帳號:guest(18.189.157.80)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):曾文正
論文名稱(中文):聚苯胺衍生物的自組裝超分子結構及其應用之研究
指導教授(中文):韓建中
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:9723548
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:200
中文關鍵詞:聚苯胺自組裝
相關次數:
  • 推薦推薦:0
  • 點閱點閱:124
  • 評分評分:*****
  • 下載下載:8
  • 收藏收藏:0
近幾年以來,自組裝(self-assembly)在不同的領域中被廣泛地研究與討論。自組裝是一種不需人為介入的方式,而讓構成元素(components)可以自行地、有組織地組成特定結構之集合體。
本研究透過 CRS 反應,將含有不對稱碳原子之半胱胺酸分子(L-cysteine 或 D-cysteine)引進至聚苯胺主鏈上,合成含有半胱胺酸取代基之聚苯胺衍生物(Pan-Cys),在 CD 光譜實驗中證明此聚苯胺衍生物具有特殊之旋光性質;我們成功的以 Pan-L-Cys 做為建構單元,透過非共價鍵作用力(non-covalent interactions)例如:庫倫靜電力(electrostatic interactions)、氫鍵作用力(hydrogen bonding)、疏水作用力(hydrophobic interactions)以及凡得瓦爾力(van der Waals interactions )等,以自組裝的方式形成許多有趣且特殊的階層式結構(hierarchical structures)。
我們將 Pan-L-Cys 之稀溶液塗佈在基材上,在長時間靜置下,基材上之溶液逐漸揮發而得到乾燥後之試片,並透過 SEM觀察 Pan-L-Cys 分子在基材表面的自組裝行為;我們發現當 Pan-L-Cys 分子處在 NMP 與 DI water 所組成的共溶劑系統下,在乾燥後之試片上發現 Pan-L-Cys 分子自組裝地形成許多由小纖維所組成的塊狀微米結構;然而在添加弱鹼性物質之水溶液於 Pan-L-Cys / NMP 溶液中,在靜置乾燥後之矽晶片表面上,發現 Pan-L-Cys 形成許多奈米等級的高分子球;另外,在溶液中添加金奈米粒子,則發現試片上形成許多由金奈米粒子與Pan-L-Cys 共同聚集所產生的半球型隆起物,且 Pan-L-Cys 能以半球型隆起物裸露出來的金奈米粒子為模板,使小纖維結構呈現高方向性的排列,形成類似海葵狀之奈米結構,並且在此條件下也同時發現 Pan-L-Cys 能自組裝形成二維的平面結構 。
特別的是,我們將 Pan-L-Cys 溶解於 NMP 中,並將此溶液塗佈於濺鍍白金之矽晶片表面上,在靜置乾燥後之試片上發現 Pan-L-Cys 分子透過自組裝的方式形成螺旋狀聚集物。此螺旋結構之寬度在 200 ~ 300 nm尺寸範圍下,同時發現有右手螺旋、左手螺旋以及不具螺旋的緞帶結構。然而在寬度大於 500 nm 的螺旋聚集物,僅形成左手螺旋聚集物,且顯示出完美的螺旋結構。最後我們以 Pan-D-Cys 做為建構單元,在相同的條件下,也成功的透過自組裝的方式,使其組裝成具有完美右手手性的螺旋聚集物(寬度 > 500 nm)與Pan-L-Cys 所形成的螺旋聚集物互為鏡向關係。這也代表我們成功的利用 CRS 方法,透過引進不同立體位向的半胱胺酸側鏈,誘導聚苯胺主鏈衍生出螺旋的二級結構,並透過分子自組裝的方式,將此分子之特色,反應在奈米尺度上。
另外,在冷軋鋼試片之腐蝕防治研究方面,我們將傳統非衍生聚苯胺塗佈之冷軋鋼試片,以乙腈與丙酮溶劑在氮氣下浸泡一天後,發現經由溶劑處理過後之試片,透過動態極化掃描的電化學分析技術,得知經乙腈與丙酮處理後之聚苯胺塗佈試片,在浸泡於 3.5 wt% 之 Na2SO4 水溶液初期(30 min),能有效提高試片腐蝕電位,而其防蝕效能均高於 99 %。並經由長時間監測試片之OCP 以及同時進行 EIS 量測,經乙腈與丙酮處理後之聚苯胺塗佈之冷軋鋼試片能維持其腐蝕效能達 6 天,相較於未經過溶劑處理之聚苯胺塗佈試片(3 天)有較佳的防腐效率。
我們將非衍生聚苯胺研究的結果與經驗,套用在正丁硫烷取代之聚苯胺衍生物(Pan-SBu)上,發現經乙腈處理後的 Pan-SBu 塗佈之冷軋鋼試片,可以達到長時效的自癒能力,能在浸泡電解質溶液的條件下,在長達 44 天內均能有效地抑制冷軋鋼界面的腐蝕行為。此優越的長效性保護,主要是因為經 CRS 反應後,聚苯胺主鏈取代上疏水性之側鏈,增加塗層之抗水性,另外取代基上的硫原子,可做為anchoring group 並吸附於鋼鐵表面,增加塗層與冷軋鋼試片表面的吸附能力;另一方面,透過適當溶劑浸泡處理可以讓高分子主鏈在微澎潤的條件下,具有足夠的空間和移動性,並透過其與冷軋鋼金屬表面的配位作用及和鄰近高分子鏈段間的氫鍵作用力來調整其堆疊構形,使得堆疊密度與單位體積內之分子作用力強度達成最大化;當調整到適當構形後,能有效減少原先塗層中的微孔洞及缺陷並增進吸附能力,另外長碳鏈側鏈之存在,亦可發揮塑化劑之功能,可協助潤滑主鏈之移動,因此能達到長時效之防腐效果。
Self-assembly had been widely researched recently. Self-assembly is the process by which molecular components adopt a defined arrangement without guidance from an outside source, and aggregate to a specific structures or pattern. L-cysteine or D-cysteine was first introduced to backbone of polyanilines via the CRS reaction to obtain derivatized polyanilines (Pan-Cys). The Pan-Cys can act as building blocks and is self-assembled in to many instresting hierarchical structures included fibril nano-stuctures, polymeric particle, and two dimentional flake stucture through non-covalent interactions such as electrostatic interaction, hydrogen bonding, hydrophobic interactions and van der waals interactions. We also found the formation of an intriguing helical aggregation when Pan-L-Cys/NMP was cast on Pt coated silica wafer. Especially the size over 500 nm would presented in left-handed helix. However Pan-D-Cys would formed in right-handed helix.
As for anticorrosion, Pan coated and Pan-SBu coated steel plates have been studied with electrochemical potentiodynamic polarization methods and electrochemical impedance spectroscopy (EIS). Pan-SBu displayed a better anti-corrosion efficiency in comparison with its parent unsubstituted Pan. The results were in line with the expected property changes after the addition of a hydrophobic and electron donating substituent to the polymer backbone. Moreover, Pan-SBu coated steel plates after being solvent-annealed by acetonitrile, showed much surperior anti-corrosion protection. Such treatment help reduce the pinhole and defect of the film and greatly enhance the barrier property of Pan-SBu coated steel .
第一章 緒論與文獻回顧 1
1-1 緒論 2
1-2 導電高分子之簡介 3
1-2-1 導電高分子之應用 3
1-2-2 導電高分子之導電原理 4
1-3 聚苯胺簡介 5
1-4 聚苯胺的合成 7
1-4-1 電化學方法合成聚苯胺 7
1-4-2 化學方法合成聚苯胺 7
1-4-3 聚苯胺聚合機構 8
1-5 聚苯胺的性質鑑定 10
1-5-1 UV-Vis 光譜研究 10
1-5-2 XPS 光譜研究 12
1-5-3 IR 光譜研究 14
1-6 旋光性聚苯胺的合成 15
1-6-1 電化學方式合成旋光性聚苯胺 15
1-6-2 化學方式合成旋光性聚苯胺 18
1-7 自組裝(self-assembly)原理及其應用 26
1-7-1 自組裝之種類51 26
1-7-2 自組裝之特色 27
1-8 利用自組裝之方式構成階層式結構(hierarchical structures) 29
1-8-1 小分子構成之階層結構 30
1-8-2 寡分子(oligomer)所構成之階層結構 32
1-8-3 高分子(polymer)所構成之階層結構 34
1-9 研究動機 36
1-10 參考文獻 37
第二章 實驗內容 43
2-1 藥品 44
2-2 聚苯胺的合成 46
2-2-1 聚合反應(摻雜態聚苯胺): 46
2-2-2 聚苯胺去摻雜反應: 47
2-3 利用同步還原與取代反應(CRS)合成含 L-半胱胺酸取代基之聚苯胺衍生物(Pan-L-Cys) 48
2-3-1 反應條件與溶液試劑配製 48
2-3-2 CRS 實驗步驟 48
2-4 Pan-Cys 自組裝之實驗步驟 50
2-4-1 共溶劑系統對 Pan-L-Cys 自組裝的影響 50
2-4-2 Pan-L-Cys 形成 Vesicle 以及蜂窩狀結構 50
2-4-3 鹼性添加物對於 Pan-L-Cys 自組裝的影響 51
2-4-4 基材對 Pan-L-Cys 自組裝的影響 52
2-5 利用檸檬酸鈉合成金奈米粒子 54
2-6 儀器設備 55
2-6-1 紫外光-可見光光譜儀(UV-Vis Spectroscopy) 55
2-6-2 X 光-光電子能譜儀 ( X-ray Photoelectron Spectroscopy;XPS) 55
2-6-3 掃描式電子顯微鏡(Scanning Electron Microscope;SEM) 56
2-6-4 穿透式電子顯微鏡(Transmission Electron Microscope;TEM) 56
2-7 防蝕性能之測試方法與相關電化學原理 58
2-7-1 動態電位極化曲線掃描法1 58
2-7-2 電化學阻抗頻譜法1 60
2-8 參考文獻 63
第三章 含半胱胺酸取代基之聚苯胺衍生物的自組裝行為研究 64
3-1 前言 65
3-2 含半胱胺酸取代基之聚苯胺共聚物(Pan-L-Cys)合成與鑑定 69
3-2-1 UV-Vis 吸收光譜之結果分析 69
3-2-2 XPS 鑑定結果與分析 71
3-3 建立 Pan-Cys 之自組裝研究方式與實驗條件 74
3-4 CH3Cl、THF、EG 與 NMP之共溶劑系統對Pan-L-Cys自組裝的影響 77
3-4-1 Chloroform 與 NMP 所組成之共溶劑系統 78
3-4-2 THF 與 NMP 所組成之共溶劑系統 79
3-4-3 EG 與 NMP 所組成的共溶劑系統 82
3-5 DI water 與 NMP 之共溶劑系統對 Pan-L-Cys 自組裝的影響 84
3-5-1 共溶劑系統之UV-Vis 吸收光譜之結果與討論 86
3-5-2 觀察時間因素對 Pan-L-Cys 自組裝之影響 89
3-5-3 Pan-L-Cys 階層式結構形成機制討論 91
3-6 Pan-L-Cys 透過金奈米粒子做為模板之自組裝行為 94
3-6-1 金奈米粒子之合成與鑑定 94
3-6-2 添加金奈米粒子對 Pan-L-Cys自組裝的影響 96
3-6-3 Pan-L-Cys 形成vesicle 結構 100
3-7 鹼性添加物對於Pan-L-Cys 自組裝的影響 109
3-7-1 添加碳酸鈉水溶液於 Pan-L-Cys / NMP 109
3-7-2 添加碳酸氫鈉水溶液於 Pan-L-Cys / NMP 111
3-7-3 添加三乙胺溶液於 Pan-L-Cys / NMP 112
3-7-4 Pan-L-Cys 球狀奈米粒子之鑑定 114
3-7-5 球狀高分子粒子形成機制與討論 116
3-8 基材對 Pan-L-Cys 自組裝的影響 119
3-8-1 基材的選擇與其製備條件 119
3-8-2 Pan-L-Cys 塗佈於不同基材上之形貌觀察 121
3-8-3 奈米級歐傑電子能譜儀(Nano-Auger Electron Spectroscopy)之鑑定 122
3-8-4 螺旋結構之特色與形成機制之討論 126
3-8-5 Pan-D-Cys 之螺旋結構與 EDX 鑑定 132
3-9 結論 134
3-10 參考文獻 136
第四章 經溶劑處理之聚苯胺及衍生聚苯胺於防腐應用的研究 138
4-1 前言 139
4-2 經聚苯胺及其衍生物塗佈之冷軋鋼試片製備與量測 141
4-2-1 冷軋鋼片(cold-rolled steel)之前處理 141
4-2-2 含有聚苯胺或聚苯胺衍生物塗佈薄膜之冷軋鋼片的製備步驟 141
4-2-3 經溶劑處理(solvent annealing)的聚苯胺或聚苯胺衍生物塗佈之冷軋鋼片之製備步驟 142
4-2-4 試片之試驗方法 142
4-3 建立抗腐蝕的研究方法 143
4-4 經非衍生聚苯胺塗佈之冷軋鋼試片之動態極化掃描結果 145
4-4-1 未塗佈之冷軋鋼試片之結果與討論 145
4-4-2 聚苯胺塗佈之冷軋鋼試片之結果與討論 147
4-4-3 經溶劑處理後的聚苯胺塗佈冷軋鋼試片之結果與討論 149
4-5 經非衍生聚苯胺塗佈之冷軋鋼試片之 EIS 監測討論 154
4-5-1 未塗佈之冷軋鋼試片之結果與討論 154
4-5-2 聚苯胺塗佈之冷軋鋼試片之結果與討論 156
4-5-3 經溶劑處理的聚苯胺塗佈之冷軋鋼試片之結果與討論 161
4-6 經聚苯胺衍生物塗佈之冷軋鋼試片之 EIS 監測討論 171
4-6-1 Pan-SBu 塗佈之冷軋鋼試片之結果與討論 171
4-6-2 經乙腈處理的 Pan-SBu 塗佈之冷軋鋼試片之結果與討論 176
4-7 經乙腈處理後之 Pan-SBu 塗佈之冷軋鋼試片浸泡於氯化鈉水溶液中之結果與討論 190
4-8 結論 198
4-9 參考文獻 199
1. Hegger, A.J. Angew. Chem. Int. Ed. 2001, 40, 2591.
2. Natta, G.;Mazzanti, G.;Corradini, P. Atti Accad. Naz. Lince Rend. Cl. Sci. Fis. Mat. Nature. 1958, 25, 3.
3. (a) Shirakawa, H.;Ikeda, S. J. Polym. 1971, 2, 231. (b) Ito, T.;Shirakawa, H.; Ikeda, S.;J. Polym. Sci. Polym. Chem. Ed. 1974,12,10.
4. (a) Shirakawa, H.;Louis, E. J.; MacDiarmid, A. G.;Chiang, C. K.;Hegger, A. J. J. Chem. Soc. Chem. Commun. 1977,578. (b) Chiang, C. K.; Fincher, C. R.;Rark, Y. W.;Heeger, A. J.;Shirakawa, H.;Louis, E. J.;Gau, S. C.;MacDiarmid, A. G. Phys. Rev. Lett. 1977,39,1098.
5. Handbook of chemistry and physics P. David Ed.;The Chemical Rubber Company. 1991.
6. Hyodo, K. Electrochim. Acta. 1994, 39, 265.
7. Hoa, D. T.; Kumar, T. N. S.; Punekar, N. S.; Srinivasa, R. S.; Lai, R.; Contractor, A. Q. Anal. Chem. 1992, 64, 2645.
8. One-Dimensional Metals: Physics and Materials Science; Roth, S. VCH: Weinheim, 1995.
9. Gustafsson, G.; Cao, Y.; Treacy, G. M.; Klavetter, F.; Colaneri, N.; Heeger, A. J. Nature 1992, 357, 477.
10. Paul, E. W.; Ricco, A. J.; Wrighton, M. S. J. Phy. Chem. 1985, 89, 1441.
11. (a) Nishino, A. J. Power Sources 1996, 60, 137. (b) Yamamoto, H.; Oshima, M.; Fukuda, M.; Isa, I.; Yoshino, K. J. Power Sources 1996, 60, 173.
12. Natta, G.; Mazzanti, G.; Corradini, P. Atti Accad. Naz. Lince Rend. Cl. Sci. Fis. Mat. Natur. 1958, 25, 3.
13. Diaz, A. F.; Kanazdwd, K. K. in “Extended Linear Chain Compo- unds”(G. S. Miller, ed.), Plenum, New York, 1982, p3.
14. Baughman, R. M.; Bredas, J. L.; Elsenbaumer, R. L.; Shacklette, L. W. Chem. Rev. 1982, 82, 209.
15. Kaneto, K.; Ura, S.; Yoshino, K.; Inuishi, Y. Jap. J. of App. Phys. 1984, 23, 189.
16. Mohilner, D. M.; Adams, R. N.; Argersinger, W. J. J. Am. Chem. Soc. 1962, 84, 3618.
17. Huang, W. S.; Humphrey, B. D.; MacDiarmid, A. G., J. Chem. Soc. Farady. Trans. 1986, 82, 2385.
18. Watanabe, A. K.; Mori, K.; Iwasaki, Y.; Nakamura, Y. Macromolecules 1987, 20, 1793.
19. (a) Macdiarmid, A. G.; Epstein, A. J. Faraday Discuss Chem. Soc. 1989, 88, 317. (b) Focke, W. W.; Wenk, G. E.; Wei, Y. J. Phys. Chem. 1987, 91, 5813. (c) Macdiarmid, A. G.; Chiang, J. C.; Richter, A. F.; Somasiri, N. L. D.; Epstein, A. J. “Polyaniline : Sythesis and Characterization of the Emeraline Oxidation State by Elemental Analysis” in L. Alca’cer(ed). “Conducting Polymer” D. Reidel Pub. Comp. Dordrecht, Holland 1987, 105. (d) Travers,;J. P.; Chroboczek, J. ; Devreux, J.; Genoud, F. ; Nechtschein, M.; Syed, A.; Genies, E. M.; Tsintavis, C. Mol. Cryst. Liq. Cryst. 1985, 121, 195.
20. Adams, P. N.; Monkman, A. P. Synth. Met. 1997, 87, 165.
21. (a) Genies, E. M.; Syed, A. A.; Jsintavis, C. Mol. Cryst. Liq. Cryst. 1985, 121, 181. (b) Genies, E. M.; Jsintavis, C. Electroanal. Chem. 1985, 195, 109.
22. Albuquerque, J. E.; Mattoso, L. H. C.; Balogh, D. T.; Faria, R. M.; Masters, J. G.; MacDiarmid, A. G. Synth. Met. 2000, 113, 19.
23. Lu, F. L.; Wudl, F.; Nowak, M.; Heeger, A. J. J. Am. Chem.Soc. 1986, 108, 8311.
24. Albuquerque, J. E.; Mattoso, L. H. C.; Balogh, D. T.; Faria, R. M.; Masters, J. G.; MacDiarmid, A. G. Synth. Met. 2000, 113, 19.
25. Sun, Y.; Macdiarmid, A. G.; Epstein, A. J. J. Chem. Soc. Chem. Common. 1990, 529.
26. Cao, Y.; Smith, P.; Heeger, A. J. Synth. Met. 1989, 32, 263.
27. Inoue, M.; Navarro, R. E.; Inoue, M. B. Synth. Met. 1989, 30, 199.
28. Stafstrom, S.; Bredas, J. L.; Epstein, A. J.; Woo, H. S.; Tanner, D. B.; Huang, W. S.; MacDiramid, A. G. Phys. Rev. Lett. 1987, 59, 1464.
29. Salaneck, W. R.; Lundstorm, T.; Hjertberg, T.; Duke, C. B.; Conwell, E.; Paton, A.; MacDiarmid, A. G., Somasiri, N. C. D.; Huang, W. S.; Richter, A. F. Synth. Met. 1987, 18, 291.
30. (a) Kang, E. T.; Neoh, K. G.; Khor, S. H.; Tan, K. L.; Tan, B. T. J. Chem. Soc., Chem. Commun. 1989, 695. (b) Tan, K. L.; Tan, B. T. G.; Kang, E. T.; Neoh, K. G. Physical Review B 1989, 39, 8070.
31. Watanabe, A.; Mori, K.; Mikuni, M.; Nakamura, Y.; Matsnda, M. Macromolecules 1989, 22, 3323.
32. NaKajima, T.; Harada, M.; Osawa, R.; Kawaqoe, T.; Furukawa, Y.; Harada, I. Macromolecules 1989, 22, 2644.
33. Monkman, A. P.; Stevens, G. C.; Bloor, D. J. Phys. D : Appl. Phys. 1991, 24, 738.
34. Kang, E. T.; Neoh, K. G.; Woo, Y. L.; Tan, K. L. Polym. Commun. 1991, 32, 412.
35. Majidi, M. R.;Kane-Maguire, L. A. P.;Wallace, G. G. Polymer 1994, 36, 3113–3115.
36. Majidi, M. R.;Kane-Maguire, L. A. P.;Wallace, G. G. Aust. J. Chem., 1998, 51, 23–31.
37. Pornputtkul , Y.;Kane-Maguire, L. A. P.;Wallace, G. G. Macromolecules 2006, 39, 5604.
38. Li, W.;Wang,H. L. Adv. Funct. Mater. 2005, 15, 1793.
39. Strounina, E. V.;Kane-Maguire, L. A. P.;Wallace, G. G. Polymer 2006, 47, 8088–8094.
40. Havings, E. E.;Bouman, M. M.;Meijer, E. W.;Pomp, A.;Simenon, M. M. J. Synth. Met. 1994, 66, 93.
41. H. Goto, Macromol. Chem. Phys., 2006, 207, 1087.
42. Boonchu, C.;Kane-Maguire, L. A. P.;Wallace, G. G. Synth. Met. 2003, 135–136, 241.
43. Majidi, M. R.;Kane-Maguire, L. A. P.;Wallace, G. G. Polymer, 1996, 37, 359.
44. Norris, I. D.;Kane-Maguire, L. A. P.;Wallace, G. G.;Mattoso, L. H. C. Aust. J. Chem. 2000, 53, 89.
45. Reece, D. A.;Kane-Maguire, L. A. P.;Wallace, G. G. Synth. Met. 2001, 119, 101.
46. Li, W.;McCarthy, P. A.;Liu, D.;Huang, J.;Yang S. C.;Wang, H. L. Macromolecules, 2002, 35, 9975.
47. Yang, Y.;Wan;M. J. Mater. Chem. 2002, 12, 897–901.
48. Li, W.;Wang, H. L. J. Am. Chem. Soc. 2004, 126, 2278-2279.
49. Zhang, X.;Song, W.;Harris, Peter J. F.;Mitchell, G. R.;Bui , T. T. T., Drake A. F. Adv. Mater. 2007, 19, 1079–1083.
50. Yan, Y.;Yu, Z.;Huang, Y.;Yuan, W.;Wei, Z. Adv. Mater. 2007, 19, 3353–3357.
51. Whitesides, G. M.;Crzybowski, B. Science 2002, 295, 2418.
52. Lecle`re, Ph.;Surin, M.;Viville, P.;Lazzaroni, R.; Kilbinger, A. F. M.;Henze, O.;Feast, W. J.;Cavallini, M.;Biscarini, F.;Schenning, A. P. H. J.;Meijer, E. W. Chem. Mater. 2004, 16, 4452-4466.
53. Zhang, Y.; Lu, R.; Song, Y.; Jiang, L.; Liu, Y.; Zhao, Y.; Li, T. J. Thin Solid Films 2003, 437, 150.
54. Steed, J. W.; Atwood, J. L. Supramolecular Chemistry; Wiley & Sons: Chichester, 2000.
55. (a) R. Lakes, Nature 1993, 361, 511; (b) D. Tirrell, Hierarchical Structures in Biology as a Guide for New Materials Technology, Technology Report, Washington, 1994; (c) M. Muthukumar, C. K. Ober, E. L.Thomas, Science 1997, 277, 1225. (d) S. Hecht, Mater. Today 2005, 8, 48; (e) C. J. Hawker, K. L. Wooley, Science 2005, 309, 1200; (f) E. W. Meijer, A. P. H. J. Schenning, Nature 2002, 419, 353.
56. Hoeben,F. J. M. P. Jonkheijm, E. W. ;Meijer, A. P. H. J.; Schenning, Chem. Rev. 2005, 105, 1491.
57. Prince, R. B.; Barnes, S. A.; Moore, J. S. J. Am. Chem. Soc. 2000, 122, 2758-2762.
58. (a) Oda, R.; Huc, I.; Candua, S. J. Angew. Chem., Int. Ed. 1998, 37, 2689-2691. (b) Oda, R.; Huc, I.; Schmutz, M.; Candua, S. J.; MacKintash, F. C. Nature 1999, 399, 566-569.
59. (a) Hafkamp, R. J. H.;Kokke, B. P. A.;Danke, I. M.;Geurts, H. P. M.; Rowan, A. E.;Feiters, M. C.;Nolte, R. J. M. Chem. Commun. 1997, 545-546 .
60. Lokey, R. S., Iverson, B. L. Nature 1995, 375, 303-305.
61. Fishwick, W. G.;Beevers, A. J.; Aggeli, A.; Neville Boden Nano Letter 2003, 3, 1479.
62. Li, Y.;Li, G.;Wang, X.;Li, W.;Su, Z.;Zhang, Y.;Ju, Y. Chem. Eur. J. 2009, 15, 6399 – 6407.
63. Cornelissen, Jeroen J. L. M.;Fischer, M.;Sommerdijk, Nico A. J. M.;Nolte, Roeland J. M. Science 1998, 280, 1427.
64. Zhong, S.;Cui, H.;Chen, Z.;Wooley, K. L.;Pochan, D.J. Soft Matter 2008, 4, 90-93.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 聚苯胺衍生物自組裝層狀薄膜之製備與研究
2. 含巰基乙醇取代基與含各種不同硫醇取代基之聚苯胺的合成、性質鑑定與應用
3. (一)微米金屬管之製備與鑑定, (2)奈米金屬/導電高分子核-殼型態粒子之製備與鑑定
4. 一、聚苯胺衍生物合成方法之比較:氧化共聚合法及同步還原與取代反應法 二、利用同步還原與取代反應合成高導電性自身摻雜態聚苯胺衍生物
5. 一.利用新穎的電化學方法改進聚苯胺薄膜導電度之研究; 二.合成苯胺寡聚合物及苯胺寡聚合物/金屬自組裝奈米/微米結構
6. 一、共軛高分子暨小分子多層結構PLED元件之研究 二、巰基乙醇取代聚苯胺於PLED及OLED應用之研究
7. 一、聚苯胺於非水溶液之電化學行為的研究 二、含氟衍生聚苯胺之合成、鑑定暨應用
8. 衍生聚苯胺與水性聚苯胺的合成及其抗腐蝕應用的研究
9. 一. 酸與鹼催化空氣氧化固態聚苯胺之現象與機制探討;二.聚苯胺與聚苯胺衍生物在染料敏化型太陽能電池上的應用
10. 含半胱氨酸取代基之聚苯胺共聚物:合成、鑑定與光學活性
11. 聚苯胺共聚物奈米粒子的合成與鑑定
12. 苯胺寡聚合物-銀奈米結構合成與鑑定
13. 含芳香環側鏈取代之聚苯胺共聚合物的合成與鑑定
14. 利用聚苯胺為催化劑氧化硫醇成雙硫化物
15. 高度位向選擇性含硫酚基及2-硫基吡啶之聚噻吩的合成及其在有機染料敏化太陽能電池上的應用
 
* *