帳號:guest(3.145.119.199)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王維慶
作者(外文):Wang, Wei-Ching
論文名稱(中文):一、立方體型態演繹至六足體之氧化銀奈米晶體的合成及其表面特性 二、研究多截面金奈米晶粒核的形狀以及表面晶面對於形成氧化亞銅包金核殼異質結構的影響
論文名稱(外文):I. Synthesis of Ag2O Nanocrystals with Systematic Shape Evolution from Cubic to Hexapod Structures and Their Surface Properties II. An Investigation of the Effects of Morphology and Surface Facets of Polyhedral Gold Nanocrystal Cores on the Formation of Au–Cu2O Core–Shell Heterostructures
指導教授(中文):黃暄益
指導教授(外文):Huang, Michael Hsuan-Yi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:9723540
出版年(民國):99
畢業學年度:98
語文別:英文
論文頁數:72
中文關鍵詞:氧化銀形狀控制表面特性氧化亞銅核殼異質結構星狀二十面體光催化
相關次數:
  • 推薦推薦:0
  • 點閱點閱:331
  • 評分評分:*****
  • 下載下載:7
  • 收藏收藏:0
一、立方體型態演繹至六足體之氧化銀奈米晶體的合成及其表面特性
本論文利用簡易的方法合成具系統性表面形貌變化的氧化銀(Ag2O)晶粒。藉由混合莫耳數比為1:2:11.8的硝酸銀(AgNO3)、硝酸銨(NH4NO3)和氫氧化鈉(NaOH),即可合成出立方體(cubic)、截邊截角立方體(edge- and corner-truncated cubic)、菱方八面體(rhombicuboctahedral)、截邊截角八面體(edge- and corner-truncated octahedral)、八面體(octahedral)和六足體(hexapod)結構。在最初硝酸銀和硝酸銨的混合液中加入充足的氫氧化鈉溶液去提供形成銨銀錯離子(Ag(NH3)2+)並且使氧化銀奈米晶粒的成長具有良好的型態控制,那些晶粒大多數為次微米尺度大小。晶粒的表面晶面藉由X–Ray 粉末繞射儀、掃描式電子顯微鏡和穿透式電子顯微鏡的鑑定結果而被確定。氧化銀晶粒的能隙(band gap)大約落在1.45 eV。藉由改變試劑的莫耳數比以及添加的體積可以得到平均大小大約200和300 nm 更小的立方體以及八足體。當大部分具有銀原子末端{111}晶面的八面體和六足體分散在帶有正電荷的甲基藍溶液裡會有相斥的反應,但是可以懸浮在帶有負電荷的甲基橙溶液裡,而附有{100}晶面的立方體和八足體對於溶液的分子電荷是不敏感的。







二、研究多截面金奈米晶粒核的形狀以及表面晶面對於形成氧化亞銅包金核殼異質結構的影響
本論文利用簡易的方法使用多面體金核像是完全是{110}晶面的菱形十二面體(rhombic dodecahedra)和擁有{100}、{110}和{111}晶面的截邊截角八面體(edge- and corner-truncated octahedra)合成具系統性表面形貌變化的氧化亞銅包金核殼(Au–Cu2O core–shell)異質結構。藉由改變氯化銅(CuCl2)、界面活性劑十二烷基硫酸鈉(sodium dodecyl sulfate)、金核、氫氧化鈉(NaOH)和還原劑鹽酸羥胺(hydroxylamine hydrochloride)混合水溶液中還原劑的量,即可合成出立方體(cubic)到八面體(octahedral)的核殼結構。粉末X光繞射儀可以清楚的觀測到氧化亞銅(111)和(200)面的相對繞射強度轉換,強度弱的金繞射訊號也可以被觀測到。紫外光可見光吸收光譜中只有氧化亞銅晶粒的特徵吸收。藉由穿透式電子顯微鏡和高解析度穿透式電子顯微鏡的鑑定可以確定金核和氧化亞銅殼的界面成長以及方向的關係。合成星狀氧化亞銅包金核殼二十面體(stellated Au–Cu2O core–shell icosahedra)形狀上的需求也被探討,我們發現使用金二十面體奈米晶粒可以得到那些星狀二十面體。氧化亞銅包金核殼八面體在光降分解甲基橙的過程中,比起純氧化亞銅八面體有更好的催化能力,這是由於內層的金核會散射光造成外層的氧化亞銅殼產生第二次的電子電洞對並且有更有效率的電荷分離過程所導致。同時我們也發現在光照射之後八面體的角落會被侵蝕。
TABLE OF CONTENTS

Abstract i
Acknowledgements v
Table of contents vi
List of Figures vii
List of Tables xii

CHAPTER 1 Synthesis of Ag2O Nanocrystals with Systematic Shape Evolution from Cubic to Hexapod Structures and Their Surface Properties

1.1 Introduction 1
1.2 Experimental Section 5
1.3 Results and Discussion 8
1.4 Conclusion 26
1.5 References 27

CHAPTER 2 An Investigation of the Effects of Morphology and Surface Facets of Polyhedral Gold Nanocrystal Cores on the Formation of Au–Cu2O Core–Shell Heterostructures

2.1 Introduction 29
2.2 Experimental Section 36
2.3 Results and Discussion 41
2.4 Conclusion 69
2.5 References 70
LIST OF FIGURES

CHAPTER 1 Synthesis of Ag2O Nanocrystals with Systematic Shape Evolution from Cubic to Hexapod Structures and Their Surface Properties

Figure 1.1 Cyclic voltammogram and SEM images of Ag2O particles prepared by using the electrochemical approach. 2
Figure 1.2 SEM images and corresponding histograms of the size distribution with different concentrations AgNO3/NH3•3H2O. 3
Figure 1.3 SEM images of the Ag2O crystals with various morphologies. 10
Figure 1.4 Size distribution histograms of the different morphologies of Ag2O particles synthesized. 11
Figure 1.5 SEM images and the corresponding schematic drawings of the Ag2O crystals synthesized with morphology evolution. 11
Figure 1.6 Powder X-ray diffraction patterns of the different morphologies of Ag2O crystals synthesized. 13
Figure 1.7 TEM images, their corresponding SAED patterns, and representative SEM images of the various morphologies of Ag2O crystals synthesized. 14
Figure 1.8 TEM image, HR-TEM image, and corresponding SAED pattern after prolonged irradiation of the Ag2O particle by an electron beam. 15
Figure 1.9 UV–vis absorption spectra of the Ag2O crystals and the diffuse reflectance spectrum of the dried octahedral Ag2O crystals. 16
Figure 1.10 SEM images of the smaller Ag2O nanocubes. 18
Figure 1.11 Size distribution histograms for the smaller nanocube and octapod samples. 19
Figure 1.12 Powder X-ray diffraction patterns for the smaller nanocube and octapod samples. 19
Figure 1.13 UV–vis absorption spectra of the Ag2O nanocubes synthesized with different particle sizes. 19
Figure 1.14 SEM images, TEM image, and its corresponding SAED pattern for the Ag2O octapod sample. 21
Figure 1.15 Photographs of the methylene blue solutions taken after dispersing the different morphologies of the Ag2O crystals. 24
Figure 1.16 UV–vis absorption spectra of the methylene blue solutions with dispersing the different morphologies of the Ag2O crystals. 24
Figure 1.17 Photographs of the methyl orange solutions taken after dispersing the different morphologies of the Ag2O crystals. 25
Figure 1.18 UV–vis absorption spectra of the methyl orange solutions with dispersing the different morphologies of the Ag2O crystals. 25









CHAPTER 2 An Investigation of the Effects of Morphology and Surface Facets of Polyhedral Gold Nanocrystal Cores on the Formation of Au–Cu2O Core–Shell Heterostructures

Figure 2.1 Electron microscopy characterization of the shaped binary metal nanocrystals. 30
Figure 2.2 SEM images of the transformation of pre-grown Cu2O cubes over time. 31
Figure 2.3 SEM images of the Cu2O nanocrystals synthesized by varying amount of reducing agent. 32
Figure 2.4 SEM and TEM images of Au–Cu2O core–shell nanocrystals. 33
Figure 2.5 Cross-sectional TEM and interfacial HR-TEM images of the Au–Cu2O core–shell heterostructures. 33
Figure 2.6 SEM images of the systematic morphological evolution of Au–Cu2O core–shell heterostructures. 34
Figure 2.7 SEM image of the rhombic dodecahedral Au nanopaticles and simulations with projections. 41
Figure 2.8 SEM image of the edge- and corner-truncated octahedral Au nanopaticles and simulations with projections. 41
Figure 2.9 SEM images of RDAu–Cu2O core–shell nanocrystals with various morphologies. 43
Figure 2.10 SEM images of ECTOAu–Cu2O core–shell nanocrystals with various morphologies. 43
Figure 2.11 Size distribution histograms of the different morphologies of RDAu–Cu2O core–shell nanocrystals. 45
Figure 2.12 Size distribution histograms of the different morphologies of ECTOAu–Cu2O core–shell nanocrystals. 45
Figure 2.13 Powder X-ray diffraction patterns of the different morphologies of RDAu–Cu2O core–shell nanocrystals. 47
Figure 2.14 Powder X-ray diffraction patterns of the different morphologies of ECTOAu–Cu2O core–shell nanocrystals. 47
Figure 2.15 TEM images, cross-sectional TEM images, their corresponding SAED patterns, representative SEM images, and simulation drawings of a face-raised cubic and an octahedral RDAu–Cu2O core–shell heterostructure. 49
Figure 2.16 TEM image, its corresponding SAED pattern, representative SEM image, cross-sectional TEM image, the interfacial HR-TEM image, and simulation drawings of individual ECTOAu–Cu2O core–shell face-raised cube and truncated octahedron. 51
Figure 2.17 UV–vis absorption spectra of the various morphologies of the RDAu–Cu2O core–shell nanocrystals. 53
Figure 2.18 UV–vis absorption spectra of the various morphologies of the ECTOAu–Cu2O core–shell nanocrystals. 53
Figure 2.19 Cross-sectional TEM images viewed along the [100], [110], and [111] directions of RDAu–Cu2O core–shell face-raised cube, RDAu–Cu2O core–shell octahedron, ECTOAu–Cu2O core–shell face-raised cube, and ECTOAu–Cu2O core–shell octahedron. 55
Figure 2.20 SEM images of Au icosahedra, stellated Au–Cu2O core–shell icosahedra, and truncated stellated Au–Cu2O core–shell icosahedra. 56
Figure 2.21 SEM image of the trisoctahedral Au nanopaticles and simulations with projections. 57
Figure 2.22 SEM images of TrisAu–Cu2O core–shell nanocrystals with various morphologies. 58
Figure 2.23 Size distribution histograms of the different morphologies of TrisAu–Cu2O core–shell nanocrystals. 59
Figure 2.24 Powder X-ray diffraction patterns of the different morphologies of TrisAu–Cu2O core–shell nanocrystals. 60
Figure 2.25 TEM images, their corresponding SAED patterns, representative SEM images, and simulation drawings of a cubic and a face-raised octahedral TrisAu–Cu2O core–shell heterostructure. 61
Figure 2.26 UV–vis absorption spectra of the various morphologies of the TrisAu–Cu2O core–shell nanocrystals. 62
Figure 2.27 TEM images of the various morphologies of Au nanocrystals. 63
Figure 2.28 A plot of the extent of photodegradation of methyl orange vs. time for the various Cu2O nanocrystals and Au–Cu2O core–shell heterostructures, 65
Figure 2.29 The UV–vis absorption spectra and SEM images of Au–Cu2O core–shell cubes, face-raised cubes, octahedral and face-raised octahedra before and after the photocatalysis. 66
Figure 2.30 A plot of the extent of photodegradation of methyl orange vs. time for the recyclable RDAu–Cu2O core–shell octahedral. 67
Figure 2.31 The UV–vis absorption spectra and SEM images of RDAu–Cu2O core–shell octahedra after photodecomposing methyl orange for 1st cycle, 2nd cycle, and 3rd cycle. 68

LIST OF TABLES

CHAPTER 1 Synthesis of Ag2O Nanocrystals with Systematic Shape Evolution from Cubic to Hexapod Structures and Their Surface Properties

Table 1.1 Average particle sizes and standard deviations for the Ag2O crystals synthesized in samples a–f. 10
Table 1.2 Experimental conditions used for the synthesis of Ag2O nanocubes with sizes control and octapods. 18
Table 1.3 Average particle sizes and standard deviations for the Ag2O nanocubes and octapods synthesized using the condition shown in Table 1.2. 18

CHAPTER 2 An Investigation of the Effects of Morphology and Surface Facets of Polyhedral Gold Nanocrystal Cores on the Formation of Au–Cu2O Core–Shell Heterostructures

Table 2.1 Average particle sizes and standard deviations of the RDAu–Cu2O core–shell nanocrystals synthesized in samples a–f. 44
Table 2.2 Average particle sizes and standard deviations of the ECTOAu–Cu2O core–shell nanocrystals synthesized in samples a–f. 44
Table 2.3 Average particle sizes and standard deviations of the AuTris–Cu2O core–shell nanocrystals synthesized in samples a-f. 59
1.5 References
1. Ida, Y.; Watase, S.; Shinagawa, T.; Watanabe, M.; Chigane, M.; Inaba, M.; Tasaka, A.; Izaki, M. Chem. Mater. 2008, 20, 1254–1256.
2. Kuo, C.-H.; Chen, C.-H.; Huang, M. H. Adv. Funct. Mater. 2007, 17, 3773–3780.
3. Kuo, C.-H.; Huang, M. H. J. Phys. Chem. C 2008, 112, 18355–18360.
4. Ho, J.-Y.; Huang, M. H. J. Phys. Chem. C 2009, 113, 14159–14164.
5. Wang, D.; Mo, M.; Yu, D.; Xu, L.; Li, F.; Qian, Y. Cryst. Growth Des. 2003, 3, 717–720.
6. Kuo, C.-H.; Huang, M. H. J. Am. Chem. Soc. 2008, 130, 12815–12820.
7. Liang, X.; Gao, L.; Yang, S.; Sun, J. Adv. Mater. 2009, 21, 2068–2071.
8. Siegfried, M. J.; Choi, K.-S. J. Am. Chem. Soc. 2006, 128, 10356–10357.
9. Siegfried, M. J.; Choi, K.-S. Angew. Chem., Int. Ed. 2005, 44, 3218–3223.
10. Li, H.; Liu, R.; Zhao, R.; Zheng, Y.; Chen, W.; Xu, Z. Cryst. Growth Des. 2006, 6, 2795–2798.
11. Chang, Y.; Zeng, H. C. Cryst. Growth Des. 2004, 4, 273–278.
12. Read, C. G.; Steinmiller, E. M. P.; Choi, K.-S. J. Am. Chem. Soc. 2009, 131, 12040–12041.
13. Kuo, C.-H.; Hua, T.-E.; Huang, M. H. J. Am. Chem. Soc. 2009, 131, 17871–17878.
14. Murray B. J.; Li, Q.; Newberg, J. T.; Menke, E. J.; Hemminger, J. C.; Penner, R, M. Nano Lett. 2005, 5, 2319–2324.
15. Wang, X.; Wu, H.-F.; Kuang, Q.; Huang, R.-B.; Xie, Z.-X.; Zheng, L.-S. Langmuir 2010, 26(4), 2774–2778.
16. Zhou, W.; Yan, B.; Cheng, C.; Cong, C.; Hu, H.; Fan, H.; Yu, T. CrystEngComm 2009, 11, 2291–2296.


2.5 References
1. Wang, X.; Ren, X.; Kahen, K.; Hahn, M. A.; Rajeswaran, M.; Maccagnano-Zacher, S.; Silcox, J.; Cragg, G. E.; Efros, A. L.; Krauss,T. D. Nature 2009, 459, 686–689.
2. Bussian, D. A.; Crooker, S. A.; Yin, M.; Brynda, M.; Efros, A. L.; Klimov, V. I. Nature Mater. 2009, 8, 35–40.
3. Smith, A. M.; Mohs, A. M.; Nie, S. Nature Nanotechnol. 2009, 4, 56–63.
4. Lal, S.; Clare, S. E.; Halas, N. J. Acc. Chem. Res. 2008, 41, 1842–1851.
5. Achermann, M.; Petruska, M. A.; Kos, S.; Smith, D. L.; Koleske, D. D.; Klimov, V. I. Nature 2004, 429, 642–646.
6. Hines, M. A.; Guyot-Sionnest, P. J. Phys. Chem. 1996, 100, 468–471.
7. Kim, H.; Achermann, M.; Balet, L. P.; Hollingsworth, J. A.; Klimov, V. I. J. Am. Chem. Soc. 2005, 127, 544–546.
8. Peng, X.; Schlamp, M. C.; Kadavanich, A. V.; Alivisatos, A. P. J. Am. Chem. Soc. 1997, 119, 7019–7029.
9. Klimov, V. I.; Ivanov, S. A.; Nanda, J.; Achermann, M.; Bezel, I.; McGuire, J. A.; Piryatinski, A. Nature 2007, 447, 441–446.
10. Wilson, W. L.; Szajowski, P. F.; Brus, L. E. Science 1993, 262, 1242–1244.
11. Yin, Y.; Alivisatos, A. P. Nature 2005, 437, 664–670.
12. Habas, S. E.; Lee, H.; Radmilovic, V.; Somorjai, G. A.; Yang, P. Nature Mater. 2007, 6, 692–697.
13. Fan, F.-R.; Liu, D. Y.; Wu, Y.-F.; Duan, S.; Xie, Z.-X.; Jiang, Z.-Y.; Tian, Z.-Q. J. Am. Chem. Soc. 2008, 130, 6949–6951.
14. Lim, B.; Wang, J.; Camargo, P. H. C.; Jiang, M.; Kim, M. J.; Xia, Y. Nano Lett. 2008, 8, 2535–2540.
15. Xue, C.; Millstone, J. E.; Li, S.; Mirkin, C. A. Angew. Chem., Int. Ed. 2007, 46, 8436–8439.
16. Xiang, Y.; Wu, X.; Liu, D.; Jiang, X.; Chu, W.; Li, Z.; Ma, Y.; Zhou, W.; Xie, S. Nano Lett. 2006, 6, 2290–2294.
17. Tsuji, M.; Matsuo, R.; Jiang, P.; Miyamae, N.; Uemaya, D.; Nishio, M.; Hikino, S.; Kumagae, H.; Kamarudin, K. S. N.; Tang, X.-L. Cryst. Growth Des. 2008, 8, 2528–2536.
18. Pellegrino, T.; Fiore, A.; Carlino, E.; Giannini, C.; Cozzoli, P. D.; Ciccarella, G.; Respaud, M.; Palmirotta, L.; Cingolani, R.; Manna, L. J. Am. Chem. Soc. 2006, 128, 6690–6698.
19. Mokari, T.; Rothenberg, E.; Popov, I.; Costi, R.; Banin, U. Science 2004, 304, 1787–1790.
20. Sun, Z.; Yang, Z.; Zhou, J.; Yeung, M. H.; Ni, W.; Wu, H.; Wang, J. Angew. Chem., Int. Ed. 2009, 48, 2881–2885.
21. Shi, W.; Zeng, H.; Sahoo, Y.; Ohulchanskyy, T. Y.; Ding, Y.; Wang, Z. L.; Swihart, M.; Prasad, P. N. Nano Lett. 2006, 6, 875–881.
22. Mokari, T.; Sztrum, C. G.; Salant, A.; Rabani, E.; Banin, U. Nature Mater. 2005, 4, 855–863.
23. Yang, J.; Elim, H. I.; Zhang, Q.; Lee, J. Y.; Ji, W. J. Am. Chem. Soc. 2006, 128, 11921–11926.
24. Gu, H.; Zheng, R.; Zhang, X.; Xu, B. J. Am. Chem. Soc. 2004, 126, 5664–5665.
25. Yu, H.; Chen, M.; Rice, P. M.; Wang, S. X.; White, R. L.; Sun, S. Nano Lett. 2005, 5, 379–382.
26. Habas, S. E.; Yang, P.; Mokari, T. J. Am. Chem. Soc. 2008, 130, 3294–3295.
27. Kwon, K.-W.; Shim, M. J. Am. Chem. Soc. 2005, 127, 10269–10275.
28. Buonsanti, R.; Grillo, V.; Carlino, E.; Giannini, C.; Curri, M. L.; Innocenti, C.; Sangregorio, C.; Achterhold, K.; Parak, F. G.; Agostiano, A.; Cozzoli, P. D. J. Am. Chem. Soc. 2006, 128, 16953–16970.
29. Kudera, S.; Carbone, L.; Casula, M. F.; Cingolani, R.; Falqui, A.; Snoeck, E.; Parak, W. J.; Manna, L. Nano Lett. 2005, 5, 445–449.
30. Teranishi, T.; Inoue, Y.; Nakaya, M.; Oumi, Y.; Sano, T. J. Am. Chem. Soc. 2004, 126, 9914–9915.
31. Siegfried, M. J.; Choi, K.-S. Adv. Mater. 2004, 16, 1743–1746.
32. Siegfried, M. J.; Choi, K.-S. J. Am. Chem. Soc. 2006, 128, 10356–10357.
33. Kuo, C.-H.; Huang, M. H. J. Phys. Chem. C 2008, 112, 18355–18360.
34. Ho, J.-Y.; Huang, M. H. J. Phys. Chem. C 2009, 113, 14159–14164.
35. Kuo, C.-H.; Hua, T.-E.; Huang, M. H. J. Am. Chem. Soc. 2009, 131,
17871–17878.
36. Wu, H.-L.; Chen, C.-H.; Huang, M. H. Chem. Mater. 2009, 21, 110–114.
37. Atwater, H. A.; Polman, A. Nature Mater. 2010, 4, 205–213.
38. Chen, W.-T.; Yang, T.-T.; Hsu Y.-J. Chem. Mater. 2008, 20, 7204–7206.
39. Chen, W.-T.; Hsu, Y.-J. Langmuir 2010, 26, 5918–5925.
40. Zhang, Y.; Deng, B.; Zhang, T.; Gao, D.; Xu, A.-W. J. Phys. Chem. C 2010, 114, 5073–5079.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 利用氧化鋅奈米柱/氧化銀薄膜之核殼異質結構提升光催化活性
2. 具形態控制的氧化亞銅奈米晶體及氧化亞銅包金之核殼異質結構之合成及其物理與化學性質的探討
3. 水溶液下合成具有可調控粒徑大小的小顆氧化亞銅奈米粒子以及晶面光學性質探討
4. 藉由化學性蝕刻形成具截邊立方體和截角菱形十二面體結構的氧化亞銅奈米骨架;超小顆氧化亞銅立方體和八面體以及八足體的合成及其光催化活性的探討
5. 合成金修飾的氧化亞銅探討高度晶面相關的光催化性質
6. 氧化亞銅奈米粒子之光學性質與能帶結構探討與氧化亞銅與硫化鎘之異質介面所造成的光催化活性的抑制
7. 利用電子、電洞和自由基捕捉劑探討氧化亞銅晶體於光催化的晶面效應
8. 無光催化活性之氧化亞銅立方體經硫化銀沉積後變具有高催化活性
9. 密度泛函理論佐證因能帶及電荷分佈改變使得4-硝基苯乙炔修飾的氧化亞銅粒子其染料光降解活性大幅增強
10. 多面體氧化亞銅奈米晶體光催化芳基硼酸分子羥基化反應
11. 於氧化亞銅立方體表面修飾含腈基或鹵素的乙炔基苯分子以增強其光催化活性
12. 以植晶法合成多截面的金奈米粒子及具分支的金奈米晶體
13. 氧化鋅與氧化鎘奈米線的合成
14. 利用中孔洞沸石材料形成氮化鈦奈米金屬線及合成規則性中孔洞有機矽薄膜
15. 垂直式奈米碳管的合成及碳管-金奈米粒子複合物的製備與光譜鑑定
 
* *