帳號:guest(3.147.58.70)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉峻宏
作者(外文):Liu, Chun-Hung
論文名稱(中文):開發新型螢光分析法應用於選擇性偵測溶液中之亞鐵離子
論文名稱(外文):A new fluorimetric method for selective detection of iron (II)
指導教授(中文):何佳安
指導教授(外文):Ho, Ja-an Annie
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:9723522
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:74
中文關鍵詞:亞鐵離子多巴鋅離子螢光
外文關鍵詞:ferrous iondopazinc ionfluorescence
相關次數:
  • 推薦推薦:0
  • 點閱點閱:118
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
鐵是地球上含量相當豐富的元素,不論其離子態或元素態均廣泛的分佈在自然界當中,對於生物以及環境而言都是不可或缺的。舉例來說,鐵離子(泛指鐵三價離子或是亞鐵離子)是一種必要營養素,體內鐵離子缺乏或失衡會導致許多嚴重的疾病,例如:心臟病、關節炎
或癌症等;鐵離子亦幫忙協助血紅素進行氧氣的運輸及儲存。除此之外,鐵離子在植物體內也扮演著重要的功能,鐵離子在植物體內的含量會影響植物的生長和光合作用等功能。對於許多浮游植物來說,水面的鐵離子含量會影響其光合作用之效率,間接對於二氧化碳的循環
以及氣候造成影響。基於鐵離子在許多方面皆扮演著重要的角色,本研究擬開發一新型螢光分析法來偵測水溶液樣品中的亞鐵離子。我們利用鐵離子、銅二價離子等金屬離子皆能夠加速兒茶酚類的氧化為設計基礎,先將多巴和亞鐵離子混合;多巴在亞鐵離子的存在下將被加
速氧化,再與鋅二價離子錯合並產生一綠色螢光訊號(螢光訊號之最大激發波長為370 nm,最大放射波長為500 nm),藉由偵測此螢光訊號之強度即可反推溶液中亞鐵離子的濃度。此方法的線性範圍為1–100 μM,其偵測極限(S/N = 3)為1.23 μM。
Iron is widely distributed in nature, which plays an important role in both biological and
environmental media. Iron not only is an essential nutirent biologically, which is part of
hemoglobin, the oxygen-carrying component of the blood; but also is related to carbon dioxide flux
at air/sea interface. Due to its significance in the perspective of clinical diagnosis, intoxication,
environmental pollution monitoring, many methods have been proposed for determination of iron
species in natural samples. In this study, we demonstrated a new method involving the use of dopa
and zinc ion in citric acid buffer (pH = 6), for selectively detecting ferrous ion by acquiring
fluorescence produced from dopa oxidation. Metal ions, such as iron (ferric and ferrous ion),
copper, and manganese are good candidates to accelerate the oxidation of catecholamines. In the
presence of ferrous, dopa, and zinc ion, fluorescence signals were obtained, which could be detected
at exciation wavelength of 370 nm and emission wavelength of 500 nm. A dose-dependent increase
of fluorescence intensity was noted when the concentration of iron in the tested samples were
elevated. The detection range of this system for ferrous ion falls between 1 μM and 100 μM, the
detection limit (S/N = 3) is calculated as 1.23 μM.
目次
中文摘要............................................................................................................................................III
英文摘要............................................................................................................................................IV
圖目錄.................................................................................................................................................V
表目錄...............................................................................................................................................VII
第一章 緒論......................................................................................................................................1
1-1 緒言 (Introduction).....................................................................................................................1
1-2 多巴概述 (Introdution to Dopa).................................................................................................2
1-2-1 前言...............................................................................................................................2
1-2-2 多巴研究史概述...........................................................................................................3
1-2-3 多巴相關之生理反應...................................................................................................6
1-2-4 多巴之氧化反應.........................................................................................................10
1-3 鐵離子概述 (Introduction to Iron Ion).....................................................................................13
1-3-1 前言.............................................................................................................................13
1-3-2 鐵離子之代謝.............................................................................................................14
1-3-3 鐵離子與疾病.............................................................................................................29
1-3-4 鐵離子之偵測.............................................................................................................30
第二章 實驗材料與方法................................................................................................................32
2-1 實驗材料 (Experimental Materials).........................................................................................32
2-1-1 藥品試劑.....................................................................................................................32
2-1-2 實驗儀器.....................................................................................................................34
2-2 實驗方法 (Experimental Methods)..........................................................................................35
2-2-1 實驗設計之可行性測試.............................................................................................35
2-2-2 鋅二價離子濃度之最佳化.........................................................................................35
2-2-3 多巴濃度之最佳化.....................................................................................................36
2-2-4 緩衝溶液pH 之最佳化...............................................................................................36
2-2-5 緩衝溶液濃度之最佳化.............................................................................................37
I 2-2-6 不同金屬離子之選擇性測試.....................................................................................37
2-2-7 對於鐵三價離子和亞鐵離子之選擇性.....................................................................38
2-2-8 對於亞鐵離子之選擇性.............................................................................................38
2-2-9 緩衝溶液之功用測試.................................................................................................39
2-2-10 pH 對系統之影響.......................................................................................................39
2-2-11 緩衝溶液濃度對系統之影響.....................................................................................40
2-2-12 鋅二價離子之功用探討.............................................................................................41
2-2-13 亞鐵離子之定量分析.................................................................................................41
第三章 實驗結果與討論................................................................................................................42
3-1 實驗設計之可行性測試.................................................................................................42
3-2 鋅二價離子濃度之最佳化.............................................................................................45
3-3 多巴濃度之最佳化.........................................................................................................46
3-4 緩衝溶液pH 之最佳化..................................................................................................47
3-5 緩衝溶液濃度之最佳化.................................................................................................48
3-6 不同金屬離子之選擇測試.............................................................................................49
3-7 對於鐵三價離子和亞鐵離子之選擇性.........................................................................50
3-8 對於亞鐵離子之選擇性.................................................................................................52
3-9 緩衝溶液之功用測試.....................................................................................................55
3-10 pH 對系統之影響..........................................................................................................57
3-11 緩衝溶液濃度對系統之影響.........................................................................................59
3-12 鋅二價離子之功用探討.................................................................................................61
3-13 亞鐵離子之定量分析.....................................................................................................65
第四章 結論與未來展望................................................................................................................66
第五章 參考文獻............................................................................................................................67
1 Briat, J.-F., Curie, C. & Gaymard, F. Iron utilization and metabolism in plants. Current
Opinion in Plant Biology 10, 276-282 (2007).
2 Crichton, R. in Inorganic Biochemistry of Iron Metabolism (Second Edition) p.235-257
(2002).
3 Misu, Y., Kitahama, K. & Goshima, Y. L-3, 4-Dihydroxyphenylalanine as a neurotransmitter
candidate in the central nervous system. Pharmacology & therapeutics 97, 117-137 (2003).
4 Misu, Y., Goshima, Y. & Miyamae, T. Is DOPA a neurotransmitter? Trends in
pharmacological sciences 23, 262-268 (2002).
5 Hoffman, B. & Taylor, P. Neurotransmission: the autonomic and somatic motor nervous
systems. Goodman & Gilman's the pharmacological basis of therapeutics, 115-153 (2001).
6 Misu, Y. etal., Neurobiology of L-DOPAergic systems. Progress in Neurobiology 49, 415-
454 (1996).
7 Misu, Y., Ueda, H. & Goshima, Y. Neurotransmitter-like actions of L-DOPA. Advances in
Pharmacology 32, 427-459 (1995).
8 Misu, Y. & Goshima, Y. Is L-dopa an endogenous neurotransmitter? Trends in
pharmacological sciences 14, 119-123 (1993).
9 Riley, P. A. Melanin. The International Journal of Biochemistry & Cell Biology 29, 1235-
1239 (1997).
10 Hornykiewicz, O. L-DOPA: A Historical Perspective. in Neurobiology of DOPA as a
neurotransmitter p.1-20 (2006).
11 Funk, C. Synthesis of DL-3,4-dihydroxyphenylalanine. Journal of the Chemical Society
99, 554-557 (1911).
12 Torquati, T. Sulla presenza di una sostanza azotata nei germogli dei semi di "Vicia faba".
Arch. Farmacol. Sper. Sci. Af ni 15, 213-223 (1913).
13 Bloch, B. Chemische Untersuchungen uber das spezifische pigmentbildende Ferment der
Haut, die Dopaoxydase. Hoppe-Seyler's Zeitschrift fur physiologische Chemie 98, 226-254
(1916).
14 Guggenheim, M. Dioxyphenylalanin, eine neue Aminosaure aus Vicia faba. Hoppe-Seyler's
Zeitschrift fur physiologische Chemie 88, 276-284 (1913).
15 Hirai, K. & Gondo, K. Uber Dopa-Hyperglykamie. Biochemistry 189, 92-100 (1927).
6716 Hasama, B. Beitrage zur Erforschung der Bedeutung der chemischen Konfiguration fur die
pharmakologischen Wirkungen der adrenalinahnlichen Stoffe. Naunyn-Schmiedeberg's
Archives of Pharmacology 153, 161-186 (1930).
17 Holtz, P., Heise, R. & Ludtke, K. Fermentativer Abbau von L-Dioxyphenylalanin (Dopa)
durch Niere. Naunyn-Schmiedeberg's Archives of Pharmacology 191, 87-118 (1938).
18 Holtz, P. Dopadecarboxylase. Naturwissenschaften 27, 724-725 (1939).
19 Blaschko, H. The specific action of L-dopa decarboxylase. The Journal of Physiology 96, 13
(1939).
20 Holtz, P., Credner, K. & Koepp, W. Die enzymatische Entstehung von Oxytyramin im
Organismus und die physiologische Bedeutung der Dopadecarboxylase. Naunyn-
Schmiedeberg's Archives of Pharmacology 200, 356-388 (1942).
21 Hornykiewicz, O. The action of dopamine on the arterial blood pressure of the guinea-pig.
British Journal of Pharmacology and Chemotherapy 13, 91-94 (1958).
22 Holtz, P., Balzer, H., Westermann, E. & Wezler, E. Beeinflussung der Evipannarkose durch
Reserpin, Iproniazid und biogene Amine. Naunyn-Schmiedeberg's Archives of
Pharmacology 231, 333-348 (1957).
23 Carlsson, A., Lindqvist, M. & Magnusson, T. O. R. 3,4-Dihydroxyphenylalanine and 5-
Hydroxytryptophan as Reserpine Antagonists. Nature 180, 1200 (1957).
24 Montagu, K. Catechol compounds in rat tissues and in brains of different animals. Nature
180, 244-245 (1957).
25 Carlsson, A., Lindqvist, M., Magnusson, T. & Waldeck, B. On the presence of 3-
hydroxytyramine in brain. Science 127, 471 (1958).
26 Weil-Malherbe, H. & Bone, A. D. Effect of Reserpine on the Intracellular Distribution of
Catecholamines in the Brain Stem of the Rabbit. Nature 181, 1474-1475 (1958).
27 Bertler, A. & Rosengren, E. Occurrence and distribution of dopamine in brain and other
tissues. Cellular and Molecular Life Sciences 15, 10-11 (1959).
28 Sano, I. Distribution of catechol compounds in human brain. Biochim Biophys Acta 32, 586-
587 (1959).
29 Carlsson, A. The occurrence, distribution and physiological role of catecholamines in the
nervous system. Pharmacological reviews 11, 490-493 (1959).
30 Ehringer, H. & Hornykiewicz, O. Verteilung von Noradrenalin und Dopamin (3-
Hydroxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des
extrapyramidalen Systems. Journal of Molecular Medicine 38, 1236-1239 (1960).
6831 Birkmayer, W. und Hornykiewicz, O. Der L-3, 4-Dioxyphenylalanin (=DOPA)-Effekt bei
der Parkinson-Akinese. Wien. klin. Wschr 73, 787-788 (1961).
32 Ueda, H., Goshima, Y., Kubo, T. & Misu, Y. Adrenaline involvement in the presynaptic
[beta]-adrenoceptor-mediated mechanism of dopamine release from slices of the rat
hypothalamus. Life Sciences 34, 1087-1093 (1984).
33 Ueda, H., Goshima, Y., Kubo, T. & Misu, Y. Involvement of epinephrine in the presynaptic
beta adrenoceptor mechanism of norepinephrine release from rat hypothalamic slices.
Journal of Pharmacology and Experimental Therapeutics 232, 507-512 (1985).
34 Goshima, Y., Kubo, T. & Misu, Y. Autoregulation of endogenous epinephrine release via
presynaptic adrenoceptors in the rat hypothalamic slice. Journal of Pharmacology and
Experimental Therapeutics 235, 248-253 (1985).
35 Hokfelt, T., Fuxe, K., Goldstein, M. & Johansson, O. Evidence for adrenaline neurons in the
rat brain. Acta Physiologica Scandinavica 89, 286-288 (1973).
36 Ward-Routledge, C. & Marsden, C. Adrenaline in the CNS and the action of
antihypertensive drugs. Trends in pharmacological sciences 9, 209-214 (1988).
37 Misu, Y., Kuwahara, M., Amano, H. & Kubo, T. Evidence for tonic activation of
prejunctional beta-adrenoceptors in guinea-pig pulmonary arteries by adrenaline derived
from the adrenal medulla. British journal of pharmacology 98, 45-50 (1989).
38 Ponzio, F., Achilli, G., Perego, C., Rinaldi, G. & Algeri, S. Does acutel-DOPA increase
active release of dopamine from dopaminergic neurons? Brain Research 273, 45-51 (1983).
39 Pattison, D. I., Dean, R. T. & Davies, M. J. Oxidation of DNA, proteins and lipids by
DOPA, protein-bound DOPA, and related catechol(amine)s. Toxicology 177, 23-37, (2002).
40 Kalyanaraman, B., Premovic, P. I. & Sealy, R. C. Semiquinone anion radicals from addition
of amino acids, peptides, and proteins to quinones derived from oxidation of catechols and
catecholamines. An ESR spin stabilization study. J Biol Chem 262, 11080-11087 (1987).
41 Kalyanaraman, B., Felix, C. C. & Sealy, R. C. Semiquinone anion radicals of
catechol(amine)s, catechol estrogens, and their metal-ion complex. Environmental Health
Perspectives 64, 185-198 (1985).
42 Kalyanaraman, B. & Sealy, R. C. Electron spin resonance-spin stabilization in enzymatic
systems: Detection of semiquinones produced during peroxidatic oxidation of catechols and
catecholamines. Biochemical and Biophysical Research Communications 106, 1119-1125
(1982).
6943 Felix, C. C. & Sealy, R. C. Photolysis of melanin precursors: formation of semiquinone
radicals and their complexation with diamagnetic metal ions. Photochemistry and
Photobiology 34, 423-429 (1981).
44 Felix, C. C. & Sealy, R. C. Electron spin resonance characterization of radicals from 3,4-
dihydroxyphenylalanine: semiquinone anions and their metal chelates. Journal of the
American Chemical Society 103, 2831-2836 (1981).
45 Eaton, D. R. Complexing of Metal Ions with Semiquinones. An Electron Spin Resonance
Study. Inorganic Chemistry 3, 1268-1271 (1964).
46 Que, E., Domaille, D. & Chang, C. Metals in neurobiology: probing their chemistry and
biology with molecular imaging. Chemical Reviews 108, 1517-1549 (2008).
47 Dunn, L., Rahmanto, Y. & Richardson, D. Iron uptake and metabolism in the new
millennium. Trends in cell biology 17, 93-100 (2007).
48 Chua, R., Olynyk, C. & Trinder, D. Liver iron transport. World Journal of Gastroenterology
13, 4725-4736 (2007).
49 Andrews, N. Iron homeostasis: insights from genetics and animal models. Nature Reviews
Genetics 1, 208-217 (2000).
50 Crichton, R. in Inorganic Biochemistry of Iron Metabolism (Second Edition) 167-190
(2002).
51 McKie, A. A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral
transfer of iron to the circulation. Molecular Cell 5, 299-309 (2000).
52 Donovan, A. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate
iron exporter. Nature 403, 776-781 (2000).
53 Abboud, S. & Haile, D. A novel mammalian iron-regulated protein involved in intracellular
iron metabolism. Journal of Biological Chemistry 275, 19906 (2000).
54 McKie, A. T. An Iron-Regulated Ferric Reductase Associated with the Absorption of
Dietary Iron. Science 291, 1755-1759 (2001).
55 Gruenheid, S., Cellier, M., Vidal, S. & Gros, P. Identification and characterization of a
second mouse Nramp gene. Genomics 25, 514-525 (1995).
56 Gunshin, H. Cloning and characterization of a mammalian proton-coupled metal-ion
transporter. Nature 388, 482-488 (1997).
57 Fleming, M. Microcytic anaemia mice have a mutation in Nramp2, a candidate iron
transporter gene. Nature Genetics 16, 383-386 (1997).
58 Beale, S. & Yeh, J. Deconstructing heme. Nature structural biology 6, 903-905 (1999).
7059 Crichton, R. in Inorganic Biochemistry of Iron Metabolism (Second Edition) 133-165
(2002).
60 Vulpe, C. Hephaestin: a ceruloplasmin homologue implicated in intestinal iron transport and
its defect in the sla mouse. Nature Genet 21, 195-199 (1999).
61 Crichton, R. in Inorganic Biochemistry of Iron Metabolism (Second Edition) 107-131
(2002).
62 Ohgami, R. S. Identification of a ferrireductase required for efficient transferrin-dependent
iron uptake in erythroid cells. Nature Genetics 37, 1264-1269 (2005).
63 Inman, R. & Wessling-Resnick, M. Characterization of transferrin-independent iron
transport in K562 cells. Unique properties provide evidence for multiple pathways of iron
uptake. Journal of Biological Chemistry 268, 8521-8528 (1993).
64 Randell, E., Parkes, J., Olivieri, N. & Templeton, D. Uptake of non-transferrin-bound iron
by both reductive and nonreductive processes is modulated by intracellular iron. Journal of
Biological Chemistry 269, 16046-16053 (1994).
65 Mukhopadhyay, C. K., Attieh, Z. K. & Fox, P. L. Role of Ceruloplasmin in Cellular Iron
Uptake. Science 279, 714-717 (1998).
66 Shaw, G. Mitoferrin is essential for erythroid iron assimilation. Nature 440, 96-100 (2006).
67 Burdo, J. & Connor, J. Brain iron uptake and homeostatic mechanisms: an overview.
Biometals 16, 63-75 (2003).
68 Jefferies, W. A. Transferrin receptor on endothelium of brain capillaries. Nature 312, 162-
163 (1984).
69 Hulet, S., Heyliger, S., Powers, S. & Connor, J. Oligodendrocyte progenitor cells internalize
ferritin via clathrin-dependent receptor mediated endocytosis. Journal of Neuroscience
Research 61, 52-60 (2000).
70 Crichton, R. in Inorganic Biochemistry of Iron Metabolism (Second Edition) 207-233
(2002).
71 Hentze, M. & Kuhn, L. Molecular control of vertebrate iron metabolism: mRNA-based
regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proceedings of the
National Academy of Sciences of the United States of America 93, 8175-8182 (1996).
72 Gray, N. & Hentze, M. Iron regulatory protein prevents binding of the 43S translation pre-
initiation complex to ferritin and eALAS mRNAs. The EMBO Journal 13, 3882-3891
(1994).
73 Rouault, T. An iron-sulfur cluster plays a novel regulatory role in the iron-responsive
element binding protein. Biometals 5, 131-140 (1992).
7174 Zhou, X. Y. HFE gene knockout produces mouse model of hereditary hemochromatosis.
Proceedings of the National Academy of Sciences of the United States of America 95, 2492-
2497 (1998).
75 Huang, F. W., Pinkus, J. L., Pinkus, G. S., Fleming, M. D. & Andrews, N. C. A mouse model
of juvenile hemochromatosis. The Journal of Clinical Investigation 115, 2187-2191 (2005).
76 Morse, S., HARDWICK JR, W. & King, W. Fatal iron intoxication in an infant. Southern
medical journal 90, 1043-1047 (1997).
77 Anderson, A. Iron poisoning in children. Current Opinion in Pediatrics 6, 289-294 (1994).
78 Woods, J. & Mellon, M. Thiocyanate Method for Iron: A Spectrophotometric Study.
Industrial & Engineering Chemistry Analytical Edition 13, 551-554 (1941).
79 Gallagher, P. & Danielson, N. Colorimetric determination of macrolide antibiotics using
ferric ion. Talanta 42, 1425-1432 (1995).
80 Basu, C., Chowdhury, S., Stoeckli-Evans, H. & Mukherjee, S. A new chromogenic agent for
iron (III): Synthesis, structure and spectroscopic studies. Journal of Chemical Sciences 122,
217-223 (2010).
81 Pulido-Tofino, P., Moreno, J. & Perez-Conde, M. A flow-through fluorescent sensor to
determine Fe (III) and total inorganic iron. Talanta 51, 537-545 (2000).
82 Feng, L., Chen, Z. & Wang, D. Selective sensing of Fe 3+ based on fluorescence quenching
by 2, 6-bis (benzoxazolyl) pyridine with [beta]-cyclodextrin in neutral aqueous solution.
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 66, 599-603 (2007).
83 Ma, Y. & Hider, R. The selective quantification of iron by hexadentate fluorescent probes.
Bioorganic & medicinal chemistry 17, 8093-8101 (2009).
84 Zhang, M., Zheng, B., Yuan, H. & Xiao, D. A spectrofluorimetric sensor based on grape skin
tissue for derermination of iron (III). Bulletin of the Chemical Society of Ethiopia 24, 31-37
(2010).
85 Cha, K. & Park, K. Determination of iron (III) with salicylic acid by the fluorescence
quenching method. Talanta 46, 1567-1571 (1998).
86 Kim, H., Lee, M., Kim, H., Kim, J. & Yoon, J. A new trend in rhodamine-based
chemosensors: application of spirolactam ring-opening to sensing ions. ChemInform 39,
1465-1472 (2008).
87 Mao, J., He, Q. & Liu, W. An rhodamine-based fluorescence probe for iron (III) ion
determination in aqueous solution. Talanta 5, 2093-2098 (2009).
88 Lee, M. A novel strategy to selectively detect Fe (III) in aqueous media driven by hydrolysis
of a rhodamine 6G Schiff base. Chemical Communications 46, 1407-1409 (2010).
7289 Lin, W., Yuan, L., Feng, J. & Cao, X. A fluorescence-enhanced chemodosimeter for Fe 3+
based on hydrolysis of bis (coumarinyl) Schiff Base. European Journal of Organic
Chemistry 2008, 2689-2692 (2008).
90 Wu, P., Li, Y. & Yan, X.-P. CdTe quantum dots (QDs) based kinetic discrimination of Fe 2+
and Fe 3+ , and CdTe QDs-Fenton hybrid system for Sensitive photoluminescent detection of
Fe 2+ . Analytical Chemistry 81, 6252-6257 (2009).
91 Obata, H. & van den Berg, C. Determination of picomolar levels of iron in seawater using
catalytic cathodic stripping voltammetry. Analytical Chemistry 73, 2522-2528 (2001).
92 Jakeman, A., Thompson, T., McHattie, J. & Lehotay, D. Sensitive method for nontransferrin-
bound iron quantification by graphite furnace atomic absorption spectrometry. Clinical
Biochemistry 34, 43-47 (2001).
93 Yokoi, K., Kimura, M. & Itokawa, Y. Determination of nonheme iron using inductively
coupled plasma-atomic emission spectrometry. Biological trace element research 31, 265-
279 (1991).
94 Linert, W., Jameson, R. F. & Herlinger, E. Complex formation followed by internal electron
transfer: the reaction between L-dopa and iron(III). Inorganica Chimica Acta 187, 239-247
(1991).
95 Ito, S., Kato, T., Shinpo, K. & Fujita, K. Oxidation of tyrosine residues in proteins by
tyrosinase. Formation of protein-bonded 3,4-dihydroxyphenylalanine and 5-S-cysteinyl-3,4-
dihydroxyphenylalanine. Biochemistry J 222, 407-411 (1984).
96 Mendez-Alvarez, E., Soto-Otero, R., Hermida-Ameijeiras, A., Lopez-Martin, M. &
Labandeira-Garcia, J. Effect of iron and manganese on hydroxyl radical production by 6-
hydroxydopamine: mediation of antioxidants. Free Radical Biology and Medicine 31, 986-
998 (2001).
97 Perez, M., Torrades, F., Dom nech, X. & Peral, J. Fenton and photo-Fenton oxidation of
textile effluents. Water research 36, 2703-2710 (2002).
98 Dostert, P., Strolin Benedetti, M. & Frigerio, E. Effect of L-dopa, oxyferriscorbone and
ferrous iron on in vivo lipid peroxidation. Journal of neural transmission 84, 119-128
(1991).
99 Newcomer, T. & Rosenberg, P. Iron-mediated oxidation of 3, 4-dihydroxyphenylalanine to
an excitotoxin. Journal of neurochemistry 64, 1742-1748 (2002).
100 Bounias, M., Adny, J., Kruk, I. & Michalska, T. Hydroxyl radical generation during
oxidation of catecholamines and dopa. Toxicological & Environmental Chemistry 60, 163-
169 (1997).
73101 Gautier-luneau, I., Bertet, P., Jeunet, A., Serratrice, G. & Pierre, J. Iron-citrate complexes
and free radicals generation: Is citric acid an innocent additive in foods and drinks?
Biometals 20, 793-796 (2007).
102 Martin, M. M. & Lindqvist, L. The pH dependence of fluorescein fluorescence. Journal of
Luminescence 10, 381-390 (1975).
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *