帳號:guest(13.58.112.1)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃伯毓
作者(外文):Huang, Po-Yu
論文名稱(中文):鎳-硫錯合物進行小分子-氧氣之活化
論文名稱(外文):Activation of Small Molecule Dioxygen by Nickel-Thiolate complex
指導教授(中文):廖文峯
指導教授(外文):Liaw, Wen-Feng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:9723529
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:51
中文關鍵詞:鎳硫錯合物活化氧氣
相關次數:
  • 推薦推薦:0
  • 點閱點閱:87
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
將[PPN][NiII(CO)(P(o-C6H3-3-SiMe3-2-S)3)]溶於THF-CH3CN溶液,在室溫、一大氣壓下導入氧氣氣體攪拌6至7小時,溶液顏色由亮綠色轉為墨綠色,得墨綠色 [PPN][Ni(O2)(P(o-C6H3-3-SiMe3-2-S)3)] (1)。由晶體結構得知化合物1的鎳金屬為五配位扭曲的雙三角錐結構( distored trigonal bipyramidal (TBP)), 鎳中心金屬上配位一個磷原子、三個硫原子和一個超氧離子(superoxide),而磷與氧原子則分別佔據三角錐頂點位置。且在目前鎳金屬配位化學領域中,化合物1為第一個有單晶結構的“end-on”雙氧錯合物。
鎳二價離子接上CO配位基後,會使電子back π-donation至CO分子之π*反鍵結軌域,因此鎳離子電子豐盈性高可使鎳-CO化合物更趨穩定。當 [NiII-CO]-化合物通入氧氣氣體後,因鎳中心金屬的電子豐盈性高,且氧氣分子之π*反鍵結軌域較CO分子之π*反鍵結軌域能量低,因此氧氣分子靠近中心金屬之後得以使鎳離子轉移一個電子填入氧氣分子之π*反鍵結軌域使其還原形成超氧離子(superoxide anion),而鎳金屬離子則會由鎳二價金屬離子氧化成為鎳三價金屬離子。如前所述已知CO配位基會因鎳三價金屬離子缺電子而無法提供back π-donation至CO配位基,故使鍵結能力相對為弱,因而脫去形成了鎳-超氧化合物1。
目錄
第一章 緒論 1
1-1 利用金屬酵素活化氧氣(dioxygen activation by metalloenzymes) 1
1-2 金屬活化氧氣在工業上的重要性 1
1-3 金屬活化氧氣在生物上的重要性 3
1-4 以鎳為活化中心的金屬酵素 6
1-5 雙核生物擬態(biomimetic)化合物 9
1-6 單核生物擬態化合物 11
1-7 含鎳金屬之雙核、多核生物擬態化合物 13
1-8以鎳金屬為核的單核生物擬態化合物 14
1-9 研究方向 16
第二章 實驗部分 18
2-1 一般實驗 18
2-2 儀器 19
2-3 藥品 19
2-4 化合物的合成及鑑定 20
2-4-1 合成[PPN]2[NiCl4] 20
2-4-2 合成[PPN][NiIII(Cl)(P(o-C6H3-3-SiMe3-2-S)3)] 20
2-4-3 合成[PPN][NiIII(OPh)(P(o-C6H3-3-SiMe3-2-S)3)] 21
2-4-4 合成[PPN][NiII(OPh)(P(o-C6H3-3-SiMe3-2-S)3)] 22
2-4-5 合成[PPN][NiIII(SEt)(P(o-C6H3-3-SiMe3-2-S)3)] 22
2-4-6 合成[NiIII(PPh3)(P(o-C6H3-3-SiMe3-2-S)3)] 23
2-4-7 合成[PPN][NiII(PPh3)(P(o-C6H3-3-SiMe3-2-S)3)] 24
2-4-8 合成[NiII(P(o-C6H3-3-SiMe3-2-S)2(o-C6H3-3-SiMe3-2-SH))]2 24
2-4-9 合成[NiIII(P(o-C6H3-3-SiMe3-2-S)3)]2 25
2-4-10合成[NiIII(C4H6N2)(P(o-C6H3-3-SiMe3-2-S)3)] 25
2-4-11 合成[PPN][NiII(C4H6N2)(P(o-C6H3-3-SiMe3-2-S)3)] 26
2-5 化合物的反應 27
2-5-1 [PPN][NiII(OPh)(P(o-C6H3-3-SiMe3-2-S)3)]與CO的反應 27
2-5-2 [PPN][NiIII(SEt)(P(o-C6H3-3-SiMe3-2-S)3)]與CO的反應 27
2-5-3 [PPN][NiII(C4H6N2)(P(o-C6H3-3-SiMe3-2-S)3)]與CO的反應 28
2-5-4 [PPN][NiII(CO)(P(o-C6H3-3-SiMe3-2-S)3)]與O2的反應 28
2-6 晶體結構解析(Crystallography) 29
2-6-1 [PPN][NiIII(O2)(P(o-C6H3-3-SiMe3-2-S)3)]晶體 30
第三章 結果與討論 31
3-1 化合物[PPN][NiIII(O2)(P(o-C6H3-3-SiMe3-2-S)3)] (1)的合成、結構與光譜分析 31
3-2 化合物[PPN][NiII(CO)(P(o-C6H3-3-SiMe3-2-S)3)] (2)的各種合成方法 40
3-3 利用新方法來製備[PPN][NiII(CO)(P(o-C6H3-3-SiMe3-2-S)3)] (2)化合物 42
3-4 不同陽離子之[NiII(CO)(P(o-C6H3-3-SiMe3-2-S)3)]-化合物之特性 45
第四章 結論 47
References 49
[ ] a) L. Vaska, Acc. Chem. Res. 1976, 9,175 ; b) A. E. Martell, D. T.Sawyer, Oxygen Complexes and Oxygen Activation by Transition Metals, Plenum Press, New York, 1988, pp . 1 – 341; c) C. Limberg, Angew. Chem. 2003, 115, 6112 ; Angew. Chem. Int. Ed. 2003, 42, 5932 ; d) T. Punniyamurthy, S. Velusamy, J. Iqbal, Chem. Rev. 2005, 105, 2329; e) Special issue of Chem. Rev. for Metal-Oxygen Complexes: Chem. Rev . 1994, 94, 567; f) K. H. Theopold, Top. Organomet. Chem. 2007, 22, 17; g) J. Piera, J.-E.BOckvall, Angew. Chem. 2008, 120, 3558; Angew. Chem. Int. Ed. 2008, 47, 3506.
[ ] a) S. Ferguson-Miller, G. T. Babcock, Chem. Rev. 1996, 96, 2889 ; b) E. Kim, M. E. Helton, I. M. Wasser, K. D. Karlin, S. Lu, H.-W. Huang, P. Moenne-Loccoz, C. D. Incarvito, A. L. Rheingold, M. Honecker, S. Kaderli, A. D. ZuberbMhler, Proc. Natl. Acad. Sci. USA 2003, 100, 3623; c) A. Decker, E. I. Solomon, Curr. Opin. Chem. Biol. 2005, 9, 152.
[ ] a) L. Que,Y. Dong, Acc. Chem. Res. 1996, 29, 190 ; b) W. B. Tolman, Acc. Chem. Res. 1997, 30, 227 ; c) L. Que, J. Chem. Soc. Dalton Trans. 1997, 3933 ; d) A. M. Valentine, S. L. Lippard, J. Chem. Soc. Dalton Trans. 1997, 3925 ; e) C. Biancini, R. W. Zoellner, Adv. Inorg. Chem. 1996, 44, 263; f) E. I. Solomon, T. C. Brunold, M. I. Davis, J . N. Kemsley, S.-K. Lee, N . Lehnert, F. Neese, A. J. Sukulan, Y.-S. Yang, J. Zhou, Chem. Rev. 2000, 100, 235; g) X. Dai, P. Kapoor, T. H. Warren, J. Am. Chem. Soc. 2004, 126, 4798.
[ ] a) J. Smidt, W. Hafner, R. Jira, J . Sedlmeier, R. Sieber, R. Ruttinger, H. Kojer, Angew. Chem. 1959, 71, 176; Reviews: b) A. Heumann, K. L. Jens, M. Reglier, Prog. Inorg. Chem. 1994, 42, 483; c) S. S. Stahl, Angew. Chem. 2004, 116, 3480; Angew. Chem. Int. Ed. 2004, 43, 3400.
[ ] a) Decker, A., Solomon, E. I. Curr. Opin. Chem. Biol. 2005, 9, 152–163; b) Unno, M., Chen, H.,
Kusama, S., Shaik, S. & Ikeda-Saito, M. J. Am. Chem. Soc. 2007,129, 13394–13395; c) Kovaleva, E. G. & Lipscomb, J. D. Science. 2007, 316, 453–457; d) Prigge, S. T., Eipper, B. A., Mains, R. E. & Amzel, L. M. Science. 2004, 304, 864–867.
[ ] a) E. Kim, E. E. Chufan, K. Kamaraj, K. D. Karlin, Chem. Rev. 2004, 104, 1077; b) J. P. Collman, R. Boulatov, C. J. Sunderland, L. Fu, Chem. Rev. 2004, 104, 561; c) R. Boulatov, Pure Appl. Chem. 2004, 76, 303.
[ ] a) M. Sono, M. P. Roach, E. D. Coulter, J. H. Dawson, Chem.Rev.1996, 96, 2841 – 2888; b) J. T. Groves, Proc. Natl. Acad. Sci. USA 2003, 100, 3569 – 3574; c) P. R. Ortiz de Montellano, Cytochrome P450: Structure, Mechanism, and Biochemistry, 3rd ed., Kluwer Academic/Plenum Publishers, New York, 2005; d) I. G. Denisov, T. M. Makris, S. G. Sligar, I. Schlichting, Chem. Rev. 2005, 105, 2253 – 2277; e) A.W. Munro, H. M. Girvan, K. J. McLean, Nat. Prod. Rep. 2007, 24, 585 – 609; f) Y. Watanabe, H. Nakajima, T. Ueno, Acc. Chem. Res. 2007, 40, 554 – 562.
[ ] J.-G. Liu, T. Ohta, S. Yamaguchi, T. Ogura, S. Sakamoto, Y. Maeda, Y. Naruta, Angew. Chem. Int. Ed. 2009, 48, 9262 – 9267.
[ ] Ragsdale, S. W. Crit. Rev. Biochem. Mol. Biol. 2004, 39, 165–195.
[ ] Dixon, N. C.; Gazzola, R. L.; Zerner, B. J. Am. Chem. Soc. 1975, 97, 4131-4133.
[ ] Lindahl, P. A. J. Biol. Inorg. Chem. 2004, 9, 516–524.
[ ] Dobbek, H.; Svetlitchnyi, V.; Gremer, L.; Huber, R.; Meyer, O. Science. 2001, 293, 1281–1285
[ ] Shima, S.; Thauer, R. K. Curr. Opin. Microbiol. 2005, 8, 643–648.
[ ] Kaim, W. and Schwedweski, B. Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life, 1994, New York, Wiley.
[ ] a) Leclere, V.; Boiron, P.; Blondeau, R. Curr. Microbiol. 1999, 39, 365–368; b) Youn, H.-D.; Kim, E.-J.; Roe, J.-H.; Hah, Y. C.; Kang, S.-O. Biochem. J. 1996, 318, 889–896; c) Youn, H.-D.; Youn, H.; Lee, J.-W.; Yim, Y.-I.; Lee, J. K.; Hah, Y. C.;Kang, S.-O. Arch. Biochem. Biophys. 1996, 334, 341–348.
[ ] Palenik, B.; Brahamsha, B.; Larimer, F. W.; Land, M.; Hauser, L.;Chain, P.; Lamerdin, J.; Regala, W.; Allen, E. E.; McCarren, J.;Paulsen, I.; Dufresne, A.; Partensky, F.; Webb, E. A.; Waterbury, J. Nature. 2003, 424, 1037–1042.
[ ] Wuerges, J.; Lee, J.-W.; Yim, Y.-I.; Yim, H.-S.; Kang, S.-O.; Carugo, K. D. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 8569–8574.
[ ] a) Choudhury, S. B.; Lee, J.-W.; Davidson, G.; Yim, Y.-I.; Bose, K.;Sharma, M. L.; Kang, S.-O.; Cabelli, D. E.; Maroney, M. J. Biochemistry. 1999, 38, 3744–3752; b) Fiedler, A. T.; Bryngelson, P. A.; Maroney, M. J.; Brunold, T. C. J. Am. Chem. Soc. 2005, 127, 5449–5462; c) Pelmenschikov, V.; Siegbahn, P. E. M. J. Am. Chem. Soc. 2006, 128, 7466–7475.
[ ] a) Dai, Y.; Wensink, P. C.; Abeles, R. H. J. Biol. Chem. 1999, 274, 1193–1195.; b) Pochapsky, T. C.; Pochapsky, S. S.; Ju, T.; Mo, H.; Al-Mjeni, F. and Maroney, M. J. Nature Structural Biology. 2002, 9, 966-972.
[ ] Dai, Y.; Pochapsky, T. C.; Abeles, R. H. Biochemistry. 2001, 40, 6379–6387.
[ ] Al-Mjeni, F.; Ju, T.; Pochapsky, T. C.; Maroney, M. J. Biochemistry. 2002, 41, 6761–6769.
[ ] Szajna, E.; Arif, A. M.; Berreau, L. M. J. Am. Chem. Soc. 2005, 127, 17186–17187.
[ ] Eduardo E. Chufan, Simona C. Puiu, Kenneth D. Karlin. Acc. Chem. Res. 2007, 40, 563-572.
[ ] Christopher J. Cramer, Willim B. Tollman. Acc. Chem. Res. 2007, 40, 601-608.
[ ] a) Halfen, J. A.; Mahapatra, S.; Wilkinson, E. C.; Kaderli, S.; Young, V. G., Jr.; Que, L., Jr.; Zuberbühler, A. D.; Tolman, W. B. Science 1996, 271, 1397–1400.; b) Tolman, W. B. Acc. Chem. Res. 1997, 30, 227–237.
[ ] Masatatsu Suzuki. Acc. Chem. Res. 2007, 40, 609-617.
[ ] a) Jacobson, R. R.; Tyeklár, Z.; Farooq, A.; Karlin, K. D.; Liu, S.; Zubieta, J. J. Am. Chem. Soc. 1988, 110, 3690–3692.; b) Tyeklár, Z.; Jacobson, R. R.; Wei, N.; Murthy, N. N.; Zubieta, J.; Karlin, K. D. J. Am. Chem. Soc. 1993, 115, 2677–2689.
[ ] a) Kitajima, N.; Fujisawa, K.; Moro-oka, Y. J. Am. Chem. Soc. 1989, 111, 8975–8976.; b) Kitajima, N.; Moro-oka, Y. Chem. Rev. 1994, 94, 737–757.
[ ] Kitajima, N.; Fujisawa, K.; Fujimoto, C.; Moro-oka, Y.; Hashimoto, S.; Kitagawa, T.; Toriumi, K.; Tatsumi, K.; Nakamura, A. J. Am. Chem. Soc. 1992, 114, 1277–1291.
[ ] Hikichi, S.; Yoshizawa, M.; Sasakura, Y.; Akita, M.; Moro-oka, Y. J. Am. Chem. Soc. 1998, 120, 10567–10568.
[ ] Shiren, K.; Ogo, S.; Fujinami, S.; Hayashi, H.; Suzuki, M.; Uehara, A.; Watanabe, Y.; Moro-oka, Y. J. Am. Chem. Soc. 2000, 122, 254–262.
[ ] Cho, J.; Furutachi, H.; Fujinami, S.; Suzuki, M. Angew. Chem., Int. Ed. 2004, 43, 3300–3303.
[ ] Brown, E. J.; Duhme-Klair, A.-K.; Elliott, M. I.; Thomas-Oates, J. E.; Timmins, P. L.; Walton, P. H. Angew. Chem. Int. Ed. 2005, 44, 1392–1395.
[ ] a) Otsuka, S.; Nakamura, A.; Tatsuno, Y. J. Am.Chem. Soc. 1969, 91, 6994–6999; b) Matsumoto, M.; Nakatsu, K. Acta. Crystallogr. 1975, B31, 2711–2713.
[ ] K. Fujita,R. Schenker, W. Gu, T. C. Brunold,S . P. Cramer, C. G. Riordan, Inorg.Chem. 2004, 43, 3324.
[ ] M. T. Kieber-Emmons,J . Annaraj, M.-S. Seo,K. M. VanHeuvelen, T . Tosha,T . Kitagawa, T. C. Brunold, W. Nam,C . G. Riordan, J.Am.Chem.Soc. 2006, 128,14230 ;
[ ] S. Yao, E. Bill, C. Milsmann, K. Wieghardt, M. Driess, Angew.Chem. 2008, 120, 7218; Angew. Chem. Int. Ed. 2008, 47, 7110.
[ ] S. Yao, Y. Xiong, M. Vogt, H. Grutzmacher, C. Herwig, C. Limberg, M. Driess, Angew. Chem. Int. Ed. 2009, 48, 8107-8110.
[ ] S. J. Lippard, J. M. Berg. Principles of Bioinorganic Chemistry.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *