帳號:guest(3.17.110.58)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):廖軍懿
作者(外文):Liao, Chun-I
論文名稱(中文):利用微波水熱合成銅氮修飾鈦酸鹽奈米管光降解雙酚A之研究
論文名稱(外文):Photocatalytic degradation of bisphenol A by Cu and N co-doped titanate nanotubes prepared by microwave-assisted hydrothermal method
指導教授(中文):董瑞安
指導教授(外文):Doong, Ruey-an
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:9712521
出版年(民國):99
畢業學年度:99
語文別:英文
論文頁數:170
中文關鍵詞:鈦酸鹽奈米管微波輔助水熱雙酚A光催化降解
外文關鍵詞:titanate nanotubes (TNTs)microwave-assisted hydrothermal methodbisphenol AphotodegradationCu-N codoped nanomaterials
相關次數:
  • 推薦推薦:0
  • 點閱點閱:87
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
一維鈦酸鹽奈米管由於具有獨特的物化特性及製備方法簡單,已被視為一新型環境淨化材料,其中又以光催化降解新興汙染物最具應用潛力。傳統的水熱法最為廣泛應用於合成鈦酸鹽奈米管方法之一,最大優勢在於製備簡單,無需藉由模板即可合成。然而,水熱法所需反應時間過長,普遍需耗時一天以上。為了有效的縮短反應時間,本研究嘗試以微波輔助水熱法製備一維鈦酸鹽奈米管。而根據材料特性鑑定結果,利用微波功率600 W,維持150 °C三個小時的反應製備而成的鈦酸鹽奈米管具有比表面積約為376 m2/g;長度可達數百奈米及直徑約為6.1 nm。而奈米管藉由450 °C煅燒處理可轉化為銳鈦礦之晶型結構,後續以奈米管作為載體,利用二價銅離子修飾,通以氨氮混合氣體450 °C下煅燒,可合成具有金屬及半導體異質介面的銅氮共摻雜鈦酸鹽奈米管。經由XRD晶型分析結果,銅氮摻雜奈米管之晶型結構由銳鈦礦及金屬銅所組成。當銅附載於鈦酸鹽奈米管達到6 wt%,分別利用365 nm紫外光及400±20 nm近可見光照環境下進行光催化降解雙酚A,反應速率分別高達0.141及0.032 min-1,分別高於商用P25 TiO2粉末5及2.4倍。XPS物種分析結果顯示,氮存在於奈米管中主要以嵌入晶格縫隙及取代晶格中氧原子的方式存在,然而藉由光催化活性比對銅氮摻雜及單一金屬銅摻雜奈米管發現,金屬銅的參與是主要提升光催化活性的因素。金屬銅及二氧化鈦所形成的異質接面能夠有效的抑制電子電洞對的再結合,因此在光催化分解雙酚A過程中,與商用P25 TiO2比較,具有較佳的催化能力。然而在酸性條件下,由於金屬銅以離子態方式溶出而造成催化能力下降。此外,藉由Langmuir–Hinshelwood動力方程式模擬光催化降解雙酚A實驗可獲得在紫外光及可見光照射下不同濃度雙酚A之初始分解速率曲線,模擬結果顯示在紫外光及可見光分別照射下,銅氮共修飾鈦酸鹽奈米管對於降解雙酚A之速率常數分別為2.86及2.42×10-1 mg/L-min,此分解速率較商用二氧化鈦奈米材料高出3.45及1.8倍。本研究結果顯示,利用微波輔助水熱法所製備的鈦酸鹽奈米同樣具有傳統水熱製備之高比表面積,並且有效縮短由24小時的反應時間至3個小時,具有相當高的潛力能廣泛的應用於新穎環境材料上,也能符合綠色化學的概念。藉由銅氮摻雜及450°C鍛燒處理後產生二氧化鈦及金屬銅之異質結構,適合作為光催化材料應用於水體中汙染物的降解。
關鍵字: 鈦酸鹽奈米管、微波輔助水熱、雙酚A、光催化降解
One-dimensional (1D) titanate nanotubes (TNTs) have been considered as a novel material for environmental purification due to their novel physical and chemical properties and simple fabrication. One of the potential applications of TNTs is catalytic photodegradation of emerging pollutant. Conventional hydrothermal route is one of the most common methods for fabrication of template-free TNTs. However, the fabrication time is too long, and 24 h is necessary needed. In this study, microwave-assisted hydrothermal method was employed to effectively shorten the reaction time to 3 hr. The 1-D TNTs with areas of 376 m2/g; diameters of about 6.1 nm and lengths of several hundreds nanometers could be easily obtained. In addition, titanate form could be transformed into anatase phase after post heat treatment at 450 °C. Afterward, the as-prepared TNTs were used as a support to deposit Cu2+ ion followed by calcination under NH3/N2 atmosphere for fabrication of Cu-N/TNTs. XRD patterns showed that the crystallization of Cu-N/TNTs was composed of anatase TiO2 and zerovalent copper. The optimal copper loading was found to be at 6 wt%, and the pseudo-first-order rate constants (kobs) for PBA photodegradation by 6 wt% Cu-N/TNT were 0.141 and 0.032 min-1 under UV and visible lights, respectively, which were higher than those of TiO2 P25 by factors of 5.0 and 2.4, respectively. XPS results indicated that N is incorporated into the lattice of Cu-N/TNTs, and the presence of Cu(0) is the main factor to cause the efficient photocatalytic activity under visible illumination. The hetero-junction between metal (Cu0) and semiconductor (TiO2) could effectively suppress the recombination of electron (e-) and hole (h+) pair, resulting in the significant enhancement of the photodegradation efficiency of BPA. However, lower pH condition would cause the increase in copper leaching, followed by the decrease in photocatalytic activity. The photodegradation behavior of BPA followed Langmuir–Hinshelwood kinetics, and the intrinsic rate constant (kr) under UV and visible illumination for photodegradation of BPA were 2.86 and 2.42×10-1 mg/L-min, respectively, which were 3.45 and 1.8 times higher than those of P25. Results obtained in this study clearly demonstrate that TNTs with high surface area can be successfully fabrication within 3 h by microwave-assisted hydrothermal methods. This nanomaterial could serve as a green material for photocatalytic degradation of emerging pollutants.
Keyword: titanate nanotubes (TNTs); microwave-assisted hydrothermal method; bisphenol A; photodegradation; Cu-N codoped nanomaterials.
Content
中文摘要 I
Abstract III
List of Figure VIII
List of Table XV
Chapter 1 Introduction 1
1-1 Motivation 1
1-2 Objectives 4
Chapter 2 Background and theory 5
2-1 Synthesis of 1-D titanate nanomaterials 5
2-1-1 Template-Assisted Synthesis of Titaniun Dioxide nanotubes 7
2-1-2 Anodic oxidation of Titanium foil 8
2-1-3 Alkaline hydrothermal method 9
2-2 Modification of hydrothermal methods 11
2-2-1 Sonication-assisted hydrothermal method 11
2-2-2 Microwave-assisted hydrothermal method 12
2-3 Mechanism for formation of titanate nanostructures 17
2-4 Application 21
2-4-1 Ion exchange 22
2-4-2 Photocatalysis of titanate nanostructures 23
2-5 Endocrine disrupting chemicals (EDCs) 28
Chapter 3 Materials and methods 32
3-1 Experimental design 32
3-2. Chemicals 32
3-3 Preparation of TNTs 33
3-4 Preparation of calcination induced titanate nanomaterials 35
3-5 Preparation of copper doped TNTs 36
3-6 Characterization of titanate nanotubes (TNTs) 38
3-6-1 Specific surface area 39
3-6-2 Scanning electron microscopy (SEM) 40
3-6-3 Transmission electron microscopy (TEM) 40
3-6-4 X-ray powder diffraction (XRPD) 40
3-6-5 Ultraviolet-visible (UV-Vis) spectroscopy 41
3-6-6 X-ray photoelectron spectroscopy (XPS) 41
3-6-7 Electron paramagnetic resonance spectrometer (EPR) 42
3-6-8 Photodegradation of bisphenol A by Cu0-N/TNTs 42
Chapter 4 Results and discussion 44
4-1 Fabrication of titanate nanotubes (TNTs) 44
4-1-1 Morphology and Crystallization of titanate nanotubes (TNTs) 44
4-1-2 Specific surface area and pore textures of TNTs 53
4-1-3 Crystallization of as-prepared TNTs 56
4-1-4 Morphology and Structure of as-prepared TNTs 57
4-1-5 The effect of sodium content 59
4-2 The effect of post thermal treatment 66
4-2-1 Crystalline phase of calcined TNTs 66
4-2-2 Surface area of calcined TNTs 70
4-2-3 The photocatalytic activity of calcined TNTs 75
4-3 Photocatalytic activity of metal-decorated TNTs 78
4-3-1 Modification of TNTs in the presence of Cu2+ ion 81
4-3-2 Specific surface area of Cu-TNTs 83
4-3-3 Photocatalytic activity of Cu/TNTs towards BPA degradation 85
4-3-4 The optical property of Cu/TNTs 91
4-3-5 Chemical composition of Cu/TNTs 92
4-3-6 Photocatalytic activity of Cu/TNTs under near visible light 94
4-4 Fabrication of Cu-N codoped titanate nanotubes 97
4-4-1 Crystalline phase of Cu-N/TNTs 97
4-4-2 Surface area of Cu-N/TNTs 99
4-4-3 The photocatalytic activity of Cu-N/TNTs under UV and visible irradiation 102
4-4-4 Morphology and structure 107
4-5 Effect of environmental parameters on BPA photodegradation 109
4-5-1 Effect of initial BPA concentration 109
4-5-2 Effect of pH on the photodegradation of BPA 116
4-6 Photocatalytic activity of Cu-N/TNTs prepared by conventional hydrothermal method 120
4-7 Chemical composition of the Cu-N/TNTs 121
4-8 EPR spectra 126
4-9 Role of Cu and N in Cu-N/TNTs in photodegradation 131
Chapter 5 Conclusions 135
References 137
Appendix 153


List of Figure
Figure 2-1 Simplified milestone of the development of TiO2-derived nanotubular structures 7
Figure 2-2 Schematic set-up for anodization experiments 9
Figure 2-3 (a) SEM and (b) TEM images of the titanate nanotubes prepared by sonication-hydrothermal method (sonication power at 380W for 60 min) 12
Figure 2-4 Heating mechanism of H2O by microwave irradiation. 13
Figure 2-5 Schemes of three possible mechanisms for multi-walled titanate nanotubes. 19
Figure 2-6 Formation mechanism of the TiO2-derived nanotubes 21
Figure 3-1 The experimental procedure for fabrication and characterization of TNTs. 34
Figure 3-2 The schematic diagram for fabrication of titanate nanotubes by microwave-assisted hydrothermal process 35
Figure 3-3 The schematic diagram for preparation of calcinations induced titanate nanomaterials. 36
Figure 3-4 The schematic diagram for preparation of CuO/TNTs at various ratios of 1-10 wt% 37
Figure 3-5 The schematic diagram for preparation of Cu-N/TNTs 37
Figure 3-6. Set-up of photoreactor for the photocatalytic degradation of BPA. (1) UV and visible lamp, (2) gas purging system, (3) O2 cylinder,(4) photocatalyst and BPA suspension, and (5) water jacket 43
Figure 4-1 SEM images of the morphology of the (a) ST01 TiO2 and 1-D TNTs fabricated at temperatures (b) 130; (c) 140; (d) 150; (e) 160; (f) 170, and (g) 180 °C for 2 h under an irradiation power of 400 W. 46
Figure 4-2 SEM images of the morphology of the 1-D TNTs fabricated at temperatures (a) 130, (b) 140, (c) 150, (d) 160, (e) 170, and (f) 180 °C for 2 h under an irradiation power of 600 W. 47
Figure 4-3 SEM images of the morphology of the 1-D TNTs fabricated at temperatures (a) 130; (b) 140; (c) 150; (d) 160; (e) 170 and (f) 180 °C for 2 h under an irradiation power of 800 W. 49
Figure 4-4 The XRD patterns of titanate nanostructures prepared at various hydrothermal temperatures ranging from 130 to 180 °C for 2 h under (a) 400 W, (b) 600 W, and (c) 800 W ( T: NaxH2-xTi3O7•nH2O, A: Anatase). 52
Figure 4-5 The BET surface areas of TNTs as a function of hydrothermal temperature for 2 h at different irradiation powers ranging between 400 and 800W. 54
Figure 4-6 N2 adsorption-desorption isotherms and pore size distribution (inset) of TNTS at 150oC for 3 h at 600W. 55
Figure 4-7 XRD patterns of the ST01 and as-prepared TNTs prepared under 600W at 150 oC within 3 hr of irradiation at 600W. 56
Figure 4-8 (a) TEM, (b) SEM, and (c) HR-TEM images of as-prepared TNTs synthesized at 150 oC and 600W for 3 h. Figure (d) is the EDS analysis of TNTs. 58
Figure 4-9 XRD patterns of the TNTs washed with (a) 0.1 M HCl, (b) 0.1 M HNO3, and (c) DI water. 62
Figure 4-10 X-ray photoelectron spectra (XPS) of (a) Ti2p, and (b) O1s species in the three TNT materials at various sodium contents. 64
Figure 4-11 TEM images of (a) N-TNTs and (b) Na-TNTs fabricated at 150 °C for 3 h under irradiation power of 600W. 65
Figure 4-12 XRD patterns of (a) H-TNTs, (b) N-TNTs, and (c) Na-TNTs prepared at 150 °C for 3 h and calcined at 300-550 °C in air for 2 h (T: NaxH2-xTi3O7, A: Anatase, B: β-TiO2). 69
Figure 4-13 N2 adsorption–desorption isotherms of (a) H-TNTs, (b) N-TNTs and (c) Na-TNTs calcined at various temperatures ranging from 300 to 550 °C 71
Figure 4-14 Pore size distributions of the (a) H-TNTs, (b) N-TNTs and (c) Na-TNTs calcined at various temperatures ranging from 300 to 550 °C 72
Figure 4-15 The (a) surface area, (b) pore volume, and (c) pore sizes distributions of H-TNTs, N-TNTs and Na-TNTs as a function of calcination temperature. 74
Figure 4-16 Photocatalytic activity of calcined (A) H-TNTs, (B) N-TNTs, and (C) Na-TNTs. 76
Figure 4-17 The pseudo-first-order rate constant (kobs) of the H-TNTs, N-TNTs and Na-TNTs as a function of calcination temperature 77
Figure 4-18 (A) TEM image and (B) high magnification TEM of H-TNTs calcined at 450 °C 77
Figure 4-19 The pseudo-first-order rate constant (kobs) for BPA photodegradation by various ratios of metal-doped TNTs calcned at 450 °C. The metal ions used were Ni, V, Ag, and Cu, and the ratios of M/Ti were in the range 1-5 wt%. 79
Figure 4-20 UV-Vis spectra of the Ag-doped TNTs calcined at 450 □C. The ratios of Ag/Ti were in the range 1-5 wt%. 81
Figure 4-21 XRD patterns of Cu-deposited TNTs calcined at 450 °C in the air. The ratios of Cu/TNTs were in the range 1-10 wt% 82
Figure 4-22 N2 adsorption–desorption isotherms of Cu/TNTs calcined at 450 °C in the air. The adsorption isotherms for the 8, 6, 5, 2 and 1% Cu/TNTs are vertically shifted 87, 182, 271, 381 and 493 cm3 STP g-1, respectively, for clarity. 84
Figure 4-23. The photodegradation of BPA by various ratios of Cu/TNTs and commercial TiO2 nanoparticles. The Cu/TNTs was calcined at 450 °C in the air. 87
Figure 4-24 The adsorption isotherm of Cu ions onto the as-prepared TNTs suspensions. 89
Figure 4-25 The pseudo-first-order rate constant (kobs) for BPA photodegradation by Cu/TNTs as a function of Cu loading ranging between 1 and 10 wt%. 90
Figure 4-26 The schematic diagram of electron transport in CuO-decorated TNTs. 90
Figure 4-27 Diffuse reflectance UV-Vis spectra of TNTs-450 and Cu/TNTs at Cu/TNT ratios of 1-10 wt% 92
Figure 4-28. X-ray photoelectron spectra (XPS) of (a) Multiplex survey spectrum, (b) Ti 2p region, (c) O 1s region and (d) Cu 2p region of 6 wt% Cu/TNTs. 94
Figure 4-29 The photodegradation of BPA by Cu/TNTs at various Cu loadings undernear visible light region at 400±20 nm. The Cu loadings in Cu/TNTs were in the range 1-10 wt%. 95
Figure 4-30 XRD patterns of Cu-N/TNTs obtained at 450 °C calcined under NH3/N2 atmosphere. The Cu loadings in Cu-N/TNTs were in the range 1-10 wt%. 98
Figure 4-31 The N2 adsorptions–desorption isotherms of Cu-N/TNTs obtained at 450 °C under NH3/N2 atmosphere. The adsorption isotherms of the 8, 6, 5, 2, 1 and 0% Cu-N/TNTs are vertically shifted 122, 249, 352, 491, 662 and 822 cm3 STP g-1, respectively, for clarity. 101
Figure 4-32 The pore size distribution of Cu-N/TNTs obtained at 450 °C calcination in NH3/N2 atmosphere 102
Figure 4-33 Photodegradation of BPA by Cu-N/TNTs at various Cu loadings under UV irradiation (λ= 365 nm). 104
Figure 4-34 Photodegradation of BPA by Cu(0) and Cu-N co-doped P25 and ST01 under UV irradiation (λ= 365 nm). 104
Figure 4-35 The pseudo-first-order rate constant (kobs) of Cu-N/TNTs and Cu-TNTs as a function of Cu loading ranging from 1 to 10 wt%. 105
Figure 4-36 The photodegradation of 5 mg/L BPA by Cu-N/TNTs and P25 under near visible light irradiation 106
Figure 4-37 The comparison of kobs for BPA photodegradation by Cu-TNTs and Cu-N/TNTs at various Cu loadings under visible light illumination 107
Figure 4-38 (a) SEM, (b) TEM, and (c) HRTEM images of 6 wt% Cu-N/TNTs. 108
Figure 4-39 Adsorption isotherms of BPA onto as-prepared TNTs and 6 wt% Cu-N/TNTs. 110
Figure 4-40 The photodegradation of various BPA concentration by (a) 6 wt% Cu-N/TNTs and (b) P25 TiO2 under UV light irradiation. The initial BPA concentrations were in the range 10-80 mg/L. 111
Figure 4-41 The photodegradation of various BPA concentrations by (a) 6 wt% Cu-N/TNTs and (b) P25 TiO2 under visible light irradiation. The initial BPA concentrations were in the range 5-40 mg/L. 113
Figure 4-42. The initial rate constant of BPA photodegradation as a function of initial BPA concentrations in the presence of 6 wt% Cu-N/TNTs and P25 suspensions under (a) UV (365 nm) and (b) visible irradiation (400±20 nm). The solid lines show the simulated result according to Langmuir–Hinshelwood kinetics. 115
Figure 4-43 The pseudo-first-order rate constant (kobs) for 10 mg/L BPA degradation by 6 wt% Cu-N/TNTs and P25 as a function of pH under UV irradiation. 117
Figure 4-44 The pseudo-first-order rate constant (kobs) for 5 mg/L BPA by 6 wt% Cu-N/TNTs and P25 as a function of pH under visible irradiation. 117
Figure 4-45 The isoelectric point of 6 wt% Cu-N/TNTs as a function of pH value 118
Figure 4-46 Photodegradation of 10 mg/L BPA by 6 wt% Cu-N/TNTs prepared by microwave-assisted (M-H) and conventional hydrothermal (C-H) process at pH 9 under UV irradiation 121
Figure 4-47 X-ray photoelectron spectra (XPS) of (A) Ti2p region, (B) O1s region, and (C) N1s region in 6 wt% Cu-N/TNTs. 123
Figure 4-48. X-ray photoelectron spectra (XPS) of Cu 2p species in 6 wt% Cu-N/TNTs (A) before and (B) after photocatalysis under ultraviolet irradiation 124
Figure 4-49 XRD patterns of 6 wt% Cu-N/TNTs before and after photodegradation of BPA (10mg/L) under ultraviolet irradiation. 125
Figure 4-50 EPR spectra of (a) P 25 TiO2 and (b) 6 wt% Cu-N/TNTs measured at 4 and 240 s, respectively. 128
Figure 4-51 Time-course of EPR spectra for (a) 6 wt% Cu-N/TNTs and (b) P25 TiO2 measured at room temperature in the presence of 3 mM DMPO under UV irradiation. 130
Figure 4-52 Schematic of Schottky barrier structure in Cu0-N/TNTs 131
Figure 4-53 XRD pattern of 6 wt% Cu-N/TNTs and 6 wt% Cu(0)/TNTs 133
Figure 4-54 Photodegradation of 5 mg/L BPA in the presence of TNT450, N/TNT450, 6 wt% Cu-N/TNTs and 6 wt% Cu(0)/TNTs under near visible illumination. 134
Figure A-1 Photodegradation of 10 mg/L BPA by (a) Ag-TNTs, (b) V-TNTs, and (c) Ni-TNTs at various metal loadings ranging from 1 to 5 wt% under UV illumination. 155
Figure B-1 The linear fitting of the dependence of ln (C/Co) versus time in the (a) 6% Cu-N/TNTs and (b) P25 TiO2 suspensions under UV illumination. 156
Figure B-2 The linear fitting of the dependence of ln (C/Co) versus time in the (a) 6% Cu-N/TNTs and (b) P25 TiO2 suspensions under visible illumination. 157
Figure C-1 Effect of pH values on the photodegradation of 10 mg/L BPA in the presence of (a) 6 wt% Cu-N/TNTs and (b) P25 under UV illumination. The pHs were in the range 3-9. 159
Figure C-2 Effect of pH values on the photodegradation of 5 mg/L BPA in the presence of (a) 6 wt% Cu-N/TNTs and (b) P25 under visible illumination. The pHs were in the range 3-9. 160
Figure D-1 The photocatalytic mineralization of BPA by 6 wt% Cu-N/TNTs and P25 under UV illumination with wavelength 365 nm 162
Figure D-2 The photocatalytic mineralization of BPA by 6 wt% Cu-N/TNTs and P25 under near visible illumination with wavelength 400±20 nm 162
Figure E-1 Fabrication of N-doped titanate nanotubes by microwave-assisted hydrothermal treatment 164
References
1. Bavykin, D. V.; Walsh, F. C. Elongated Titanate Nanostructures and Their Applications. Eur. J. Inorg. Chem. 2009, (8), 977-997.
2. Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, Y. Q. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003, 15, (5), 353-389.
3. Bavykin, D. V.; Parmon, V. N.; Lapkin, A. A.; Walsh, F. C. The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. J. Mater. Chem. 2004, 14, (22), 3370-3377.
4. Doong, R. A.; Kao, I. L. Fabrication and Characterization of Nanostructured Titanate Materials by the Hydrothermal Treatment Method. Recent Patents on Nanotechnol. 2008, 2, (2), 001-019.
5. Chatterjee, D.; Dasgupta, S. Visible light induced photocatalytic degradation of organic pollutants. J. Photoch. Photobio. C-Photochem. Rev. 2005, 6, (2-3), 186-205.
6. Huang, F. Z.; Zhou, M. F.; Cheng, Y. B.; Caruso, R. A. Al-containing porous titanium dioxide networks: Sol-gel synthesis within agarose gel template and photocatalytic activity. Chem. Mater. 2006, 18, (25), 5835-5839.
7. Lu, Q. Y.; Gao, F.; Komarneni, S. Microwave-assisted synthesis of one-dimensional nanostructures. J. Mater. Res. 2004, 19, (6), 1649-1655.
8. Yu, J. G.; Xiang, Q. J.; Zhou, M. H. Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures. Appl. Catal. B-Environ. 2009, 90, (3-4), 595-602.
9. Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Formation of titanium oxide nanotube. Langmuir 1998, 14, (12), 3160-3163.
10. Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991, 354, (6348), 56-58.
11. Hoyer, P. Formation of a titanium dioxide nanotube array. Langmuir 1996, 12, (6), 1411-1413.
12. Gong, D.; Grimes, C. A.; Varghese, O. K.; Hu, W. C.; Singh, R. S.; Chen, Z.; Dickey, E. C. Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 2001, 16, (12), 3331-3334.
13. Chung, C. C.; Chung, T. W.; Yang, T. C. K. Rapid synthesis of titania nanowires by microwave-assisted hydrothermal treatments. Ind. Eng. Chem. Res. 2008, 47, (7), 2301-2307.
14. Wu, X.; Jiang, Q. Z.; Ma, Z. F.; Fu, M.; Shangguan, W. F. Synthesis of titania nanotubes by microwave irradiation. Solid State Commun. 2005, 136, (9-10), 513-517.
15. Ou, H. U.; Lo, S. L.; Liou, Y. H. Microwave-induced titanate nanotubes and the corresponding behavior after thermal treatment. Nanotechnology 2007, 18, (17), 175702-175707.
16. Arami, H.; Mazloumi, M.; Khalifehzadeh, R.; Sadmezhaad, S. K. Sonochemical preparation of TiO2 nanoparticles. Mater. Lett. 2007, 61, (23-24), 4559-4561.
17. Wang, Y. A.; Yang, J. J.; Zhang, J. W.; Liu, H. J.; Zhang, Z. J. Microwave-assisted preparation of titanate nanotubes. Chem. Lett. 2005, 34, (8), 1168-1169.
18. Tsai, W. T. Human health risk on environmental exposure to bisphenol-A: A review. J. Environ. Sci. Health Pt C-Environ. Carcinog. Ecotoxicol. Rev. 2006, 24, (2), 225-255.
19. Kang, J. H.; Aasi, D.; Katayama, Y. Bisphenol A in the aquatic environment and its endocrine-disruptive effects on aquatic organisms. Crit. Rev. Toxicol. 2007, 37, (7), 607-625.
20. Macak, J. M.; Tsuchiya, H.; Ghicov, A.; Yasuda, K.; Hahn, R.; Bauer, S.; Schmuki, P. TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Curr. Opin. Solid State Mat. Sci. 2007, 11, (1-2), 3-18.
21. Bavykin, D. V.; Friedrich, J. M.; Walsh, F. C. Protonated titanates and TiO2 nanostructured materials: Synthesis, properties, and applications. Adv. Mater. 2006, 18, (21), 2807-2824.
22. Toledo, A. J. A.; Angeles, C. C.; Cortes, J. M. A.; Alvarez, R. F.; Ruiz, M. Y.; Ferrat, T. G.; Flores, O. L. F.; Lopez, S. E.; Lozada, Y. C. M., EP1748033. 2007.
23. Lakshmi, B. B.; Patrissi, C. J.; Martin, C. R. Sol-gel template synthesis of semiconductor oxide micro- and nanostructures. Chem. Mater. 1997, 9, (11), 2544-2550.
24. Lakshmi, B. B.; Dorhout, P. K.; Martin, C. R. Sol-gel template synthesis of semiconductor nanostructures. Chem. Mater. 1997, 9, (3), 857-862.
25. Varghese, O. K.; Gong, D. W.; Paulose, M.; Ong, K. G.; Dickey, E. C.; Grimes, C. A. Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Adv. Mater. 2003, 15, (7-8), 624-627.
26. Varghese, O. K.; Gong, D. W.; Paulose, M.; Ong, K. G.; Grimes, C. A. Hydrogen sensing using titania nanotubes. Sens. Actuator B-Chem. 2003, 93, (1-3), 338-344.
27. Varghese, O. K.; Grimes, C. A. Metal oxide nanoarchitectures for environmental sensing. J. Nanosci. Nanotechnol. 2003, 3, (4), 277-293.
28. Mor, G. K.; Carvalho, M. A.; Varghese, O. K.; Pishko, M. V.; Grimes, C. A. A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. J. Mater. Res. 2004, 19, (2), 628-634.
29. Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Enhanced photocleavage of water using titania nanotube arrays. Nano Lett. 2005, 5, (1), 191-195.
30. Schultze, J. W.; Lohrengel, M. M.; Ross, D. Nucleation and Growth of Anodic Oxide-Films. Electrochi. Acta 1983, 28, (7), 973-984.
31. Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Titania nanotubes prepared by chemical processing. Adv. Mater. 1999, 11, (15), 1307-1312.
32. Yuan, Z. Y.; Su, B. L. Titanium oxide nanotubes, nanofibers and nanowires. Colloid Surf. A-Physicochem. Eng. Asp. 2004, 241, (1-3), 173-183.
33. Yoshida, R.; Suzuki, Y.; Yoshikawa, S. Effects of synthetic conditions and heat-treatment on the structure of partially ion-exchanged titanate nanotubes. Mater. Chem. Phys. 2005, 91, (2-3), 409-416.
34. Yoshida, R.; Suzuki, Y.; Yoshikawa, S. Syntheses of TiO2(B) nanowires and TiO2 anatase nanowires by hydrothermal and post-heat treatments. J. Solid State Chem. 2005, 178, (7), 2179-2185.
35. Pavasupree, S.; Ngamsinlapasathian, S.; Nakajima, M.; Suzuki, Y.; Yoshikawa, S. Synthesis, characterization, photocatalytic activity and dye-sensitized solar cell performance of nanorods/nanoparticles TiO2 with mesoporous structure. J. Photochem. Photobiol. A-Chem. 2006, 184, (1-2), 163-169.
36. Daoud, W. A.; Pang, G. K. H. Direct synthesis of nanowires with anatase and TiO2-B structures at near ambient conditions. J. Phys. Chem. B 2006, 110, (51), 25746-25750.
37. Menzel, R.; Peiro, A. M.; Durrant, J. R.; Shaffer, M. S. P. Impact of hydrothermal processing conditions on high aspect ratio titanate nanostructures. Chem. Mater. 2006, 18, (25), 6059-6068.
38. Zhu, Y. C.; Li, H. L.; Koltypin, Y.; Hacohen, Y. R.; Gedanken, A. Sonochemical synthesis of titania whiskers and nanotubes. Chem. Commun. 2001, (24), 2616-2617.
39. Ma, Y.; Lin, Y.; Xiao, X.; Zhou, X.; Li, X. Sonication–hydrothermal combination technique for the synthesis of titanate nanotubes from commercially available precursors. Mater. Res. Bull. 2006, 41, 237–243.
40. Tsuji, M.; Hashimoto, M.; Nishizawa, Y.; Kubokawa, M.; Tsuji, T. Microwave-assisted synthesis of metallic nanostructures in solution. Chem. -Eur. J. 2005, 11, (2), 440-452.
41. Horikoshi, S.; Serpone, N. Photochemistry with microwaves Catalysts and environmental applications. J. Photochem. Photobiol. C-Photochem. Rev. 2009, 10, (2), 96-110.
42. Liao, X. H.; Chen, N. Y.; Xu, S.; Yang, S. B.; Zhu, J. J. A microwave assisted heating method for the preparation of copper sulfide nanorods. J. Cryst. Growth 2003, 252, (4), 593-598.
43. Hu, J. T.; Odom, T. W.; Lieber, C. M. Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Accounts Chem. Res. 1999, 32, (5), 435-445.
44. Wu, Y. Y.; Yan, H. Q.; Huang, M.; Messer, B.; Song, J. H.; Yang, P. D. Inorganic semiconductor nanowires: Rational growth, assembly, and novel properties. Chem. -Eur. J. 2002, 8, (6), 1261-1268.
45. Liu, F. K.; Huang, P. W.; Chang, Y. C.; Ko, F. H.; Chu, T. C. Microwave-assisted synthesis of silver nanorods. J. Mater. Res. 2004, 19, (2), 469-473.
46. Hu, X. L.; Zhu, Y. J.; Wang, S. W. Sonochemical and microwave-assisted synthesis of linked single-crystalline ZnO rods. Mater. Chem. Phys. 2004, 88, (2-3), 421-426.
47. Zhu, Y. J.; Wang, W. W.; Qi, R. J.; Hu, X. L. Microwave-assisted synthesis of single-crystalline tellurium nanorods and nanowires in ionic liquids. Angew. Chem. -Int. Edit. 2004, 43, (11), 1410-1414.
48. Zhu, Y. J.; Hu, X. L. Preparation of powders of selenium nanorods and nanowires by microwave-polyol method. Mater. Lett. 2004, 58, (7-8), 1234-1236.
49. Zhang, J. W.; Wang, Y. A.; Yang, J. J.; Chen, J. M.; Zhang, Z. J.,Microwave-assisted synthesis of potassium titanate nanowires. Mater. Lett. 2006, 60, (24), 3015-3017.
50. Ma, R. Z.; Fukuda, K.; Sasaki, T.; Osada, M.; Bando, Y. Structural features of titanate nanotubes/nanobelts revealed by Raman, X-ray absorption fine structure and electron diffraction characterizations. J. Phys. Chem. B 2005, 109, (13), 6210-6214.
51. Morgado, E.; de Abreu, M. A. S.; Moure, G. T.; Marinkovic, B. A.; Jardim, P. M.; Araujo, A. S. Characterization of nanostructured titanates obtained by alkali treatment of TiO2-anatases with distinct crystal sizes. Chem. Mater. 2007, 19, (4), 665-676.
52. Wang, Y. Q.; Hu, G. Q.; Duan, X. F.; Sun, H. L.; Xue, Q. K. Microstructure and formation mechanism of titanium dioxide nanotubes. Chem. Phys. Lett. 2002, 365, (5-6), 427-431.
53. Suzuki, Y.; Yoshikawa, S. Synthesis and thermal analyses of TiO2-derived nanotubes prepared by the hydrothermal method. J. Mater. Res. 2004, 19, (4), 982-985.
54. Tsai, C. C.; Nian, J. N.; Teng, H. S. Mesoporous nanotube aggregates obtained from hydrothermally treating TiO2 with NaOH. Appl. Surf. Sci. 2006, 253, (4), 1898-1902.
55. Sun, X. M.; Li, Y. D. Synthesis and characterization of ion-exchangeable titanate nanotubes. Chem. -Eur. J. 2003, 9, (10), 2229-2238.
56. Lempkowski, R.; Chason, M. US20077161227. 2007.
57. Du, G. H.; Chen, Q.; Che, R. C.; Yuan, Z. Y.; Peng, L. M. Preparation and structure analysis of titanium oxide nanotubes. Appl. Phys. Lett. 2001, 79, (22), 3702-3704.
58. Chen, Q.; Du, G. H.; Zhang, S.; Peng, L. M. The structure of trititanate nanotubes. Acta Crystallogr. Sect. B-Struct. Sci. 2002, 58, 587-593.
59. Yang, J. J.; Jin, Z. S.; Wang, X. D.; Li, W.; Zhang, J. W.; Zhang, S. L.; Guo, X. Y.; Zhang, Z. J. Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)(2). Dalton Trans. 2003, (20), 3898-3901.
60. Chen, Q.; Zhou, W. Z.; Du, G. H.; Peng, L. M. Trititanate nanotubes made via a single alkali treatment. Adv. Mater. 2002, 14, (17), 1208-1211.
61. Yao, B. D.; Chan, Y. F.; Zhang, X. Y.; Zhang, W. F.; Yang, Z. Y.; Wang, N. Formation mechanism of TiO2 nanotubes. Appl. Phys. Lett. 2003, 82, (2), 281-283.
62. Chen, X.; Mao, S. S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, (7), 2891-2959.
63. Wang, Y. G.; Zhang, X. G. Preparation and electrochemical capacitance of RuO2/TiO2 nanotubes composites. Electrochim. Acta 2004, 49, (12), 1957-1962.
64. Fujishima, A.; Zhang, X. T. Titanium dioxide photocatalysis: present situation and future approaches. C. R. Chim. 2006, 9, (5-6), 750-760.
65. Bavykin, D. V.; Walsh, F. C. Kinetics of alkali metal ion exchange into nanotubular and nanofibrous titanates. J. Phys. Chem. C 2007, 111, (40), 14644-14651.
66. Inagaki, M.; Kondo, N.; Nonaka, R.; Ito, E.; Toyoda, M.; Sogabe, K.; Tsumura, T. Structure and photoactivity of titania derived from nanotubes and nanofibers. J. Hazard. Mater. 2009, 161, 1514-1521.
67. Wu, J. M. Photodegradation of rhodamine B in water assisted by titania nanorod thin films subjected to various thermal treatments. Environ. Sci. Technol. 2007, 41, (5), 1723-1728.
68. Gao, Z. Q.; Yang, S. G.; Sun, C.; Hong, J. Microwave assisted photocatalytic degradation of pentachlorophenol in aqueous TiO2 nanotubes suspension. Sep. Purif. Technol. 2007, 58, (1), 24-31.
69. Yu, Y. X.; Xu, D. S. Single-crystalline TiO2 nanorods: Highly active and easily recycled photocatalysts. Appl. Catal. B-Environ. 2007, 73, (1-2), 166-171.
70. Zhu, L.; Liu, G. C.; Duan, X. C.; Zhang, Z. J. A facile wet chemical route to prepare ZnO/TiO2 nanotube composites and their photocatalytic activities. J. Mater. Res. 2010, 25, (7), 1278-1287.
71. Hou, L. R.; Yuan, C. Z.; Peng, Y. Synthesis and photocatalytic property of SnO2/TiO2 nanotubes composites. J. Hazard. Mater. 2007, 139, 310-315.
72. Xiao, M. W.; Wang, L. S.; Wu, Y. D.; Huang, X. J.; Dang, Z. Preparation and characterization of CdS nanoparticles decorated into titanate nanotubes and their photocatalytic properties. Nanotechnology 2008, 19, (1).
73. Li, Q. Y.; Kako, T.; Ye, J. H. Strong adsorption and effective photocatalytic activities of one-dimensional nano-structured silver titanates. Appl. Catal. A-Gen. 2010, 375, (1), 85-91.
74. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, (5528), 269-271.
75. Miyauchi, M.; Ikezawa, A.; Tobimatsu, H.; Irie, H.; Hashimoto, K. Zeta potential and photocatalytic activity of nitrogen doped TiO2 thin films. Phys. Chem. Chem. Phys. 2004, 6, (4), 865-870.
76. Ihara, T.; Miyoshi, M.; Iriyama, Y.; Matsumoto, O.; Sugihara, S. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping. Appl. Catal. B-Environ. 2003, 42, (4), 403-409.
77. Yu, A. M.; Wu, G. J.; Zhang, F. X.; Yang, Y. L.; Guan, N. J. Synthesis and Characterization of N-doped TiO2 Nanowires with Visible Light Response. Catal. Lett. 2009, 129, (3-4), 507-512.
78. Gu, D. E.; Yang, B. C.; Hu, Y. D. V and N co-doped nanocrystal anatase TiO2 photocatalysts with enhanced photocatalytic activity under visible light irradiation. Catal. Commun. 2008, 9, (6), 1472-1476.
79. Cong, Y.; Zhang, J. L.; Chen, F.; Anpo, M. Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. J. Phys. Chem. C 2007, 111, (19), 6976-6982.
80. Morikawa, T.; Irokawa, Y.; Ohwaki, T. Enhanced photocatalytic activity of TiO2-xNx loaded with copper ions under visible light irradiation. Appl. Catal. A-Gen. 2006, 314, (1), 123-127.
81. Ohko, Y.; Ando, I.; Niwa, C.; Tatsuma, T.; Yamamura, T.; Nakashima, T.; Kubota, Y.; Fujishima, A. Degradation of bisphenol A in water by TiO2 photocatalyst. Environ. Sci. Technol. 2001, 35, (11), 2365-2368.
82. Nakada, N.; Kiri, K.; Shinohara, H.; Harada, A.; Kuroda, K.; Takizawa, S.; Takada, H. Evaluation of pharmaceuticals and personal care products as water-soluble molecular markers of sewage. Environ. Sci. Technol. 2008, 42, (17), 6347-6353.
83. Guo, C. S.; Ge, M.; Liu, L.; Gao, G. D.; Feng, Y. C.; Wang, Y. Q. Directed Synthesis of Mesoporous TiO2 Microspheres: Catalysts and Their Photocatalysis for Bisphenol A Degradation. Environ. Sci. Technol. 2010, 44, (1), 419-425.
84. Kang, J. H.; Kondo, F. Bisphenol a degradation by bacteria isolated from river water. Arch. Environ. Contam. Toxicol. 2002, 43, (3), 265-269.
85. Sajiki, J. Decomposition of bisphenol-A (BPA) by radical oxygen. Environ. Int. 2001, 27, (4), 315-320.
86. Kaneco, S.; Rahman, M. A.; Suzuki, T.; Katsumata, H.; Ohta, K. Optimization of solar photocatalytic degradation conditions of bisphenol A in water using titanium dioxide. J. Photochem. Photobiol. A-Chem. 2004, 163, (3), 419-424.
87. Li, C.; Li, X. Z.; Graham, N.; Gao, N. Y. The aqueous degradation of bisphenol A and steroid estrogens by ferrate. Water Res. 2008, 42, (1-2), 109-120.
88. Subagio, D. P.; Srinivasan, M.; Lim, M.; Lim, T. T. Photocatalytic degradation of bisphenol-A by nitrogen-doped TiO2 hollow sphere in a vis-LED photoreactor. Appl. Catal. B-Environ. 2010, 95, (3-4), 414-422.
89. Chiang, K.; Lim, T. M.; Tsen, L.; Lee, C. C. Photocatalytic degradation and mineralization of bisphenol A by TiO2 and platinized TiO2. Appl. Catal. A-Gen. 2004, 261, (2), 225-237.
90. Tsai, W. T.; Lee, M. K.; Su, T. Y.; Chang, Y. M. Photodegradation of bisphenol-A in a batch TiO2 suspension reactor. J. Hazard. Mater. 2009, 168, (1), 269-275.
91. Hsien, K. J.; Tsai, W. T.; Su, T. Y. Preparation of diatomite-TiO2 composite for photodegradation of bisphenol-A in water. J. Sol-Gel Sci. Technol. 2009, 51, (1), 63-69.
92. Chang, S. M.; Hou, C. Y.; Lo, P. H.; Chang, C. T. Preparation of phosphated Zr-doped TiO2 exhibiting high photocatalytic activity through calcination of ligand-capped nanocrystals. Appl. Catal. B-Environ. 2009, 90, (1-2), 233-241.
93. Chang, S. M.; Lo, P. H.; Chang, C. T. Photocatalytic behavior of TOPO-capped TiO2 nanocrystals for degradation of endocrine disrupting chemicals. Appl. Catal. B-Environ. 2009, 91, (3-4), 619-627.
94. Kim, T. W.; Lee, M. J.; Shim, W. G.; Lee, J. W.; Kim, T. Y.; Lee, D. H.; Moon, H. Adsorption and photocatalytic decomposition of organic molecules on carbon-coated TiO2. J. Mater. Sci. 2008, 43, (19), 6486-6494.
95. Seo, H. K.; Kim, G. S.; Ansari, S. G.; Kim, Y. S.; Shin, H. S.; Shim, K. H.; Suh, E. K. A study on the structure/phase transformation of titanate nanotubes synthesized at various hydrothermal temperatures. Sol. Energy Mater. Sol. Cells 2008, 92, (11), 1533-1539.
96. Morgado, E.; de Abreu, M. A. S.; Pravia, O. R. C.; Marinkovic, B. A.; Jardim, P. M.; Rizzo, F. C.; Araujo, A. S. A study on the structure and thermal stability of titanate nanotubes as a function of sodium content. Solid State Sci. 2006, 8, (8), 888-900.
97. Tsai, C. C.; Teng, H. S. Structural features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatments. Chem. Mater. 2006, 18, (2), 367-373.
98. Fujishima, A.; Hashimoto, K.; Watanabe, T. TiO2 Photocatalysis: Fundamentals and Applications. BKC 1999.
99. Ernsberger, C.; Nickerson, J.; Smith, T. LOW-TEMPERATURE OXIDATION BEHAVIOR OF REACTIVELY SPUTTERED TIN BY X-RAY PHOTOELECTRON-SPECTROSCOPY AND CONTACT RESISTANCE MEASUREMENTS. J. Vac. Sci. Technol. A-Vac. Surf. Films 1986, 4, (6), 2784-2788.
100. Yu, J. G.; Yu, H. G.; Cheng, B.; Zhao, X. J.; Yu, J. C.; Ho, W. K. The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition. J. Phys. Chem. B 2003, 107, (50), 13871-13879.
101. Wang, Y. D.; Ma, C. L.; Sun, X. D.; Li, H. D. Synthesis and characterization of amorphous TiO2 with wormhole-like framework mesostructure. J. Non-Cryst. Solids 2003, 319, (1-2), 109-116.
102. Yu, J. C.; Yu, J. G.; Zhao, J. C. Enhanced photocatalytic activity of mesoporous and ordinary TiO2 thin films by sulfuric acid treatment. Appl. Catal. B-Environ. 2002, 36, (1), 31-43.
103. Gardner, S. D.; Singamsetty, C. S. K.; Booth, G. L.; He, G. R.; Pittman, C. U. Surface Charactrization of carbon-fibers using angle-resolved XPS and ISS. Carbon 1995, 33, (5), 587-595.
104. Cho, J. M.; Yun, W. J.; Lee, J. K.; Lee, H. S.; So, W. W.; Moon, S. J.; Jia, Y.; Kulkarni, H.; Wu, Y. Electron spin resonance from annealed titania nanotubes. Appl. Phys. A-Mater. Sci. Process. 2007, 88, (4), 751-755.
105. Jr, E. M.; Jardim, P. M.; Marinkovic, B. A.; Rizzo, F. C.; Abreu, M. A. S. d.; Zotin, J. e. L.; Ara´ujo, A. S. Multistep structural transition of hydrogen trititanate nanotubes into TiO2-B nanotubes: a comparison study between nanostructured and bulk materials. Nanotechnology 2007, 18, 495710.
106. Morgado, E.; de Abreu, M. A. S.; Moure, G. T.; Marinkovic, B. A.; Jardim, P. M.; Araujo, A. S. Effects of thermal treatment of nanostructured trititanates on their crystallographic and textural properties. Mater. Res. Bull. 2007, 42, (9), 1748-1760.
107. Yu, J. G.; Yu, H. G.; Cheng, B.; Trapalis, C. Effects of calcination temperature on the microstructures and photocatalytic activity of titanate nanotubes. J. Mol. Catal. A-Chem. 2006, 249, (1-2), 135-142.
108. Riss, A.; Berger, T.; Grothe, H.; Bernardi, J.; Diwald, O.; Knozinger, E. Chemical control of photoexcited states in titanate nanostructures. Nano Lett. 2007, 7, (2), 433-438.
109. Qamar, M.; Yoon, C. R.; Oh, H. J.; Lee, N. H.; Park, K.; Kim, D. H.; Lee, K. S.; Lee, W. J.; Kim, S. J. Preparation and photocatalytic activity of nanotubes obtained from titanium dioxide. Catal. Today 2008, 131, (1-4), 3-14.
110. SING, K. S. W.; EVERETT, D. H.; HAUL, R. A. W.; MOSCOU, L.; PIEROTTI, R. A.; ROUQUEROL, J.; SIEMIENIEWSKA, T. Reporting physisorption data for gas/solid systems — with special reference to the determination of surface area and porosity. Pure App. Chem., 1984, 57, (4), 603-619.
111. Xin, B. F.; Wang, P.; Ding, D. D.; Liu, J.; Ren, Z. Y.; Fu, H. G. Effect of surface species on Cu-TiO2 photocatalytic activity. Appl. Surf. Sci. 2008, 254, (9), 2569-2574.
112. Yoong, L. S.; Chong, F. K.; Dutta, B. K. Development of copper-doped TiO2 photocatalyst for hydrogen production under visible light. Energy 2009, 34, (10), 1652-1661.
113. Xu, S. P.; Sun, D. D. Significant improvement of photocatalytic hydrogen generation rate over TiO2 with deposited CuO. Int. J. Hydrog. Energy 2009, 34, (15), 6096-6104.
114. Li, G. H.; Dimitrijevic, N. M.; Chen, L.; Rajh, T.; Gray, K. A. Role of Surface/Interfacial Cu2+ Sites in the Photocatalytic Activity of Coupled CuO-TiO2 Nanocomposites. J. Phys. Chem. C 2008, 112, (48), 19040-19044.
115. Sykes, E. C. H.; Tikhov, M. S.; Lambert, R. M. Surface composition, morphology, and catalytic activity of model polycrystalline Titania surfaces. J. Phys. Chem. B 2002, 106, (29), 7290-7294.
116. Ou, H. H.; Liao, C. H.; Liou, Y. H.; Hong, J. H.; Lo, S. L. Photocatalytic oxidation of aqueous ammonia over microwave-induced titanate nanotubes. Environ. Sci. Technol. 2008, 42, (12), 4507-4512.
117. Belver, C.; Bellod, R.; Stewart, S. J.; Requejo, F. G.; Fernandez-Garcia, M. Nitrogen-containing TiO2 photocatalysts - Part 2. Photocatalytic behavior under sunlight excitation. Appl. Catal. B-Environ. 2006, 65, (3-4), 309-314.
118. Kamisaka, H.; Adachi, T.; Yamashita, K. Theoretical study of the structure and optical properties of carbon-doped rutile and anatase titanium oxides. J. Chem. Phys. 2005, 123, (8), 1-9.
119. Chen, P.; Wu, X.; Lin, J.; Tan, K. L. Synthesis of Cu Nanoparticles and Microsized Fibers by Using Carbon Nanotubes as a Template. Phys. Chem. B 1999, 103, (22), 4559-4561.
120. Goia, D. V.; Matijevic, E. Preparation of monodispersed metal particles. New J. Chem. 1998, 22, (11), 1203-1215.
121. Staples, C. A.; Dorn, P. B.; Klecka, G. M.; O'Block, S. T.; Harris, L. R. A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 1998, 36, (10), 2149-2173.
122. Kaur, S.; Singh, V. TiO2 mediated photocatalytic degradation studies of Reactive Red 198 by UV irradiation. J. Hazard. Mater. 2007, 141, (1), 230-236.
123. Wang, Z. P.; Cai, W. M.; Hong, X. T.; Zhao, X. L.; Xu, F.; Cai, C. G. Photocatalytic degradation of phenol in aqueous nitrogen-doped TiO2 suspensions with various light sources. Appl. Catal. B-Environ. 2005, 57, (3), 223-231.
124. Nakaoka, Y.; Nosaka, Y. ESR Investigation into the effects of heat treatment and crystal structure on radicals produced over irradiated TiO2 powder. J. Photochem. Photobiol. A-Chem. 1997, 110, (3), 299-305.
125. Kim, T. K.; Lee, M. N.; Lee, S. H.; Park, Y. C.; Jung, C. K.; Boo, J. H. Development of surface coating technology of TiO2 powder and improvement of photocatalytic activity by surface modification. Thin Solid Films 2005, 475, (1-2), 171-177.
126. Yang, G. D.; Jiang, Z.; Shi, H. H.; Xiao, T. C.; Yan, Z. F. Preparation of highly visible-light active N-doped TiO2 photocatalyst. J. Mater. Chem. 2010, 20, (25), 5301-5309.
127. Coronado, J. M.; Maira, A. J.; Conesa, J. C.; Yeung, K. L.; Augugliaro, V.; Soria, J. EPR study of the surface characteristics of nanostructured TiO2 under UV irradiation. Langmuir 2001, 17, (17), 5368-5374.
128. Einaga, H.; Ogata, A.; Futamura, S.; Ibusuki, T. The stabilization of active oxygen species by Pt supported on TiO2. Chem. Phys. Lett. 2001, 338, (4-6), 303-307.
129. Attwood, A. L.; Murphy, D. M.; Edwards, J. L.; Egerton, T. A.; Harrison, R. W. An EPR study of thermally and photochemically generated oxygen radicals on hydrated and dehydrated titania surfaces. Res. Chem. Intermed. 2003, 29, (5), 449-465.
130. Parshetti, G. K.; Doong, R. A. Dechlorination and photodegradation of trichloroethylene by Fe/TiO2 nanocomposites in the presence of nickel ions under anoxic conditions. Appl. Catal. B-Environ. 2010, 100, (1-2), 116-123.
131. Brezova, V.; Dvoranova, D.; Stasko, A. Characterization of titanium dioxide photoactivity following the formation of radicals by EPR spectroscopy. Res. Chem. Intermed. 2007, 33, (3-5), 251-268.
132. Korzhak, A. V.; Ermokhina, N. I.; Stroyuk, A. L.; Bukhtiyarov, V. K.; Raevskaya, A. E.; Litvin, V. I.; Kuchmiy, S. Y.; Ilyin, V. G.; Manorik, P. A. Photocatalytic hydrogen evolution over mesoporous TiO2/metal nanocomposites. J. Photochem. Photobiol. A-Chem. 2008, 198, (2-3), 126-134.
133. Linsebigler, A. L.; Lu, G. Q.; Yates, J. T. Photocatalysis on TiO2 surface- principles, mechanisms, and selected results. Chem. Rev. 1995, 95, (3), 735-758.
134. Konstantinou, I. K.; Sakkas, V. A.; Albanis, T. A. Photocatalytic degradation of propachlor in aqueous TiO2 suspensions. Determination of the reaction pathway and identification of intermediate products by various analytical methods. Water Res. 2002, 36, (11), 2733-2742.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *