帳號:guest(52.15.57.52)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳泰興
作者(外文):Wu, Tai-Sing
論文名稱(中文):Preparation and characterization of manganese and cobalt doped yttrium oxide magnetic nanoparticles
論文名稱(外文):過渡金屬(鈷,錳)攙雜之氧化釔磁性奈米粒子
指導教授(中文):蘇雲良
指導教授(外文):Soo, Yun-Liang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理系
學號:9722545
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:57
中文關鍵詞:XAFSDMOsBMPsY2O3
相關次數:
  • 推薦推薦:0
  • 點閱點閱:55
  • 評分評分:*****
  • 下載下載:20
  • 收藏收藏:0
本研究主要針對以高介電值(high-k material)材料為主體的稀磁性氧化物(DMOs, diluted magnetic oxides )系統,研究其氧空缺與磁性的關聯。透過熱分解法(thermal decomposition)於化學液相環境(chemical bath)中合成粒徑尺度為奈米等級的氧化釔顆粒,並嘗試將過渡金屬中具有3d軌域電子的鈷、錳原子攙雜於其中;再通過氣氛退火方式,控制樣品中氧空缺(oxygen vacancy)的含量。
透過X光粉末繞射及高解析穿隧式電子顯微鏡(HRTEM)分析,確認粉末樣品主體為氧化釔方錳鐵礦(cubic bixbyite)晶型,並無鈷、錳氧化物的相(phase)混雜,且奈米顆粒皆為單晶,粒徑大小約為9奈米。使用近邊X光精密吸收結構(XANES)排除雜質原子形成氧化物或叢聚(cluster)的可能,並以延伸X光精密吸收結構(EXAFS)分析確認鈷、錳原子皆鑲嵌(interstitial)於氧化釔主體結構中,同時確認鈷、錳原子的價態(valence stata)以及鈷、錳、釔原子的氧配位數(coordination number)皆會因氣氛退火而有規律的改變。磁性量測則以超導量子干涉儀(SQUID)進行,於鈷、錳攙雜樣品中皆量測到順磁性(paramagnetism)以及鐵磁性(ferromagnetism)訊號的疊加,於錳攙雜的樣品中發現室溫鐵磁特性。在使用相同方式製備無任何攙雜的氧化釔樣品中,則量測到反磁 (diamagnetism)特性,確認經由鈷、錳原子攙雜產生順磁與鐵磁特性。
為了找出磁性與結構缺陷的關連,引進BMPs(bounded magnetic polarons)理論進行定性的分析,成功的解釋磁性行為在不同退火條件下以及不同樣品間的變化,確認在此一系統中產生鐵磁性的機制應該是BMPs理論。
In this thesis, we have studied the correlation between magnetism and oxygen vacancies in yttrium oxide based diluted magnetic oxide (DMO) systems. Yttrium oxide nanoparticles (NPs) doped with 3d transition metals (TM) cobalt and manganese are synthesized by thermal decomposition of yttrium acetylacetonate (Y(acac)3) in oleylamine. Thermal annealing in either oxygen or forming gas was employed to adjust the concentration of oxygen vacancies. The nanoparticles' size and structures of the Y2O3 host were investigated by x-ray powder diffraction (XRD) and high resolution transmission electron microscopy (HR-TEM). Cobalt and manganese K-edge x-ray absorption near-edge structure (XANES) spectra were used to determine the oxidation state of the dopant atoms. Local environments surrounding Co and Mn were probed by using extended x-ray absorption fine structure (EXAFS) techniques. Both Co and Mn impurity atoms were found to locate on interstitial sites with O nearest neighbors and shorter TM-O bond as compared to the Y-O bond in the Y2O3 host. Forming gas (5%H2/95%N2) annealing has significantly increased the concentration of the oxygen vacancies while oxygen gas annealing has decreased the oxygen vacancies in all samples. As revealed by SQUID measurements performed at temperatures 10K and 300K, the Co- and Mn-doped samples show combinations of ferromagnetism and paramagnetism while an undoped sample is diamagnetic. This indicates that the observed ferromagnetism is indeed due to the doping of transition-metal atoms in the samples. Our experimental results on the correlation between oxygen vacancies and magnetism appear to be rather consistent with the bound magnetic polaron model.
章節目錄
摘要
誌謝
章節目錄
圖表目錄
第一章 序論
1-1-1-研究動機
1-2-1-論文簡介
第二章 理論與文獻回顧
2-1-1-高介電係數 (High-k material) 氧化物簡介
2-2-1-稀磁性氧化物(DMOs ; Diluted magnetic oxides)簡介
2-3-1-DMOs磁性來源理論簡介
2-3-1-Bound magnetic polarons (BMPs)
2-3-2-Charge-transfer ferromagnetism
2-4-1-三氧化二釔(Y2O3 ; yttrium oxide)材料簡介
第三章 實驗方法與原理
3-1-1-X光繞射儀(X-ray diffractometer)
3-2-1-高解析穿透式電子顯微鏡(HRTEM)
3-3-1-超導量子干涉儀(SQUID)
3-4-1-感應耦合電漿質譜分析儀(ICP-MS)
3-5-1-X光精密吸收光譜(XAFS)
第四章 實驗結果與分析
4-1-1-熱分解法(Thermal decomposition method)合成奈米粒子
4-1-1-實驗試藥
4-1-2-實驗流程圖
4-1-3-油相熱分解法製備過渡金屬攙雜之氧化釔奈米粒子
4-1-4-氣氛退火
4-2-1-X光繞射分析(XRD)分析
4-3-1-高解析穿透式電子顯微鏡(HRTEM)分析
4-4-1-X光精密吸收結構(XAFS)分析
4-4-1近邊X光精密吸收結構 (XANES)
4-4-2延伸X光精密吸收結構 (EXAFS)
4-4-2-1鈷攙雜之氧化釔奈米粒子之EXAFS分析
4-4-2-2錳攙雜之氧化釔奈米粒子之EXAFS分析
4-5-1-磁性分析
第五章 結論
5-1-1-總結
5-2-1-未來展望
參考文獻
參考文獻
[1] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, Third Edition,
Wiley Inerscience, A John Wiley & sons, Inc., Publication, 2006, p.328.
[2] R. M. Stroud, A. T. Hanbicki, Y. D. Park, G. Kioseoglou, A. G. Petukhov,
B. T. Jonker, G. Itskos, and A. Petrou 「Reduction of spin injection efficiency by
interface defect spin scattering in ZnMnSe/AlGaAs-GaAs spin-polarized
light-emitting diodes」, Phys. Rev. Lett., 89, 166602-1 (2002) .
[3] M. V. Tsoi, A. G. M. Jansen, and J. Bass, 「Search for point-contact giant
magnetoresistance in Co/Cu multilayers」,
J. Appl. Phys., 81, Part 2B, 5530-5532 (1997) .
[4] D.D. Awschalom and M.E. Flatte, 「Challenges for semiconductor spintronics」,
Nature Phys., 3, 153-159 ( 2007) .
[5] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, 「Zener Model
Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors」,
Science, 287, 5455, 1019-1022 (2000) .
[6] K. Sato and H. Katayama-Yoshida, 「Material design for transparent ferromagnets
with ZnO-based magnetic semiconductors」, Jpn. J. Appl. Phys., 39, L555 (2000) .
[7] Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki,
P. Ahmet, T. Chikyow, Shin-ya Koshihara, and H. Koinuma, 「Room-Temperature
Ferromagnetism in Transparent Transition Metal-Doped Titanium Dioxide」,
Science, 292, 854 (2001) .
[8] Matsumoto Y, Takahashi R, Murakami M, Koida T, Fan X-J, Hasegawa T, et al.
「Frromagnetism in Co-doped TiO2 rutile thin films grown by laser molecular
beam epitaxy」, Jpn. J. Appl. Phys., 40, L1204–6 (2001) .
[9] M.Venkatesan, C. B. Fitzgerald, J.M.D. Coey,
「Unexpected magnetism in a dielectric oxide」, Nature, 430, 630 (2004) .
[10] J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, 「Donor impurity band exchange in
dilute ferromagnetic oxides」, Nature Materials, 4, 173 (2005) .
[11] J. M. D. Coey and S.A. Chambers, 「Oxide dilute magnetic semiconductors
– fact of fiction? 」, MRS Bulletin, 33, 1053 (2008) .
[12] K. Sato and H. Katayama-Yoshida, K. Sato and H. Katayama-Yoshida,」 First
principles materials design for semiconductor spintronics」,
Semicond. Sci. Technol., 17, 367–376 (2002) .
[13] C. Zener; 「Interaction Between the d Shells in the Transition Metals」,
Phys. Rev., 81,440, (1951) .
[14] C. Zener; 「Interaction between the d-Shells in the Transition Metals. II.
Ferromagnetic Compounds of Manganese with Perovskite Structure」,
Phys. Rev., 82, 403, (1951) .
[15] J. M. D. Coey, 「Dilute magnetic oxides, Curr. Opin」,
Solid State Mater. Sci., 10, 83 (2006) .
[16] A. Kaminski and S. Das Sarma, 「Polaron Percolation in Diluted Magnetic
Semiconductors」, Phys. Rev. Lett., 88, 247202 (2002) .
[17] Durst, A. C., Bhatt, R. N. & Wolff, P. A. 「Bound magnetic polaron interactions
in insulating doped diluted magnetic semiconductors」,
Phys. Rev. B, 65, 235205 (2002) .
[18] J. M. D. Coey, 「d0 ferromagnetism」, Solid State Sci., 7, 660 (2005) .
[19] C.D. Pemmaraju and S. Sanvito, 「Ferromagnetism Driven by Intrinsic Point
Defects in HfO2」, Phys. Rev. Lett., 94, 217205 (2005) .
[20] J. M. D. Coey, 「Dilute magnetic oxides, Curr. Opin」,
Solid State Mater. Sci., 10, 83 (2006) .
[21] J.M.D. Coey, Kwanruthai Wongsaprom, J Alaria and M Venkatesan, 「Charge-transfer ferromagnetism in oxide Nanoparticles」,
J. Phys. D: Appl. Phys., 41, 134012 (2008) .
[22] J.M.D. Coey, P Stamenov, R D Gunning, M Venkatesan and K Paul,
「Ferromagnetism in defect-ridden oxides and related materials」,
New Journal of Physics, 12, 053025 (2010) .
[23] Zhi Yang and Shi-Jie Xiong, 「Structural, electronic and magnetic properties of
small yttrium trioxide clusters from density functional vaculations」,
J. Phys. B: At. Mol. Opt. Phys., 42, 245101 (2009) .
[24] Soon Gu Kwon and Taeghwan Hyeon, 」Colloidal Chemical Synthesis and
Formation Kinetics of Uniformly Sized Nanocrystals of Metals, Oxides, and
Chalcogenides」, Colloidal Synthesis and Kinetic of Nanocrystals, vol. 41,
no.12 ,1696-1709 (2008) .
[25] Won Seok Seo, Hyong Hoon Jo, Kwangyeol Lee and Joon, T, Park, 「Preparation
and Optical Properties of Highly Crystalline, Colloidal, and Size-Controlled
Indium Oxide Nanoparticles」, Adv. Matter., 15, No. 10 May 16 (2003) .
57
[26] Tiejun Zhou, Meihua Lu, Zhihua Zhang, Hao Gong, Wee Shong Chin and Bo Liu,
「Synthesis and Characterization of Multifunctional FePt/ZnO Core/Shell
Nanoparticles」, Adv. Matter., 22, 403-406 (2010) .
[27] Won Seok Seo, Hyong Hoon Jo, Kwangyeol Lee, Bongsoo Kim, Sang Jun Oh, and
Joon, T, Park, 「Size-Dependent Magnetic Properties of Colloidal Mn3O4 and MnO
Nanoparticles」, Angew. Chem. Int. Ed., 43, 1115 (2004) .
[28] Shouheng Sun and Hao Zeng, 「Size-Controlled Synthesis of Magnetite
Nanoparticles」, J. AM. CHEM. SOC., 124, 8204 (2002) .
[29] Channa R, De Silva, Steve Smith, Inbo Shim, Jeffrey Pyun, Timothy Gutu, Jun Jiao
and Zhiping Zheng, 」Lanthanide(III)-Doped Magnetite Nanoparticles」,
J. AM. CHEM. SOC., 131, 6336 (2009) .
[30] Shouheng Sun, Hao Zeng, David B. Robinson, Simon Raoux, Philip M. Rice,
Shan X. Wang and Guanxiong Li, 「Monodisperse MFe2O4 (M=Fe, Co, Mn)
Nanoparticles」, J. AM. CHEM. SOC., 126, 273 (2004) .
[31] Hai-Tao Zhang and Xian-Hui Chen, 「Controlled synthesis and anomalous
magnetic properties of relatively monodisperse CoO nanocrystals」,
Nanotechnology, 16, 2288-2294 (2005) .
[32] A G Roca, M P Morales, K O'Grady and C J Serna, 」Structure and magnetic
properties of uniform magnetite nanoparticles prepared by high temperature
decomposition of organic precursors」, Nanotechnology, 17, 2783-2788 (2006) .
[33] P. Guardia, B. Battle-Brugal, A. G. Roca, O. Iglesias, M. P. Morales, C. J. Serna,
A. Labarta and X. Battle, 「Surfactant effect in magnetite nanoparticles of
controlled size」, J. Magn. Magn. Mater., 316, e756-e759 (2007) .
[34] S. H. Liu, H. S. Hsu, C. R. Lin and J. C. A. Huang, 「Effects of hydrogenated annealing on structural defects, conductivity, and magnetic properties of V-doped ZnO powders」, Appl. Phys. Lett., 90, 222505 (2007) .
[35] S. H. Liu, H. S. Hsu, G. Venkataiah, X. Qi, C. R. Lin, J. F. Lee, K. S. Liang
and J. C. A. Huang, 「Reduced room-temperature ferromagnetism in intermediate
conducting regime of V doped ZnO」, Appl. Phys. Lett., 96, 262504 (2010) .
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *