV/nano-TiO2-ICP-MS連線系統進行尿液中汞物種之分析研究
5. 開發PVC beads packed micro-column ICP-MS連線系統進行高鹽基質樣品中微量元素的分析研究
6. 晶片型固相萃取技術開發及其在微量元素分析上的應用
7. 活體動物體內量子點及鎘離子動態變化連線分析系統的開發與應用
8. 建立線上HPLC-Photocatalyst-Assisted Digestion and Vaporization Device (PADVD)-ICP-MS連線系統進行人體尿液中硒物種之分析研究
9. 開發Microdialysis-Desalter-ICP-MS連線分析系統進行活體動物肝臟中量子點穩定性及鎘元素拮抗作用之分析研究
10. 利用奈米金粒子訊號放大及磁性粒子分離技術進行核酸序列及汞離子之分析研究
11. Development of online HPLC-PMMA Chip-based Photo-Catalyst Reduction Device (PC2RD)-ICP-MS hyphenated system for determination of selenium species in nature water
12. Development of Microdialysis-In-tube SPE-ICP-MS System for the determination of trace elements in brain of anesthetized rat
13. 利用奈米探針技術搭配感應耦合電漿質譜儀建立高靈敏的病毒分型及定量分析研究
14. 建立開管式固相萃取晶片搭配感應耦合電漿質譜儀之連線分析系統進行高鹽基質微透析樣品中微量元素之分析研究
15. 建立Photocatalyst-Assisted Digestion-PMMA SPE-ICP-MS連線分析系統進行環境水樣中微量元素之分析研究
 
* *