帳號:guest(52.14.84.29)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):白崢鈺
論文名稱(中文):二氧化鈦奈米粒子對色胺酸吸附動力學研究
論文名稱(外文):Adsorption Kinetics of Tryptophan on TiO2 Nanoparticles
指導教授(中文):吳劍侯
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:9712520
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:64
中文關鍵詞:TiO2TryptophanUV光照濕度Langmuir吸附等溫模式
外文關鍵詞:TiO2TryptophanUV illuminationhumidityLangmuir adsorption
相關次數:
  • 推薦推薦:0
  • 點閱點閱:712
  • 評分評分:*****
  • 下載下載:13
  • 收藏收藏:0
二氧化鈦(TiO2)近幾年來在醫學或生命科學領域廣泛的發展,例如癌症細胞或抗菌等的治療,此奈米物質同時也具有生物相容性。然而針對生物分子的基本吸附或照光光降解等基本機制尚未完全了解,因此本研究主要探討紫外光光照改變TiO2表面特性與其吸附胺基酸之吸附反應動力關係。
本研究主要分成兩部分,第一部分為利用UVA (352 nm)、UVB (313 nm)、及UVC (254 nm)等不同波長燈管為光源,並改變照光環境中的濕度,進行TiO2的照光處理。第二部分為使用不同條件下處理的TiO2,於不同pH值及相對濕度(RH)下探討色胺酸(Tryptophan)吸附於TiO2表面之影響,再以Langmuir吸附等溫模式模擬求得等溫吸附常數(Kads)。研究中利用動態光散射儀(DLS)量測TiO2水合粒徑與介面電位變化及利用螢光光譜儀測定色胺酸溶液吸附量變化,並進一步討論TiO2在懸浮液中的分散穩定性與吸附反應動力。
結果顯示紫外光光照波長越短(UVC)可使TiO2水合粒徑明顯下降,介達電位明顯上升,若增加照光環境中的濕度則會有助於表面Ti-OH基的形成,等電點往鹼性pH值位移,另外發現進行Tryptophan吸附時,容易造成TiO2的不穩定而粒子聚集嚴重,但若在使用高濕度照光下的TiO2進行吸附,則過程中TiO2均穩定存在,且最終飽和吸附量明顯增加。本研究最後也使用Tryptamine、indole、1,2,3,4-Tetrahydroquinoline和aspartic acid等幾種化合物進行吸附,藉以推測Tryptophan在不同pH值下的吸附機制。
總目錄
中文摘要…………………………………………………………...........…………...I
英文摘要……………………………………………………………………...………II
謝誌………………...……………………………………………………...…………IV
總目錄……………………………………………………………………...…………V
表目錄…………………………………………………………………….……......VIII
圖目錄…………………………………………………………………………..........IX

第一章 前言………………………..…………………………………………..……1
1.1 簡介………………………………………………………………….………1
1.2 研究動機與目的……………………………………………………..……1
第二章 文獻回顧……………………………………………………………………3
2.1 二氧化鈦…………………………………………………………….…4
2.2 奈米材料TiO2的應用性………..…………..………………………………4
2.3色胺酸(Tryptophan)………………………………………..……….....…..…6
2.4二氧化鈦經過紫外光處理之影響因子............................................………..7
2.5 奈米粒子穩定性……………………...……………………………......……8
2.5.1分散機制…………………………………………………..……10
2.6吸附原理………………….…………...……………………………......…..10
2.6.1吸附現象…………………………………………………..……10
2.6.2 吸附模式…………………………………………………..……12
2.7 等溫吸附模式…………………………………………..………………….14
2.7.1 Langmuir 等溫方程式………………………..…….……………….15
2.8 吸附量的測定方法…………………………………………..……………..17
第三章 實驗方法……………………………………………………………..……19
3.1 實驗材料與儀器……………………………………………….…………19
3.1.1 材料藥品………………………………………………..…………19
3.1.2 實驗裝置……………………………………………………………19
3.1.3 分析儀器……………………………………………………………20
3.2 實驗流程與內容…………………………………………………….……20
3.2.1 照光時間與燈源波長對分散性影響……………………..………..20
3.2.2照光環境濕度對分散性影響……………………………………….21
3.2.3調控懸浮液pH值………………………..……………………21
3.2.4色胺酸(Tryptophan)吸附實驗……………………………………21
3.2.5其他化合物吸附實驗…………………………………………22
3.3 分析方法………………………………………………..…….……………24
3.3.1 動態雷射光散射儀(DLS)…………….………………….…………24
3.3.2 螢光光譜儀………………….…………………………….………26
第四章 結果與討論……………………………......………………………………27
4.1 TiO2濃度對分散系統之影響….…………………………………...………27
4.2 照光時間與光源對分散系統之影響……….……………………………..28
4.3 pH值改變對照光系統之影響.……………………………………….…..32
4.3.1 TiO2介達電位分析……..…………….………………………..…32
4.3.2 TiO2粒徑分析………………………………………….…...…….…34
4.3.3 FT-IR分析………………………..…………………….…...…….…35
4.4 吸附動力學…………...…………………………………………………35
4.4.1光照波長對Tryptophan吸附影響..…...…..………...………………36
4.4.2光照環境相對濕度對Tryptophan吸附影響……………………..…38
4.4.2.1 TGA 熱重分析……………………...……………………40
4.4.3 pH值對Tryptophan吸附影響………………………………………41
4.5 吸附機制探討...…………………………………………….…………...…43
4.5.1 pH≦6吸附機制………………………..……...….…………………45
4.5.2 pH=8吸附機制………………………..……...….……………….…46
4.5.3 吸附反應機制討論….…………………..…...….……………….…47
第五章 結論.……………..…………….………………………………………49
第六章 未來展望.……………..…………….…………………………………51
參考文獻...………………..……………….……………………………………54
附錄...……………………..……………….……………………………………59


表 目 錄
表 2.1 奈米材料的性能分類與特性用途………………………………………….3
表 2.2 物理吸附與化學吸附之差異………………………..……………...……..12
表 3.1 Aspartic acid與OPA/MCE衍生條件………………..……………...……..23
表 4.1 照光波長對Trp吸附TiO2前後的粒徑與電位變化………………..….….37
表 4.2 光照波長對Langmuir Isotherm模擬吸附平衡常數之影響……………....38
表 4.3 UVC照光環境中不同RH對Trp吸附TiO2前後的粒徑與電位變化…...39
表 4.4 環境中RH對Langmuir Isotherm模擬吸附平衡常數之影響…………......40
表 4.5 pH值對Trp吸附於TiO2前後的粒徑與電位變化……...….……………...43
表 4.6 pH值對Langmuir Isotherm模擬吸附平衡常數之影響…………………..43
表4.7 不同pH下測試不同官能基於TiO2上吸附機制………………………....45
表 4.8 Trp、indole、Tryptamine及Tetrahydroquinoline之Langmuir Isotherm模擬吸附平衡常數…………………………………………………………..47
表4.9 不同pH下的官能基於TiO2上吸附機制結果………………………………48
表6.1 Trp、Indole-3-propionic acid、Indole-3-carboxylic acid對Langmuir Isotherm模擬吸附平衡常數之影響……………………………………………..…53





圖 目 錄
圖 2.1 色胺酸(Tryptophan)分子結構……………………………………………......7
圖 2.2 二氧化鈦薄膜在紫外光照下產生氧缺陷之機制……………………….......8
圖 2.3 二氧化鈦薄膜在UV光照下增加表面OH官能基的機制………………….8
圖 2.4 DLVO理論示意圖………………………......................................................9
圖 2.5 典型等溫吸附平衡曲線………………………………………………….....14
圖 2.6 Langmuir 等溫吸附曲線型態圖…………………….................................17
圖3.1 實驗架構流程…………………………………………..................................20
圖3.2 吸附流程圖……………………......................................................................22
圖 3.3 OPA-MCE 在鹼性環境下和一級胺反應………………………………...23
圖 3.4 傳統PCS與背向光散射(NIBS)…………………………………………….24
圖 3.5 界面電位示意圖…………………………………………………………….25
圖 4.1 TiO2濃度與介達電位變化………………….……………………………..28
圖 4.2光源UVA、UVB和UVC於不同照光時間對TiO2懸浮液之水合粒徑分析……………………………………………………………………………..29
圖 4.3 光源UVA、UVB和UVC不同照光時間對TiO2懸浮液之介達電位分析圖……………………………………………………………………………30
圖 4.4 TiO2經UVC不同光照時間處理之UV-Vis光譜圖………………………31
圖 4.5 TiO2經UVB不同光照時間處理之UV-Vis光譜圖…..…………………..31
圖 4.6 TiO2經UVA不同光照時間處理之UV-Vis光譜圖……...……………..32
圖 4.7 TiO2 在不同pH值界面電位分析……...……………………………….…33
圖 4.8 TiO2 在不同pH值粒徑分析………...……………………………………34
圖 4.9 FT-IR光譜圖分析(a)未經照光處理;(b)經UVC照光處理………..……35
圖 4.10 吸附前後銨離子含量變化 (a)吸附前 (b)吸附後…,,,……...……..……36
圖 4.11 Trp吸附於TiO2等溫吸附曲線(不同光源).…………...……………..…37
圖 4.12 Trp吸附於TiO2等溫吸附曲線(不同濕度)..……………………………39
圖 4.13 TGA熱重分析……………………………………………………………41
圖 4.14 Trp吸附於TiO2等溫吸附曲線(不同pH值) …………..……………….42
圖 4.15 Tryptamine分子結構.…………………………………………………….44
圖 4.16 Indole分子結構…………………………………………………..…….…44
圖 4.17 1,2,3,4-Tetrahydroquinoline分子結構………..…………………..………44
圖 4.18 Aspartic acid分子結構……………………….……………………..….…44
圖 4.19 Trp、Tryptamine、Indole、1,2,3,4-Tetrahydroquinoline吸附於TiO2 之吸
附量…………………….………..….……………….………………...…45
圖 4.20 Aspartic acid吸附於TiO2之吸附量…………………………...….………46
圖 4.21 Trp、indole及Tryptamine吸附於TiO2等溫吸附曲線………………….47
圖 5.1 pH≦6,Trp與TiO2(UV光照後)吸附機制…………………………………50
圖 5.2 pH=8,Trp與TiO2(UV光照後)吸附機制…………………………………50
圖6.1 Indole-3-carboxylic acid分子結構……………………..……………………51
圖6.2 Indole-3-acetic acid分子結構………………………….……………………52
圖6.3 Indole-3-propionic acid分子結構……………………….…………..………52
圖6.4 Indole-3-butyric acid分子結構……………………….……………..………52
圖6.5 Trp、Indole-3-propionic acid、Indole-3-carboxylic acid吸附於TiO2等溫吸附曲線………………………………..…………………………………………53
Albrektsson, T.; Hansson, H. A., An ultrastructural characterization of the interface between bone and sputtered titanium or stainless steel surfaces. Biomaterials 1986, 7, 201-205.
Andujar, P.; Lanone, S.; Brochard, P.; Boczkowski, J., Respiratory effects of manufactured nanoparticles. Rev. Mal. Respir. 2009, 26, 625-637.
Baklouti, S.; Pagnoux, C.; Chartier, T.; Baumard, J. F., Processing of aqueous alpha-Al2O3, alpha-SiO2 and alpha-SiC suspensions with polyelectrolytes. J. European Ceram. Soc. 1997, 17, 1387-1392.
Ball, V.; Bentaleb, A.; Hemmerle, J.; Voegel, J. C.; Schaaf, P., Dynamic aspects of protein adsorption onto titanium surfaces: Mechanism of desorption into buffer and release in the presence of proteins in the bulk. Langmuir 1996, 12, 1614-1621.
Caruso, R. A.; Antonietti, M.; Giersig, M.; Hentze, H. P.; Jia, J. G., Modification of TiO2 network structures using a polymer gel coating technique. Chem. Mat. 2001, 13, 1114-1123.
Chen, D. W.; Ray, A. K., Photocatalytic kinetics of phenol and its derivatives over UV irradiated TiO2. Appl. Catal. B-Environ. 1999, 23, 143-157.
Chen, X. B.; Cheng, H. M.; Ma, J. M., A study on the stability and rheological behavior of concentrated TiO2 dispersions. Powder Technol. 1998, 99, 171-176.
French, R. A.; Jacobson, A. R.; Kim, B.; Isley, S. L.; Penn, R. L.; Baveye, P. C., Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. Environ. Sci. Technol. 2009, 43, 1354-1359.
Gajovic, A.; Stubicar, M.; Ivanda, M.; Furic, K., Raman spectroscopy of ball-milled TiO2. J. Mol. Struct. 2001, 563, 315-320.
Gao, Y. F.; Masuda, Y.; Koumoto, K., Light-excited superhydrophilicity of amorphous TiO2 thin films deposited in an aqueous peroxotitanate solution. Langmuir 2004, 20, 3188-3194.
Giacomelli, C. E.; Avena, M. J.; DePauli, C. P., Adsorption of bovine serum albumin onto TiO2 particles. J. Colloid Interface Sci. 1997, 188, 387-395.
Giammar, D. E.; Maus, C. J.; Xie, L. Y., Effects of particle size and crystalline phase on lead adsorption to titanium dioxide nanoparticles. Environ. Eng. Sci. 2007, 24, 85-95.
Grassian, V. H.; O'Shaughnessy, P. T.; Adamcakova-Dodd, A.; Pettibone, J. M.; Thorne, P. S., Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ. Health Perspect. 2007, 115, 397-402.
Greenwood, R.; Kendall, K., Selection of suitable dispersants for aqueous suspensions of zirconia and titania powders using acoustophoresis. J. European Ceram. Soc. 1999, 19, 479-488.
Guzman, K. A. D.; Finnegan, M. P.; Banfield, J. F., Influence of surface potential on aggregation and transport of titania nanoparticles. Environ. Sci. Technol. 2006, 40, 7688-7693.
Kamiya, H. ; Yoneyama, J.; Fukuda, Y.; Abe, H.; Naito, M., Analysis of anionic polymer dispersant in dense alumina suspension with various additive content by using colloidal probe AFM. Ceram. Trans. 2002, 133, 65–70.
Khokhawala, I. M.; Gogate, P. R., Degradation of phenol using a combination of ultrasonic and UV irradiations at pilot scale operation. Ultrason. Sonochem. 2010, 17, 833-838.
Kosmulski, M., The pH-dependent surface charging and the points of zero charge. J. Colloid Interface Sci. 2002, 253, 77-87.
Kosmulski, M., The significance of the difference in the point of zero charge between rutile and anatase. Adv. Colloid Interface Sci. 2002, 99, 255-264.
Kubota, Y.; Hosaka, M.; Hashimoto, K.; Fujishima, A., A study of the application of photoexcited TiO2 particle to cancer treatment. Chem. J. Chin. Univ.-Chin. 1995, 16, 56-62.
Lanone, S.; Rogerieux, F.; Geys, J.; Dupont, A.; Maillot-Marechal, E.; Boczkowski, J.; Lacroix, G.; Hoet, P., Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Part. Fibre Toxicol. 2009, 6.
Lee, F. K.; Andreatta, G.; Benattar, J. J., Role of water adsorption in photoinduced superhydrophilicity on TiO2 thin films. Appl. Phys. Lett. 2007, 90 .
Liu, Y. Q.; Gao, L., Deflocculation study of aqueous nanosized Y-TZP suspensions. Mater. Chem. Phys. 2003, 78, 480-485
Liu, Y. Q.; Gao, L.; Guo, J. K., Comparative study on the stabilizing effect of 2-phosphonobutane-1,2,4-tricarboxylic acid and citric acid for alumina suspensions. Colloid Surf. A-Physicochem. Eng. Asp. 2001, 193, 187-195.
Liu, Z. Y.; Sun, D. D.; Guo, P.; Leckie, J. O., One-step fabrication and high photocatalytic activity of porous TiO2 hollow aggregates by using a low-temperature hydrothermal method without templates. Chem.-Eur. J. 2007, 13, 1851-1855.
Mandzy, N.; Grulke, E.; Druffel, T., Breakage of TiO2 agglomerates in electrostatically stabilized aqueous dispersions. Powder Technol. 2005, 160, 121-126.
Martin, N.; Rousselot, C.; Rondot, D.; Palmino, F.; Mercier, R., Microstructure modification of amorphous titanium oxide thin films during annealing treatment. Thin Solid Films 1997, 300, 113-121.
Martyanov, I. N.; Savinov, E. N.; Klabunde, K. J., Influence of solution composition and ultrasonic treatment on optical spectra of TiO2 aqueous suspensions. J. Colloid Interface Sci. 2003, 267, 111-116.
Mirkovic, B.; Turnsek, T. L.; Kos, J., Nanotechnology in the treatment of cancer. Zdr. Vestn. 2010, 79, 146-155.
Nakajima, A.; Koizumi, S.; Watanabe, T.; Hashimoto, K., Effect of repeated photo-illumination on the wettability conversion of titanium dioxide. J. Photochem. Photobiol. A-Chem. 2001, 146, 129-132.
Nosaka, A. Y.; Nishino, J.; Fujiwara, T.; Ikegami, T.; Yagi, H.; Akutsu, H.; Nosaka, Y., Effects of thermal treatments on the recovery of adsorbed water and photocatalytic activities of TiO2 photocatalytic systems. J. Phys. Chem. B 2006, 110, 8380-8385.
Parks, G. A., Aqueous surface chemistry of oxides and complex oxide minerals. Advances in Chemistry Series 1967, 67, 121-160.
Pettibone, J. M.; Cwiertny, D. M.; Scherer, M.; Grassian, V. H., Adsorption of organic acids on TiO2 nanoparticles: Effects of pH, nanoparticle size, and nanoparticle aggregation. Langmuir 2008, 24, 6659-6667.
Rachel, A.; Subrahmanyam, M.; Boule, P., Comparison of photocatalytic efficiencies of TiO2 in suspended and immobilised form for the photocatalytic degradation of nitrobenzenesulfonic acids. Appl. Catal. B-Environ. 2002, 37, 301-308.
Roddick-Lanzilotta, A. D.; Connor, P. A.; McQuillan, A. J., An in situ infrared spectroscopic study of the adsorption of lysine to TiO2 from an aqueous solution. Langmuir 1998, 14, 6479-6484.
Roddick-Lanzilotta, A. D.; McQuillan, A. J., An in situ infrared spectroscopic investigation of lysine peptide and polylysine adsorption to TiO2 from aqueous solutions. J. Colloid Interface Sci. 1999, 217, 194-202.
Roth, M., Fluorescence reaction for amino acids. Anal. Chem. 1971, 43, 880-882.
Sakai, N.; Fujishima, A.; Watanabe, T.; Hashimoto, K., Quantitative evaluation of the photoinduced hydrophilic conversion properties of TiO2 thin film surfaces by the reciprocal of contact angle. J. Phys. Chem. B 2003, 107, 1028-1035.
Sato, K.; Li, J. G.; Kamiya, H.; Ishigaki, T., Ultrasonic dispersion of TiO2 nanoparticles in aqueous suspension. J.Am. Ceram.Soc. 2008, 91, 2481-2487.
Sehgal, A.; Lalatonne, Y.; Berret, J. F.; Morvan, M., Precipitation-redispersion of cerium oxide nanoparticles with poly(acrylic acid): Toward stable dispersions. Langmuir 2005, 21, 9359-9364.
Sun, J.; Gao, L.; Guo, J. K., Effect of powder size ion the stability of concentrated aqueous suspensions of Y-TZP. Nanostruct. Mater. 1998, 10, 1081-1086.
Sun, R. D.; Nakajima, A.; Fujishima, A.; Watanabe, T.; Hashimoto, K., Photoinduced surface wettability conversion of ZnO and TiO2 thin films. J. Phys. Chem. B 2001, 105, 1984-1990.
Suzuki, T. S.; Sakka, Y.; Nakano, K.; Hiraga, K., Effect of ultrasonication on the microstructure and tensile elongation of zirconia-dispersed alumina ceramics prepared by colloidal processing. J.Am. Ceram. Soc. 2001, 84, 2132-2134.
Tkachenko, N. H.; Yaremko, Z. M.; Bellmann, C.; Soltys, M. M., The influence of ionic and nonionic surfactants on aggregative stability and electrical surface properties of aqueous suspensions of titanium dioxide. J. Colloid Interface Sci. 2006, 299, 686-695.
Tran, T. H.; Nosaka, A. Y.; Nosaka, Y., Adsorption and decomposition of a dipeptide (Ala-Trp) in TiO2 photocatalytic systems. J. Photochem. Photobiol. A-Chem. 2007, 192, 105-113.
Tran, T. H.; Nosaka, A. Y.; Nosaka, Y., Adsorption and photocatalytic decomposition of amino acids in TiO2 photocatalytic systems. J. Phys. Chem. B 2006, 110, 25525-25531.
Tseng, Y. H.; Lin, H. Y.; Kuo, C. S.; Li, Y. Y.; Huang, C. P., Thermostability of nano-TiO2 and its photocatalytic activity. React. Kinet. Catal. Lett. 2006, 89, 63-69.
Vaisman, L.; Marom, G.; Wagner, H. D., Dispersions of surface-modified carbon nanotubes in water-soluble and water-insoluble polymers. Adv. Funct. Mater. 2006, 16, 357-363.
van Dyk, A. C.; Heyns, A. M., Dispersion stability and photo-activity of rutile (TiO2) powders. J. Colloid Interface Sci. 1998, 206, 381-391.
Walker, W. J.; Reed, J. S.; Verma, S. K.; Zirk, W. E., Adsorption behavior of poly(ethylene glycol) at the solid/liquid interface. J.Am. Ceram. Soc. 1999, 82, 585-590.
Wang, C. Y.; Groenzin, H.; Shultz, M. J., Comparative study of acetic acid, methanol, and water adsorbed on anatase TiO2 probed by sum frequency generation spectroscopy. J. Am. Chem. Soc. 2005, 127, 9736-9744.
Wang, C. Y.; Groenzin, H.; Shultz, M. J., Molecular species on nanoparticulate anatase TiO2 film detected by sum frequency generation: Trace hydrocarbons and hydroxyl groups. Langmuir 2003, 19, 7330-7334.
Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T., Light-induced amphiphilic surfaces. Nature 1997, 388, 431-432.
Welle, A.; Grunze, M.; Tur, D., Plasma protein adsorption and platelet adhesion on poly bis(trifluoroethoxy)phosphazene and reference material surfaces. J. Colloid Interface Sci. 1998, 197, 263-274.
White, A., Effect of pH on fluorescence of tyrosine, tryptophan and related compounds. Biochem. J. 1959, 71, 217-220.
Won, D. J.; Wang, C. H.; Jang, H. K.; Choi, D. J., Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2 films on structural and optical properties. Appl. Phys. A-Mater. Sci. Process. 2001, 73, 595-600.
Yu, D. G.; An, J. H., Preparation and characterization of titanium dioxide core and polymer shell hybrid composite particles prepared by two-step dispersion polymerization. Polymer 2004, 45, 4761-4768.
Yu, J. R.; Grossiord, N.; Koning, C. E.; Loos, J., Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution. Carbon 2007, 45, 618-623.
Yuan, J. J.; Zhou, S. X.; You, B.; Wu, L. M., Organic pigment particles coated with colloidal nano-silica particles via layer-by-layer assembly. Chem. Mat. 2005, 17, 3587-3594.
Zhang, H. Z.; Penn, R. L.; Hamers, R. J.; Banfield, J. F., Enhanced adsorption of molecules on surfaces of nanocrystalline particles. J. Phys. Chem. B 1999, 103, 4656-4662.
Zubkov, T.; Stahl, D.; Thompson, T. L.; Panayotov, D.; Diwald, O.; Yates, J. T., Ultraviolet light-induced hydrophilicity effect on TiO2(110)(1x1). Dominant role of the photooxidation of adsorbed hydrocarbons causing wetting by water droplets. J. Phys. Chem. B 2005, 109, 15454-15462.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *