帳號:guest(3.141.164.0)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃科倫
作者(外文):NG KE LUN
論文名稱(中文):應用在甲醇重組反應中之金修飾銅鋅觸媒的合成、特性及反應性探討
論文名稱(外文):The study of synthesis method, reactivity and ignition temperature over gold promoted copper zinc catalyst
指導教授(中文):黃鈺軫
指導教授(外文):Huang, Yuh-Jeen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:9712519
出版年(民國):99
畢業學年度:98
語文別:英文
論文頁數:138
中文關鍵詞:啟動溫度一氧化碳
外文關鍵詞:goldinitiation temperatureCO
相關次數:
  • 推薦推薦:0
  • 點閱點閱:257
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本篇研究將探討奈米金顆粒沉積在銅鋅催化劑上進行甲醇重組反應。由研究顯示先利用共沉澱法合成銅鋅觸媒,經乾燥後再以沉積沉澱法在pH 7條件下將金沉積到銅鋅上,可有效減少金在合成過程中的流失,經鍛燒後可得到的較佳催化活性之金銅鋅觸媒。本篇研究以金重量百分比分別為0%,0.8%,3%,與4.3%,而銅含量保持為30%之催化劑進行特性鑑定並在固定反應床進行甲醇部分氧化反應,甲醇蒸氣重組反應與氧化性甲醇蒸氣重組反應之活性測試。
研究顯示金的添加能夠有效的降低反應中的一氧化碳濃度,且隨著金的添加量增加而減少。此外,在無氧的環境下(甲醇蒸氣重組反應),金的添加銅同樣能夠減少一氧化碳的形成。而利用較高濃度的氧氣進行反應並不能有效的降低甲醇部分氧化反應中一氧化碳的生成,反而造成嚴重的氫氣燃燒反應,並且在甲醇氧化蒸氣重組反應中,高濃度的氧反而導致更多的一氧化碳生成。
此外,我們也發現添加金能夠在較低的溫度啟動重組反應。藉由X光吸收光譜儀可以發現在150oC時只通甲醇且未預還原的情況下,Au4.3Cu30ZnO已經被還原成63%Cu0以及37%Cu+,而Cu30ZnO則維持在氧化銅的狀態,金的添加讓觸媒上的銅更容易的被甲醇還原。同時,在室溫下將甲醇通入還原後的Au4.3Cu30ZnO以及Cu30ZnO,發現Au4.3Cu30ZnO有較多的氧化亞銅以及氧化銅的形成,代表金的添加增加了更多的金銅介面,能夠吸附更多的甲醇。而在不同氧醇比的甲醇部分氧化反應中,Au3Cu30ZnO觸媒由0.1氧醇比的180oC 啟動溫度下降至0.7氧醇比的120oC,而Cu30ZnO只有10oC的差別,金對氧較佳的吸附能力改善了啟動溫度。
總結而言,金是一個用以降低反應啟動反應溫度與降低一氧化碳生成的理想添加劑。金的添加在未經過還原處理的情況下降低了啟動溫度,使得重組器能夠在更少的加熱模組與操作溫度下產生氫氣。
Nano gold particle supported on copper zinc catalyst to proceed methanol reforming was investigated in this study. A synthesis method was developed which utilized co-precipitation to produce copper zinc catalyst, gold was added at pH 7 by deposition precipitation method after copper zinc catalyst was precipitated and dried. This synthesis procedure avoids severe gold loss and preserves significant reactivity after calcination. Different gold content, 0%, 0.8%, 3% and 4.3%, on the 30%copper supported on zinc oxide catalyst synthesis by procedure mentioned above, were characterized and tested in a fixed bed reactor through partial oxidation of methanol (POM), steam reforming of methanol (SRM) and oxidative steam reforming of methanol (OSRM) reaction.
The addition of gold can suppress the carbon monoxide. In addition, with the increasing gold content, less CO is formed. Furthermore, in the absent of oxygen, addition of gold also decrease the CO formation in SRM reaction. Higher oxygen concentration in POM reaction did not decrease the CO formation significantly, but causing severe hydrogen combustion. Meanwhile, higher oxygen concentration in OSRM reaction leads to higher CO formation.
Besides, the addition of gold can lower the initiation temperature. In-situ XAS revealed that without pre-activation, there was no any CuO reduced by methanol on the Cu30ZnO. In contrast, 63% Cu0 and 37% Cu2O were observed on Cu30ZnO with 4.3% gold promoter. Meanwhile, methanol was passed through reduced Au4.3Cu30ZnO and Cu30ZnO at room temperature, Au4.3Cu30ZnO was found having more Cu2O and CuO species which represent more methanol was absorbed on the interface between copper and gold. Besides, we also discovered the initiation temperature of Au3Cu30ZnO was lower to 120oC when 0.7 O/M ration was used in POM reaction while Cu30ZnO was remain at 190oC. Better oxygen absorption ability of gold improved the initiation temperature.
Gold is an ideal additive to improve the initiation temperature and decrease CO formation. Lower initiation temperature without pre-activation allow simpler heating module and reduce cost for the reformer.
Abstracts ------------------------------------------------------------------------------------------ I
Abstracts in Chinese --------------------------------------------------------------------------- II
List of Tables ----------------------------------------------------------------------------------- VI
List of Figures --------------------------------------------------------------------------------- VII
Chapter 1 ------------------------------------------------------------------------------------------ 1
Background and Introduction ---------------------------------------------------------------- 1
1-1 Use of the energy 1
1-2 Fuel cells 2
1-3 Advantages and applications of fuel cells 3
1-4 Proton exchange membrane fuel cells (PEMFCs) 6
1-5 Hydrogen storage 10
1-6 Production of hydrogen from methanol 15
1-7 Paper review of product hydrogen from methanol reforming over Cu based catalyst 19
1-8 Promoter of Au 22
1-9 Motivation and approaches 23
1-10 References 25
Chapter 2 ------------------------------------- 32
Experimental Section -------------------------- 32
2-1 Chemicals and solutions 32
2-2 Catalyst preparation method 34
2-3 Induced coupled plasma-mass analyzer (ICP-Mass) 37
IV
2-4 Powder X-ray diffractometer (PXRD) 37
2-5 Transmission electron microscopy (TEM) 38
2-6 Temperature programmed reduction (TPR) 39
2-7 Temperature programmed oxidation (TPO) 40
2-8 N2O Chemisorption 41
2-9 X-ray Absorption Spectroscopy (XAS) 41
2-10 Catalytic activity 43
2-11 References 49
Chapter 3 ------------------------------- 50
The study of synthesis strategy for gold deposition on copper zinc oxide catalyst ------------------------ 50
3-1 Characterization of the catalysts 50
3-2 X-ray powder diffraction of the catalysts 53
3-3 H2-temperature programmed reduction 56
3-4 Transmission Electrons Microscopy 59
3-5 POM reaction over catalysts by different synthesis method 59
3-6 Conclusions 63
3-7 Reference 65
Chapter 4 --------------------------------------------- 67
The relationship between gold content and copper zinc catalyst in the methanol reforming process ------------ 67
4-1 Result of ICP-MS and Cu surface area of the catalysts 67
4-2 X-ray powder diffraction 70
V
4-3 Hydrogen temperature programmed reduction 71
4-4 Temperature programmed oxidation 74
4-5 POM reaction over gold promoted copper zinc catalyst 78
4-6 The effect of O/M ratio to POM reaction 82
4-7 SRM reaction over gold promoted copper zinc catalyst 85
4-8 The influence of water to reduced copper zinc catalyst by XAS study 89
4-9 The XANES study of DM and SRM reaction over copper zinc catalyst 91
4-10 OSRM reaction over gold promoted copper zinc catalyst 93
4-11 The effect of oxygen in OSRM reaction 94
4-12 Conclusions 98
4-13 References 100
Chapter 5 ------------------------------------- 104
The role of oxygen on the copper zinc catalyst with gold promoter ---------------104
5-1 The relationship of ignition temperature and gold content 105
5-2 Conclusions 115
5-3 References 117
Appendix---------------------------------------- 119
A new strategy for the catalyst activation ----- 119
A-1 Effect of bath pH 119
A-2 The effect of different alkaline agent 130
A-3Conclusions 136
A-4 References 137
1-10 References
[1] Charles, B., "Purpose in the Universe: A Search for Wholeness", 1971, Zygon, 6, No.1, Pages 4-27, MAR.
[2] U.S. Department of Energy, “Fuel Cell Handbook (Sixth Edition)”, 2002, Morgantown, West Virginia, Chapter 1.
[3] Larminie, J., Dicks, A., “Fuel cell systems explained”, 2002, John Wiley & Sons, Chapter 1.
[4] Hogarth, M. P., and Ralph, T. R., “Catalysis for Low Temperature Fuel Cells”, 2002, Platinum Metals Review, 46, 146-164.
[5] Ralph, T. R., and Hards, G. A., “Powering the cars and homes of tomorrow”, 1998, Chemistry & Industry, 9, 337-342.
[6] Bossel, U. G., “Proceedings of the European Fuel cell Forum Portable Fuel cell Conference”, 1999, Lucerne, 79-84.
[7] Zieger, J., 1994, Hydrogen energy progr. 10, 1427-1437.
[8] Kahrom, H., “Proceedings of the European Fuel cell Forum Portable Fuel cell Conference”, 1999, Lucerne, 159.
[9] Reister, D., and Strobl, W., 1992, Hydrogen energy progress IX, 1202.
[10] Ueoka, K., Miyauchi, S., Asakuma, Y., Hirosawa, T., Morozumi, Y., Aokia, H., and Miura, T., “An application of a homogenization method to the estimation of effective thermal conductivity of a hydrogen storage alloy bed considering variation of contact conditions between alloy particles”, 2007, International Journal of Hydrogen Energy, 32, 4225-4232.
[11] Vermeulen, P., Thiel, E. F. M. J., and Notten, P. H. L., “Ternary MgTiX-alloys: A promising route towards low temperature, high capacity, hydrogen storage materials”, 2007, Chemistry -A European Journal, 13, 9892-9898.
[12] Appleby, A. J., and Foulkes, F.R., “Fuel Cell Handbook”, 1989, Van Nostrand, New York, 177.
[13] Watkins, D.S., in: Blomen, L.J.M.J., and Mugerwa, M.N. (Eds.), “Fuel Cell Systems”, 1993, Plenum Press, New York, 493.
[14] J. Zieger, 1994, Hydrogen energy progress, 10, 1427-1437.
[15] Kahrom, H., “Proceedings of the European Fuel cell Forum Portable Fuel cell Conference”, 1999, Lucerne, 159.
[16] Lindstrom, B., and Pettersson, L.J., “Hydrogen generation by steam reforming of methanol over copper-based catalysts for fuel cell applications”, 2001, International Journal of Hydrogen Energy, 26, 923-933.
[17] Rostrup-Nielsen, J. R., Christensen, T.S., and Dybkjaer, I., “Steam reforming of liquid hydrocarbons”,1998, Recent Advances In Basic And Applied Aspects Of Industrial Catalysis, 113, 81-95.
[18] Takahashi, T., Inoue, M., and Kai, T., “Effect of metal composition on hydrogen selectivity in steam reforming of methanol over catalysts prepared from amorphous alloys”, 2001, Applied Catalysis A: General, 218, 189-195.
[19] Velu, S., Suzuki, K., and Osaki, T., “Selective production of hydrogen by partial oxidation of methanol over catalysts derived from CuZnAl-layered double hydroxides”, 1999, Catalysis Letter, 62, 159-167.
[20] Wang, Z. F., Xi, J. Y., Wang, W. P., and Lu, G. X., “Selective production of hydrogen from partial oxidation of methanol over silver catalysts at low temperatures”, 2003, Journal of Molecular Catalysis A: Chemistry., 191, 123-136.
[21] Cubeiro, M. L., and Fierro, J. L. G., “Selective production of hydrogen by partial oxidation of methanol over ZnO-supported palladium catalysts”, 1998, Applied Catalysis A: General, 168, 307-322.
[22] Schuyten, S., and Wolf, E.E., “Selective combinatorial studies on Ce and Zr promoted Cu/Zn/Pd catalysts for hydrogen production via methanol oxidative reforming”, 2006, Catalysis Letter, 106, 7-14.
[23] Mo, L., Zheng, X., and Yeh, C.T., “Selective production of hydrogen from partial oxidation of methanol over silver catalysts at low temperatures”, 2004, Chemical Communication, 1426-1427.
[24] S. Velu, Suzuki, “Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl oxide catalysts: effect of substitution of zirconium and cerium on the catalytic performance”, 2003, Topics in Catalysis. 22, 235-244.
[25] Agrell, J., Birgersson, H., Boutonnet, M., Melián-Cabrera, I., Navarro, R.M., and Fierro, J.L.G., “Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3”, 2003, Journal of Catalysis, 219, 389-403.
[26] Turco, M., Bagnasco, G., Cammarano, C., Senese, P., Costantino, U., and Sisani, M., “Cu/ZnO/Al2O3 catalysts for oxidative steam reforming of methanol: The role of Cu and the dispersing oxide matrix”, 2007, Applied Catalysis B: Environmental, 77, 46–57.
[27] Shishido, T., Yamamoto, Y., Morioka, H., and Takehira, K., “Production of hydrogen from methanol over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation: Steam reforming and oxidative steam reforming”, 2007, Journal of Molecular Catalysis A: Chemical, 268, 185-194.
[28] Shishido, T., Yamamoto, M., Li, D., Tian, Y., Morioka, H., Honda, M., Sano, T., and Takehira, K., “Water-gas shift reaction over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation”, 2006, Applied Catalysis A: General, 303, 62–71.
[29] Patt, J., Moon, D. J., Phillips, C., and Thompson, L., “Molybdenum carbide catalysts for water–gas shift”, 2000, Catalysis Letter, 65, 193-195.
[30] Avgouropoulos, G., Ioannides, T., Papadopoulou, C., Batista, J., Hocevar, S., and Matralis, H. K., “A comparative study of Pt/γ-Al2O3, Au/α-Fe2O3 and CuO–CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen”, 2002, Catalysis Today, 75, 157-167.
[31] Wang, J. B., Lin, S. C., and Huang, T. J., “Selective CO oxidation in rich hydrogen over CuO/samaria-doped ceria”, 2002, Applied Catalysis A: General, 232, 107-120.
[32] Avgouropoulos, G., and Ioannides, T., “Selective CO oxidation over CuO-CeO2 catalysts prepared via the urea–nitrate combustion method”, 2003, Applied Catalysis A: General, 244, 155-167.
[33] Dyakonov, A. J., “Abatement of CO from relatively simple and complex mixtures - I. Oxidation on Pd-Ag/zeolite catalysts”, 2003, Applied Catalysis B: Environmental, 45, 241-309.
[34] Qiao, B., and Deng, Y., “Highly effective ferric hydroxide supported gold catalyst for selective oxidation of CO in the presence of H2”, 1997, Chemical Communication, 2192-2193.
[35] Han, Y. F., Kinne, M., and Behm, R. J., “Selective oxidation of CO on Ru/gamma-Al2O3 in methanol reformate at low temperatures”, 2004, Applied Catalysis B: Environmental, 52, 123-134.
[36] Hunt, L. B., and Lever, F. M. (1969). "Platinum Metals: A Survey of Productive Resources to industrial Uses," 1969, Platinum Metals Review, 13, 126–138.
[37] Liu, S., Takahashi, K., Uematsu, K., and Ayabe, M., “Hydrogen production by oxidative methanol reforming on Pd/ZnO catalyst: effects of the addition of a third metal component” 2004, Applied Catalysis A: General, 277, 265–270
[38] Liu, S., Takahashi, K., Eguchi, H., and Uematsu, K., "Hydrogen production by oxidative methanol reforming on Pd/ZnO: Catalyst preparation and supporting materials,” 2007, Catalysis Today, 129, 287–292
[39] Liu, S., Takahashi, K., Fuchigami, K., and Uematsu, K., “Hydrogen production by oxidative methanol reforming on Pd/ZnO: Catalyst deactivation,” 2006, Applied Catalysis A: General, 299, 58–65
[40] Campbell, C. T., and Peden, C. H. F., “Oxygen Vacancies and Catalysis on Ceria Surfaces,” 2005, Science, 309, 713-714
[41] Turco, M., Bagnasco, G., Costantino, U., Marmottini, F., Montanari, T., Ramis, G., and Busca, G., “Production of hydrogen from oxidative steam reforming of methanol I. Preparation and characterization of Cu/ZnO/Al2O3 catalysts from a hydrotalcite-like LDH precursor,” 2004, Journal of Catalysis, 228, 43–55
[42] Urco, M., Bagnasco, G., Costantino, U., Marmottini, F., Montanari, T., Ramis, G., and Busca, G., “Production of hydrogen from oxidative steam reforming of methanol II. Catalytic activity and reaction mechanism on Cu/ZnO/Al2O3 hydrotalcite-derived catalysts,” 2004, Journal of Catalysis, 228, 56–65
[43] Shishido, T., Yamamoto, Y., Morioka, H., and Takehira, K., “Production of hydrogen from methanol over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation: Steam reforming and oxidative steam reforming,” 2007, Journal of Molecular Catalysis A: Chemical, 268, 185–194
[44] Shishido, T., Yamamoto, Y., Morioka, H., and Takehira, K., and Takaki, K., “Active Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation method in steam reforming of methanol,” 2004, Applied Catalysis A: General, 263, 249–253
[45] Ioannides, T., Papavasiliou, J., and Avgouropoulos, G. , “Effect of dopants on the performance of CuO–CeO2 catalysts in methanol steam reforming,” 2007, Applied Catalysis B: Environmental, 69, 226–234
[46] Udani, P.P.C., Gunawardana, P.V.D.S., Lee, H. C., and Kim, D. H., “Steam reforming and oxidative steam reforming of methanol over CuO–CeO2 catalysts;” 2009, International Journal of Hydrogen Energy, 34, 7648-7655.
[47] Pant, K. K., and Patel, S., 2007, “Hydrogen Production by Oxidative Steam Reforming of Methanol Using Ceria Promoted Copper–alumina Catalysts,” Fuel Processing Technology, Vol. 88, pp. 825-832
[48] Chen, H., Yin, A., Guo, X., Dai, W. L., and Fan, K. N., “Sodium Hydroxide–Sodium Oxalate-Assisted Co-Precipitation of Highly Active and Stable Cu/ZrO2 Catalyst in the Partial Oxidation of Methanol to Hydrogen,” 2009, Catalysis Letter, 131, 632–642
[49] Omata, K., Umegaki, T., Masuda, A., and Yamada, M., “Development of a high performance Cu-based ternary oxide catalyst for oxidative steam reforming of methanol using an artificial neural network,” 2008, Applied Catalysis A: General, 351, 210–216
[50] Haruta, M., 1997, “Size- and Support-dependency in the Catalysis of Gold,” Catalysis Today, 36, 153-166
[51] Haruta, M., and Daté, M., 2001, “Advances in the Catalysis of Au Nanoparticles,” Applied Catalysis A: General, 222, 427–437
[52] Nørskov, J. K., Janssens, T. V. W., Clausen, B. S., Xu, Y., Mavrikakis, M., Bligaard, T., and Lopez, N., 2004, “On the Origin of the Catalytic Activity of Gold Nanoparticles for Low-temperature CO Oxidation,” Journal of Catalysis, Vol. 223, pp. 232–235
[53] Manzoli, M., Avgouropoulos, G., Tabakova, T., Apavasiliou, J., Ioannides, T., and Boccuzzi, F., 2008, “Preferential CO Oxidation in H2-Rich Gas Mixtures Over Au/doped Ceria Catalysts,” Catalysis Today, Vol. 138, pp. 239–243
[54] Gazsi, A., Bánsági, T., Solymosi, F., “Hydrogen Formation in the Reactions of Methanol on Supported Au Catalysts,” 2009, Catalysis Letter, 131, 33–41
[55] Flytzani-Stephanopoulos, M., Yi, N., Si, R., and Saltsburg, H., “Steam reforming of methanol over ceria and gold-ceria nanoshapes,” 2010, Applied Catalysis B: Environmental, 95, 87–92
[56] Chang, F. W., Yu, H. Y., Roselin, L. S., and Yang, H. C, 2005, “Production of Hydrogen Via Partial Oxidation of Methanol over Au/TiO2 Catalysts,” Applied Catalysis A: General, Vol. 290, pp. 138–147
[57] Chang, F. W., Yang, H. C., and Roselin, L. S., 2007, “Hydrogen Production by Partial Oxidation of Methanol over Au/CuO/ZnO Catalysts,” Journal of Molecular Catalysis A: Chemical, Vol. 276, pp. 184–190
[58] Chang, F. W., Lai, S. C., and Roselin, L. S., 2008a, “Hydrogen Production by Partial Oxidation of Methanol over ZnO-promoted Au/Al2O3 Catalysts,” Journal of Molecular Catalysis A: Chemical, Vol. 282, pp. 129–135
[59] Chang, F. W., Ou, T. C., and Roselin, L. S., 2008b, “Production of Hydrogen Via Partial Oxidation of Methanol over Bimetallic Au–Cu/TiO2 Catalysts,” Journal of Molecular Catalysis A: Chemical, Vol. 293, pp. 8–16
[60] Chang, F. W., Ou, T. C., Roselin, L. S., Chen, W. S., Lai, S. C., and Wu, H. M., 2009, “Production of Hydrogen Via Partial Oxidation of Methanol over Bimetallic Au–Cu/TiO2 Catalysts,” Journal of Molecular Catalysis A: Chemical, Vol. 313, pp. 55–64

2-11 References
[1] S. Brunauer, P. H. Emmtt, E. Teller, “A Cross-Performance Relationship between Carr’s Index and Dissolution Rate Constant and the Application of Mixing Rules: The Study of Acetaminophen Batches”, J. Am. Chem. Soc. 60 (1938) 309-315.
[2] S. Y. Huang, S. M. Chang, C. T. Yeh, “Characterization of surface composition of platinum and ruthenium nanoalloys dispersed on active carbon”, J. Phys. Chem. B 110 (2006) 234-239.
[3] J. B. Wang, S. C. Lin, T. J. Huang, “Selective CO oxidation in rich hydrogen over CuO/samaria-doped ceria”, Appl. Catal. A-Gen. 232 (2002) 107-120.
[4] J. L. Li, T, Inui, “Characterization of precursors of methanol synthesis catalysts, copper/zinc/aluminum oxides, precipitated at different pHs and temperatures”, Appl. Catal. A-Gen. 137 (1996) 105-117.
[5] L. Mo, X. Zheng, C.T. Yeh, “Selective production of hydrogen from partial oxidation of methanol over silver catalysts at low temperatures”, Chem. Commun. (2004) 1426-1427.

3-7 Reference:
1. Shishido, T., Yamamoto, Y., Morioka, H., Takaki, K., and Takehira, K., “Active Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation method in steam reforming of methanol,” 2004, Applied Catalysis A: General, 263, 249–253
2. Kung, H.H., Reitz, T.L., Ahmed, S., Krumpelt, M., and Kumar, R., “Characterization of CuO/ZnO under oxidizing conditions for the oxidative methanol reforming reaction,” 2000, Journal of Molecular Catalysis A: Chemical, 162, 275–285
3. Agrell, J., Hasselbo, K., Jansson, K., Järås, S. G., and Boutonnet, M., “Production of hydrogen by partial oxidation of methanol over Cu/ZnO catalysts prepared by microemulsion technique,” 2001, Applied Catalysis A: General, 211, 239–250
4. Venezia, A. M., Pantaleo, G., Longo, A., Carlo, G. D., Casaletto, M. P., F. Liotta, L., and Deganello, G., “Relationship between Structure and CO Oxidation Activity of Ceria-Supported Gold Catalysts,” 2005, Journal of Physical Chemitry B, 109, 2821-2827
5. Mullins, C. B., Ojifinni, R. A., Kim, T. S., Stiehl, J. D., McClure, S. M., White, J. M., and Gong, J., “Low temperature CO oxidation on Au(111) and the role of adsorbed water,” 2007, Topics in Catalysis, 44, 57-63
6. Manzoli, M., Avgouropoulos, G., Tabakova, T., Papavasiliou, J., Ioannides, T., and Boccuzzi, F., “Preferential CO oxidation in H2-rich gas mixtures over Au/doped ceria catalysts,” 2008, Catalysis Today, 138, 239–243
7. Madeira, L. M., Mendes, D., Garcia, H., Silva, V. B., and Mendes, A., “Comparison of Nanosized Gold-Based and Copper-Based Catalysts for the Low-Temperature Water-Gas Shift Reaction,” 2009, Industrial & Engineering Chemistry Research, 48, 430-439
8. Appel, L. G., Souza K. R., Lima, A. F.F., Sousa, F. F., “Preparing Au/ZnO by precipitation-deposition technique,” 2008, Applied Catalysis A: General, 340, 133-139.
9. Haruta, M., “Size- and support-dependency in the catalysis of gold,” 1997, Catalysis Today, 36, 153-166.
10. Schüth, F., Wolf, A., “A systematic study of the synthesis conditions for the preparation of highly active gold catalysts,” 2002, Applied Catalysis A: General, 226, 1-13.
11. Bond, G., and Thompson, D., “Formulation of mechanism for gold-catalysed reaction,” 2009, Gold Bulletin, 42, 247-259.
12. Goodman, D. W., Chen, M. S., “Structure-activity relationship in supported Au catalysts,” 2006, Catalysis Today, 111, 22-23.
13. Yeh, C-T., and Chen, Y-J., “Deposition of Highly Dispersed Gold on Alumina Support,” 2001, Journal of Catalysis, 200, 59-68.
14. Haruta, M., “Gold as a Novel Catalyst in the 21st Century: Preparation, Working Mechanism and Applications,” Gold Bulletin, 37, 27-36.
15. Muhler, M., Strunk, J., Kähler, K., Xia, X., Comotti, M., Schüth, F., and Reinecke, T., “Au/ZnO as catalyst for methanol synthesis: The role of oxygen vacancies,” 2009, Applied Catalysis A: General, 359, 121–128
16. Fierro, G., Jacono, M. L., Inversi, M., Porta, P., Cioci, F., and Lavecchia, R., “Study of the reducibility of copper in CuO-ZnO catalysts by temperature-programmed reduction,” 1996, Applied Catalysis A: General, 137, 327-348

4-13 References:
1. Fierro, J.L.G., Lago, R.M., Penã, M.A., and Espinosa, L.A., “Mechanistic aspects of hydrogen production by partial oxidation of methanol over Cu/ZnO catalysts,” 2003, Topics in Catalysis, 22, 3-4, 245-251.
2. Kim, D. H., Lee, J. K., and Ko, J. B., “Methanol steam reforming over Cu/ZnO/Al2O3 catalyst: kinetics and effectiveness factor,” 2004, Applied Catalysis A: General, 278, 25–35.
3. Turco, M., Bagnasco, G., Costantino, U., Marmottini, F., Montanari, T., Ramis, G., and Busca, G., “Production of hydrogen from oxidative steam reforming of methanol II. Catalytic activity and reaction mechanism on Cu/ZnO/Al2O3 hydrotalcite-derived catalysts,” 2004, Journal of Catalysis, 228, 56–65.
4. Chen, Y. W., Chang, L. H., Sasirekha, N., and Wang, W. J., “Preferential Oxidation of CO in H2 Stream over Au/MnO2-CeO2 Catalysts,” 2006, Industrial & engineering chemistry research, 45, 4927-4935.
5. Schüth, F., and Wolf, A., “A systematic study of the synthesis conditions for the preparation of highly active gold catalysts,” 2002, Applied Catalysis A: General, 226, 1-13.
6. Appel, L. G., Souza K. R., Lima, A. F.F., Sousa, F. F., “Preparing Au/ZnO by precipitation-deposition technique,” 2008, Applied Catalysis A: General, 340, 133-139.
7. Pettersson, L. J., Lindström, B., and Menon, P. G., “Activity and characterization of Cu/Zn, Cu/Cr and Cu/Zr on γ-alumina for methanol reforming for fuel cell vehicles,” 2002, Applied Catalysis A: General, 234, 111–125
8. Stephanopoulos, M. F., Fu, Q., Kudriavtseva, S., and Saltsburg, H., “Gold–ceria catalysts for low-temperature water-gas shift reaction,” 2003, Chemical Engineering Journal, 93, 41–53
9. Venezia, A. M., Pantaleo, G., Longo, A., Carlo, G. D., Casaletto, M. P., F. Liotta, L., and Deganello, G., “Relationship between Structure and CO Oxidation Activity of Ceria-Supported Gold Catalysts,” 2005, Journal of Physical Chemitry B, 109, 2821-2827
10. C.-J. Zhang, A. Michaelides, D.A King and S.J. Jenkins, “Structure of gold atoms on stoichiometric and defective ceria surfaces,” 2008, Journal of Chemical Physics, 129, 194708
11. Flytzani-Stephanopoulos, M., Fu, Q., Kudriavtseva, S., and Saltsburg, H., “Gold–ceria catalysts for low-temperature water-gas shift reaction,” 2003, Chemical Engineering Journal, 93, 41–53.
12. Bond, G., and Thompson, D., “Formulation of mechanism for gold-catalysed reaction,” 2009, Gold Bulletin, 42, 247-259
13. Haruta, M., “Size- and support-dependency in the catalysis of gold,” 1997, Catalysis Today, 36, 153-166.
14. Mills, G., Gordon, M.S., and Metiu, H., “Oxygen adsorption on Au clusters and a rough Au.111. surface: The role of surface flatness, electron confinement, excess electrons, and band gap,” 2003, Journal of Chemical Physics, 118, 4198-4205.
15. Goodman, D.W., and Chen, M.S., “Structure-activity relationships in supported Au catalysts,” 2006, Catalysis Today, 111, 22-33.
16. Agrell, J., Boutonnet, M., Melián-Cabrera, I., and Fierro, J.L.G., “Production of hydrogen from methanol over binary Cu/ZnO catalysts Part I. Catalyst preparation and characterization,” 2003, Applied Catalysis A: General, 253, 201–211
17. Li, J-L., and Inui, T., “Characterization of precursors of methanol synthesis catalysts, copper/zinc/aluminum oxides, precipitated at different pHs and temperatures,” 1996, Applied Catalysis A: General, 137, 105-117
18. Pirone, R.,Caputo, T., Lisi, L., and Russo, G., “On the role of redox properties of CuO/CeO2 catalysts in the preferential oxidation of CO in H2-rich gases,l 2008, Applied Catalysis A: General, 348, 42–53
19. Agrell, J., Boutonnet, M., and Fierro, J. L.G., “Production of hydrogen from methanol over binary Cu/ZnO catalysts Part II. Catalytic activity and reaction pathways,” 2003, Applied Catalysis A: General , 253, 213–223
20. Reitz, T.L., Ahmed, S., Krumpelt, M., Kumar, R., and Kung, H.H., “Characterization of CuO/ZnO under oxidizing conditions for the oxidative methanol reforming reaction,”2000, Journal of Molecular Catalysis A: Chemical, 162, 275–285
21. Turco, M., Bagnasco, G., Costantino, U., Marmottini, F., Montanari, T., Ramis, G., and Busca, G., “Production of hydrogen from oxidative steam reforming of methanol I. Preparation and characterization of Cu/ZnO/Al2O3 catalysts from a hydrotalcite-like LDH precursor,” 2004, Journal of Catalysis, 228, 43–55
22. Turco, M., Bagnasco, G., Costantino, U., Marmottini, F., Montanari, T., Ramis, G., and Busca, G., “Production of hydrogen from oxidative steam reforming of methanol II. Catalytic activity and reaction mechanism on Cu/ZnO/Al2O3 hydrotalcite-derived catalysts,” 2004, Journal of Catalysis, 228, 56–65
23. Kawamura, Y., Ishida, T., Tezuka, W., and Igarashi, A., “Hydrogen production by oxidative methanol reforming with various oxidants over Cu-based catalysts,” 2008, Chemical Engineering Science, 63, 5042 – 5047
24. Boccuzzi, F., Manzoli, M., and Chiorino, A., “ Decomposition and combined reforming of methanol to hydrogen: a FTIR and QMS study on Cu and Au catalysis supported on ZnO and TiO2,” 2004, Applied Catalysis B: Environmental, 57, 201-209
25. Deng, Q., Li, X., Peng Z., Long, Y., Xiang, L., and Cai, T., “Catalytic performance and kinetics of Au/γ-Al2O3 catalysts for low-temperature combustion of light alcohols,” 2010, Transactions Of Nonferrous Metals Society Of China, 20, 437-442
26. Caps, V., Quinet, E., Morfin, F., Diehl, F., Avenier, P., and Rousset, J-L., “Hydrogen effect on the preferential oxidation of carbon monoxide over alumina-supported gold nanoparticles,” 2008, Applied Catalysis B: Environmental, 80, 195–201
27. Bion, N., Epron, F., Moreno, M., Marinõ, F., and Duprez, D., “Preferential Oxidation of Carbon Monoxide in the Presence of Hydrogen (PROX) over Noble Metals and Transition Metal Oxides: Advantages and Drawbacks,” 2008, Topics in Catalysis, 51, 76–88
28. Agrell, J., Birgersson, H., Boutonnet, M., Melián-Cabrera, I., Navarro, R.M., and Fierro, J.L.G., “Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3,” 2003, Journal of Catalysis, 219, 389–403
29. Choi, Y., and Stenger, H. G., “Fuel cell grade hydrogen from methanol on a commercial Cu/ZnO/Al2O3 catalyst,” 2002, Applied Catalysis B: Environmental, 38, 259–269
30. Fierro, G., Jacono, M. L., Inversi, M., Porta, P., Cioci, F., and Lavecchia, R., “Study of the reducibility of copper in CuO-ZnO catalysts by temperature-programmed reduction,” 1996, Applied Catalysis A: General, 137, 327-348
31. Kartusch, C., and Bokhoven, J. A., “Hydrogenation over gold catalysts: The interaction of gold with hydrogen,” 2009, Gold Bulletin, 42, 343-347

5-3 References:
1. Haruta, M., “Gold as a Novel Catalyst in the 21st Century: Preparation, Working Mechanism and Applications,” 2004, Gold Bulletin, 37, 27-36
2. Iwasawa, Y., Liu, H., Kozlov, A. I., Kozlova, A. P., Shido, T., and Asakura, K., “Active Oxygen Species and Mechanism for Low-Temperature CO Oxidation Reaction on a TiO2-Supported Au Catalyst Prepared from Au(PPh3)(NO3) and As-Precipitated Titanium Hydroxide,” 1999, Journal of Catalysis, 185, 252-264
3. Caps, V., Quinet, E., Morfin, F., Diehl, F., Avenier, P., and Rousset, J-L., “Hydrogen effect on the preferential oxidation of carbon monoxide over alumina-supported gold nanoparticles,” 2008, Applied Catalysis B: Environmental, 80, 195–201
4. Metiu, H., Mills, G., and Gordon, M. S. “Oxygen adsorption on Au clusters and a rough Au.111. surface: The role of surface flatness, electron confinement, excess electrons, and band gap,” 2003, Journal Of Chemical Physics, 118, 4198-4205
5. Haruta, M., Tsubota, S., Kobayashi, T., Kageyama, H., Genet, M. J. and Delmon, B, “Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4,” 1993, Journal of Catalysis, 174, 1, 175-192
6. Behm, R. J., Schubert, M. M.,1 Hackenberg, S., Veen, A. C. V., Muhler, M., and Plzak, V., “CO oxidation over supported gold catalysts—“inert” and “active” support materials and their role for the oxygen supply during reaction,” 2001, Journal of Catalysis, 197, 113–122
7. Bond, G., and Thompson, D., “Formulation of mechanisms for gold-catalysed reactions,” 2009, Gold Bulletin, 42, 4,247-259
8. Nørskov, J.K., Lopez, N., Janssens, T.V.W., Clausen, B.S., Xu, Y., Mavrikakis, M., and Bligaard, T., “On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation,” 2004, Journal of Catalysis, 223, 232-235
9. Chen, Y-W., Sangeetha, P., and Yang, Y-F., “Au/FeOx-TiO2 Catalysts for the Preferential Oxidation of CO in a H2 Stream,” 2009, Industrial & Engineering Chemistry Research, 48, 10402–10407
10. Agrell, J., Birgersson, H., Boutonnet, M., Melián-Cabrera, I., Navarro, R.M., and Fierro, J.L.G., “Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3,” 2003, Journal of Catalysis, 219, 389–403
11. Nørskov, J.K., Mavrikakis, and M., Stoltze, P., “Making gold less noble,” 2000, Catalysis Letters, 64, 101–106
12. Bokhoven, J. A., Louis, C., Miller, J. T., Tromp, M., Safonova, O. V., and Glatzel, P., “Activation of Oxygen on Gold/Alumina Catalysts: In Situ High-Energy-Resolution Fluorescence and Time-Resolved X-ray Spectroscopy,” 2006, Angewandte Chemie International Edition, 45, 4651 –4654
13. Fierro, J.L.G., Alejo, L., Lago, R., Pefia, and M.A., “Partial oxidation of methanol to produce hydrogen over Cu-Zn-based catalysts,” 1997, Applied Catalysis A: General, 162, 281-297.
14. Wolf, E.E., Schuyten, S., Guerrero, S., Miller, J.T., and Shibata, T., “Characterization and oxidation states of Cu and Pd in Pd-CuO/ZnO/ZrO2 catalysts for hydrogen production by methanol partial oxidation,” 2009, Applied Catalysis A: General, 352, 133-144.
15. Agrell, J., Boutonnet, M., and Fierro, J.L.G., “ Production of hydrogen from methanol over binary Cu/ZnO catalysts. Part II. Catalytic activity and reaction pathways,” 2003, Applied Catalysis A: General, 253, 213-223.

A-4 References:
1. Schüth, F., and Wolf, A., “A systematic study of the synthesis conditions for the preparation of highly active gold catalysts,” 2002, Applied Catalysis A: General, 226, 1–13
2. Fierro, J.L.G., Lago, R.M., Peña, M.A., and Espinosa, L.A., “Mechanistic aspects of hydrogen production by partial oxidation of methanol over Cu/ZnO catalysts,” 2003, Topics in Catalysis, 22, 245-251
3. Fan, K-N., Cao, Y., Wu, G-S., Wang, L-C., Liu, Y-M., Dai, W-L., and He, H-Y., “Implication of the role of oxygen anions and oxygen vacancies for methanol decomposition over zirconia supported copper catalysts,” 2006, Applied Surface Science, 253, 974–982
4. Khassin, A. A., Pelipenko, V. V., Minyukova, T. P., Zaikovskii, V. I., Kochubey, D. I., and Yurieva, T. M., “Planar defect of the nano-structured zinc oxide as the site for stabilization of the copper active species in Cu/ZnO catalysts,” 2006, Catalysis Today, 112, 143–147
5. Boccuzzi, F., Manzoli, M., and Chiorino, A., “Decomposition and combined reforming of methanol to hydrogen: a FTIR and QMS study on Cu and Au catalysts supported on ZnO and TiO2,” 2004, Applied Catalysis B: Environmental, 57, 201-209
6. Gazsi, A., Bánsági, T. and Solymosi, F. “Hydrogen formation in the reactions of methanol on supported Au catalysts,” 2009, Catalysis Letter, 131, 33-41.
7. Shen, W., Shan, W., Feng, Z., Li, Z., Zhang, J., and Li, C., “Oxidative steam reforming of methanol on Ce0.9Cu0.1OY catalysts prepared by deposition–precipitation, coprecipitation, and complexation–combustion methods,” 2004, Journal of Catalysis, 228, 206–217
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 工業區周界中超微、微米及粗微粒之分布與特性及氧化鋅微粒對人類肺上皮細胞的生物效應之探討
2. 過渡性金屬修飾銅鋅基質觸媒於室溫啟動催化部分甲醇氧化重組製氫反應之研究
3. 貴重金屬(釕、銠、鈀)修飾銅鋅基質觸媒於室溫啟動催化氧化性蒸氣甲醇重組製氫反應之研究
4. 奈米氧化鋅微粒在不同環境介質之分散性與其物化特性對人類肺泡上皮癌細胞之影響
5. 功能性配位基合成及應用在奈米氧化銅去毒性之研究
6. 不同的製備及塗佈銅錳鋅觸媒於微型甲醇重組器之研究
7. 金、鋯金屬修飾銅鋅催化劑於甲醇重組反應中穩定度與活性之探討
8. 都市垃圾焚化爐排氣廢氣中微粒的物化特性分析和細胞毒性試驗
9. 銅鋅基質觸媒於甲醇部分氧化反應之微動力學分析與可調式氧空缺修飾之研究
10. 銅核矽殼奈米粒子製備方法之研究及應用於甲醇重組製氫反應已提高觸媒穩定性
11. 以均勻觸媒漿料塗佈於多孔性微流道提升附著度製程研究
12. 奈米二氧化鈦對於中樞神經系列細胞 (小鼠腦神經瘤細胞、小鼠神經微膠質細胞、小鼠星狀膠質細胞)的毒性研究
13. 醫療焚化爐飛灰對人類肺泡上皮癌細胞A549毒性之影響
14. 合成高穩定度中孔洞CuZn@SiO2蛋殼型殼核觸媒於部分甲醇氧化反應之研究
15. Photocatalytic reforming of methanol over gold promoted copper zinc catalyst for low ignition temperature
 
* *