帳號:guest(18.226.222.89)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):傅睿涵
論文名稱(中文):銀奈米粒子表面電漿共振效應對釔鋁石榴石螢光強度的影響
指導教授(中文):韓建中
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:9723554
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:154
中文關鍵詞:聚苯胺表面電漿共振
相關次數:
  • 推薦推薦:0
  • 點閱點閱:98
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
  在本論文中,我們利用銀奈米粒子的特殊光學性質─表面電漿共振( Surface plasmon resonance, SPR ),產生的金屬增強螢光效應( Metal-enhanced fluorescence ),使得高螢光發光效率的重要商業產品釔鋁石榴石( Y3Al5O12, YAG, 螢光量子效率為 0.7~0.8 )的螢光放光強度更為增加。而且我們發現,使用聚乙烯吡咯烷酮( Polyvinylpyrrolidone, PVP ),或是聚苯胺衍生物( Pan-SBu、Pan-Cys )可以成功地在YAG顆粒上形成一層均勻的包覆膜,此高分子包覆膜可同時扮演兩種角色,第一為協助吸附銀奈米顆粒於YAG顆粒的表面上,第二為使奈米銀與YAG表面間隔一可控制的適當距離。奈米級歐傑電子能譜儀( Nano-Auger )可幫助我們量測顆粒極表面的元素組成訊號,以及其擁有解析度較高的SEM影像,進一步輔助我們瞭解表面上微小區域的元素組成;並利用高解析穿透式電子顯微鏡( HR-TEM )來觀察與量測高分子在YAG表面包覆的厚度,以及奈米銀在其表面上的分布狀態,搭配螢光放光光譜儀( PL )的量測結果,可以發現YAG螢光放光的強度,確實有隨著兩者的間隔距離以及奈米銀的數量多寡而改變。
  我們也發現以聚苯胺衍生物做為間隔膜時,不僅僅可以控制聚苯胺衍生物在YAG表面上的包覆厚度,還可以利用由本實驗室所開發之同步還原取代反應( Concurrent reduction and substitution reaction, CRS ) 合成出各種含硫的側鏈取代基聚苯胺衍生物,使其對銀離子有更強的吸引力,並利用聚苯胺主鏈的氧化還原能力,可讓銀離子直接在YAG表面還原成長成較大且適合尺寸之銀奈米顆粒,且相較於加入現成的銀奈米顆粒,此方法可使奈米銀集中成長在YAG表面,增加奈米銀的使用效率。
  由實驗結果得知,於YAG表面上沉積銀奈米顆粒的數量不可過多,否則會造成YAG螢光強度大幅的減弱。而含半胱胺酸( Cysteine )取代基聚苯胺衍生物( Pan-Cys )對於銀粒子的吸引力較強,可抓住更多的奈米銀粒子,而當其在YAG表面上的包覆厚度約為 10~15 nm 時,銀奈米顆粒的數量控制在少量的範圍時,可達到 1.25~1.50 倍的增強放光效果,甚至超越YAG原本的量子效率。此結果顯示銀奈米顆粒的表面電漿共振效應,確實可造成YAG的螢光放光強度增強的效果。
  In this dissertation, we utilized the“surface plasmon resonance”effect of silver nanoparticles to study the metal-enhanced fluorescence effect for the fluorphore, YAG. We have demonstrated that polyvinylpyrrolidone (PVP), polyaniline (Pani) or it derivative ─ Pan-SBu, Pan-Cys can form a uniform coating layer on the surface of YAG particles, which can be used as the absorption layer for the silver nanoparticles on YAG, and meanwhile served as a spacer between silver nanoparticles and YAG particles. Auger electron nanosc ope (Nano-Auger) was used to analyze the elemental compositions for the particle surface, which is coupled with a high resolution SEM to help locate specific interested small area; the thickness of the polymer encapsulation and the distribution of silver nanoparticles on YAG surface were observed by high resolution transmission electron microscope (HR-TEM). The photoluminescence (PL) results showed that fluorescence emission intensity of YAG varied with the interval distance between YAG surface and the silver nanoparticles and is also very sensitive to the amount of the surface silver nanoparticles.
  Our results also indicated that Pan-SBu and Pan-Cys display stronger attractive force between the –SBu or –Cys functional group and silver. Most interestingly, the redox ability of the Pani chain can help reduce silver ion and grow silver nanoparticles directly on the YAG surface, which can greatly increase the use efficiency of silver nanoparticles.
  Furthermore, the amount of silver nanoparticles on the YAG surface should be appropriately controlled to prevent fluorescence quench by overdosed silver nanoparticles. We found that the optimal encapsulation thickness of Pan-Cys is about 10~15 nm, which lead to 1.25~1.50 fold enhancement on fluorescence intensity.
第 一 章 緒 論 與 文 獻 回 顧 1
1-1 緒論 2
1-2 表面電漿共振 4
1-2-1 金屬奈米粒子的光學性質 4
1-2-2 表面電漿子 6
1-2-3 金屬奈米粒子在光學元件上的應用價值 8
1-3 利用金屬奈米粒子其表面電漿共振增強螢光放光 12
1-3-1 螢光增強理論 12
1-3-2 影響螢光增強效應的因素 15
1-4 導電高分子簡介 19
1-4-1 導電高分子聚苯胺簡介 21
1-4-2 化學方法合成聚苯胺 22
1-4-3 聚苯胺聚合機構 23
1-4-4 聚苯胺性質鑑定 25
1-5 YAG螢光粉簡介 30
1-6 金屬增強螢光效應的實例 31
1-7 研究動機 36
1-8 參考文獻 37
第 二 章 實 驗 內 容 43
2-1 藥品 44
2-2 聚苯胺的合成 45
2-3 利用同步還原取代反應 ( CRS ) 合成聚苯胺衍生物 47
2-4 包覆高分子於YAG顆粒表面並沉積銀奈米顆粒 50
2-5 於YAG顆粒表面包覆聚苯胺衍生物 51
2-5-1 於YAG顆粒表面包覆Pan-SBu 51
2-5-2 於YAG顆粒表面包覆Pan-Cys 51
2-5-3 於YAG顆粒表面包覆聚苯胺後再進行CRS反應接上取代基 52
2-6 於YAG顆粒表面成長銀奈米顆粒 55
2-6-1 以檸檬酸鈉做為保護劑 55
2-6-2 以PVP做為保護劑 55
2-7 製做聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)薄膜 56
2-7 儀器部份 57
第三章 銀奈米粒子與YAG間的距離對螢光強度的影響 61
3-1 利用PVP做為間隔膜包覆於YAG螢光粉顆粒表面 62
3-1-1 實驗方法的建立 62
3-1-2 紅外線光譜儀(FT-IR)的鑑定結果分析與討論 67
3-1-3 熱重量分析儀(TG-DTA)的鑑定結果分析與討論 68
3-1-4 高解析穿透式電子顯微鏡(HR-TEM)的鑑定結果分析與討論     70
3-1-5 歐傑電子能譜儀(Auger electron spectroscopy)的鑑定結果分析與討論 73
3-2 沉積銀奈米顆粒於YAG螢光粉顆粒表面 76
3-2-1 銀奈米顆粒之基本性質 76
3-2-2 實驗方法的建立 78
3-3 螢光放光結果與討論 79
3-3-1 PVP薄膜厚度對螢光放光強度的影響 79
3-3-2 銀奈米顆粒數量對螢光放光的影響 82
3-4 結論 90
3-5 參考文獻 90
第四章 聚苯胺衍生物包覆於YAG顆粒表面並成長銀奈米顆粒對螢光強度的影響 91
4-1 前言 92
4-2 Pan-SBu與Pan-Cys之合成與鑑定 94
4-2-1 Pan-SBu的合成與鑑定 94
4-2-2 Pan-Cys的合成與鑑定 100
4-3 利用Pan-SBu包覆於YAG顆粒表面 104
4-3-1 實驗方法的建立 104
4-3-2 不同濃度Pan-SBu包覆在YAG顆粒表面上的鑑定結果 109
4-3-3 不同濃度Pan-SBu包覆在YAG顆粒表面對螢光放光的影響 112
4-4 利用Pan-Cys包覆於YAG顆粒表面 115
4-4-1 實驗方法的建立 115
4-4-2 不同濃度Pan-Cys包覆在YAG顆粒表面上的鑑定結果 115
4-4-3 不同濃度Pan-Cys包覆在YAG顆粒表面對螢光放光的影響 119
4-5 於YAG顆粒表面上成長銀奈米顆粒 122
4-5-1 實驗方法的建立 122
4-5-2 以檸檬酸鈉作為保護劑 123
4-5-3 不同反應時間成長銀奈米顆粒的鑑定結果及其對螢光放光強度的影響 124
4-5-4  YAG顆粒表面上之銀奈米顆粒數量對螢光放光強度的影響 130
4-5-5 以PVP高分子作為保護劑 136
4-5-6 不同厚度之Pan-Cys對YAG螢光放光的影響 137
4-5-7 降低銀奈米顆粒的數量對YAG螢光放光的影響 141
4-6 於YAG顆粒表面上進行CRS反應 145
4-6-1 於YAG顆粒表面上合成Pan-SBu 145
4-6-2 於YAG顆粒表面上合成Pan-Cys 149
4-7 結論 153
4-8 參考文獻 154
1. Mie; Medien, G. B.; Metallosungen, s. k., "Contributions to the optics of turbid media, particularly of colloidal metal solutions". Ann. Phys. 1908, 25, 377-452.
2. Wagner, F. E.; Haslbeck, S.; Stievano, L.; Calogero, S.; Pankhurst, Q. A.; P.Martinek, K., “Before striking gold in gold-ruby glass”. Nature 2000, 407, 691-692.
3. Raether, H., “Surface plasmons on smooth and rough surface and on gratings”. 1998, Springer-Verlag, Berlin.
4. Tao, A. R.; Susan Habas; Yang, P., “Shape Control of Colloidal Metal Nanocrystals”. Small 2008, 4 (3), 310-325.
5. Chang, S. S.; Wang, C. R. C., “The synthesis and absorption spectra of several metal nanoparticle systems”. Chemistry 1998, 56, 209-222.
6. Xu, H.; Bjerneld, E. J.; Kall, M., “Spectroscopy of single hemoglobin molecule by surface-enhanced raman scattering”. Phys. Rev. Lett. 1999, 22, 4357-4360.
7. Jain, P. K.; El-Sayed, M. A., “Plasmonic coupling in noble metal nanostructures”. Chem. Phys. Lett. 2010, 487, 153-164.
8. Otto, A.; Mrozek, I.; Grabhorn, H.; Akemann, W., “Surface-enhanced Raman scattering”. J. Phys. Condens. Matter 1992, 4, 1143-1212.
9. Aslan, K.; Gryczynski, I.; Malicka, J.; Matveeva, E.; Geddes, J. R. L. a. C. D., “Metal-enhanced fluorescence: an emerging tool in biotechnology”. Current Opinion in Biotechnology 2005, 16, 55-62.
10. Y. Sun and Y. Xia, “Shape-Controlled Synthesis of Gold and Silver Nanoparticles” Science 2002, 298, 2176-2179.
11. Craighead, H. G.; Niklasson, G. A., “Characterization and optical properties of arrays of small gold particles” Appl. Phys. Lett. 1984, 44, 1134-1136.
12. Kreibig, U.; Vollmer, M., “Optical Properties of Metal Clusters”. Springer, Berlin 1995.
13. Bohren, C. F.; Huffman, D. R., “Absorption and Scattering of Light by Small Particles”. Wiley, New York 1983.
14. Zhu, J.; Huang, L.; Zhao, J.; Wang, Y.; Zhao, Y.; Hao, L.; Lu, Y., “Shape dependent resonance light scattering properties of gold nanorods”. Mate. Sci. Eng. B 2005, 121, 199-203.
15. Yu, Y.-Y.; Chang, S.-S.; Lee, C.-L.; Wang, C. R. C., “Gold Nanorods: Electrochemical Synthesis and Optical Properties”. J. Phys. Chem. B 1997, 101, 6661-6664.
16. (a) S. Link, M. B. Mohamed, M. A. El-Sayed “Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant”J. Phys. Chem. B 1999, 103, 3073; (b) S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, C. R. C. Wang “The Shape Transition of Gold Nanorods” Langmuir 1999, 15, 701.
17. Link, S.; El-Sayed, M. A., “Shape and size dependence of radiative, non- radiative and photothermal properties of gold nanocrystals”. Int. Rev. Phys. Chem. 2000, 19 , 409-453.
18. Lakowicz, J. R., “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission”. Anal. Biochem. 2005, 337, 171-194.
19. Lakowicz, J. R., “Plasmonics in Biology and Plasmon-Controlled Fluorescence”. Plasmonic 2006, 1, 5-33.
20. Hwang, E.; Smolyaninov, I. I.; Davis, C. C., “Surface Plasmon Polariton Enhanced Fluorescence from Quantum Dots on Nanostructured Metal Surfaces”. Nano Lett. 2010, 10, 813-820.
21. Lal, S.; Grady, N. K.; Kundu, J.; Levin, C. S.; Halas, J. B. L. a. N. J., “Tailoring plasmonic substrates for surface enhanced spectroscopies”. Chem. Soc. Rev 2008, 37, 898-911.
22. WANG, H.; BRANDL, D. W.; NORDLANDER, P.; HALAS, N. J., “Plasmonic Nanostructures: Artificial Molecules”. Acc. Chem. Res. 2007, 40, 53-62.
23. Schwartzberg, A. M.; Zhang, J. Z., “Novel Optical Properties and Emerging Applications of Metal Nanostructures”. J. Phys. Chem. C 2008, 112 , 10323-10337.
24. Maier, S. A.; Brongersma, M. L.; Kik, P. G.; Meltzer, S.; Requicha, A. A. G.; Atwater, H. A., “Plasmonics-A Route to Nanoscale Optical Devices”. Adv. Mater. 2001, 13 , 1501-1505.
25. Quinten, M.; Leitner, A.; Krenn, J. R.; Aussenegg, F. R., “Electromagnetic energy transport via linear chains of silver nanoparticles”. Opt. Lett. 1998, 23 , 1331-1333.
26. Maier, S. A.; Kik, P. G.; Atwater, H. A., “Optical pulse propagation in metal nanoparticle chain waveguides”. Phys. Rev. B 2003, 67, 205402.
27. Maier, S. A.; Kik, P. G.; Atwater, H. A.; Meltzer, S.; Harel, E.; Koel, B. E.; Requicha, A. A. G., “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides”. Nat. Mater. 2003, 2, 229-232.
28. Lamprecht, B.; Schider, G.; Lechner, R. T.; Ditlbacher, H.; Krenn, J. R.; Leitner, A.; Aussenegg, F. R., “Metal Nanoparticle Gratings: Influence of Dipolar Particle Interaction on the Plasmon Resonance”. Phys. Rev. Lett. 2000, 84, 4721-4724.
29. Quinten, M.; Leitner, A.; Krenn, J. R.; Aussenegg, F. R., “Electromagnetic energy transport via linear chains of silver nanoparticles”. Opt.Lett. 1998, 23 , 1331-1333.
30. Lamprecht, B.; Schider, G.; Lechner, R. T.; Ditlbacher, H.; Krenn, J. R.; Leitner, A.; Aussenegg, F. R., “Metal Nanoparticle Gratings: Influence of Dipolar Particle Interaction on the Plasmon Resonance”. Phys. Rev. Lett. 2000, 84, 4721-4724.
31. Félidj, N.; Aubard, J.; Lévi, G.; Krenn, J. R.; Hohenau, A.; Schider, G.; Leitner, A.; Aussenegg, F. R., “Optimized surface-enhanced Raman scattering on gold nanoparticle arrays”. Appl. Phys. Lett. 2003, 82, 3095-3097.
32. Chen, M. W.; Chau, Y.-F.; Tsai, D. P., “Three-Dimensional Analysis of Scattering Field Interactions and Surface Plasmon Resonance in Coupled Silver Nanospheres”. Plasmonic 2008, 3, 157-164.
33. Murray, W. A.; Barnes, W. L., “Plasmonic Materials”. Adv. Mater. 2007, 19, 3771-3782.
34. Lakowicz, J. R., “Radiative Decay Engineering: Biophysical and Biomedical Applications”. Anal. Biochem. 2001, 298 (1), 1-24.
35. Geddes, C. D.; Lakowicz, J. R., “Metal-Enhanced Fluorescence”. J. Fluoresc. 2002, 12 , 121-129.
36. Lakowicz, J. R.; Ray, K.; Chowdhury, M.; Szmacinski, H.; Fu, Y.; Zhang, J.; Nowaczyk, K., “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy”. Analyst 2008, 133, 1308-1346.
37. Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S., “Surface-enhanced Raman scattering and biophysics”. J. Phys.: Condens. Matter 2002, 14, R597-R624.
38. Steinberg, I. Z., “Long-Range Nonradiative Transfer of Electronic Excitation Energy in Proteins and Polypeptides”. Annu. Rev. Biochem. 1971, 40, 83-114.
39. Zhang, J.; Fu, Y.; Lakowicz, J. R., “Enhanced Forster Resonance Energy Transfer (FRET) on a Single Metal Particle”. J. Phys. Chem. C 2007, 111, 50-56.
40. Ruppin, R., “Decay of an excited molecule near a small metal sphere”. J. Chem. Phys. 1982, 76, 1681-1684.
41. Chew, H., “Transition rates of atoms near spherical surfaces”. J. Chern. Phys. 1987, 87 , 1355-1360.
42. Zhang, Y.; Zhang, R.; Wang, Q.; Zhang, Z.; Zhu, H.; Liu, J.; Song, F.; Lin, S.; Pun, E. Y. B., “Fluorescence enhancement of quantum emitters with different energy systems near a single spherical metal nanoparticle”. Opt. Exp. 2010, 18 , 4316-4328.
43. Ray, K.; Badugu, R.; Lakowicz, J. R., “Distance-Dependent Metal-Enhanced Fluorescence from Langmuir-Blodgett Monolayers of Alkyl-NBD Derivatives on Silver Island Films”. Langmuir 2006, 22, 8374-8378.
44. Zhang, J.; Matveeva, E.; Gryczynski, I.; Leonenko, Z.; Lakowicz, J. R., “Metal-Enhanced Fluoroimmunoassay on a Silver Film by Vapor Deposition”. J. Phys. Chem. B 2005, 109 , 7969-7975.
45. MacDiarmid, A. G. C., J. C.; Halpern, M.; Huang, W. S.; Mu, S. L.; Somasir, N. L. D., ““Polyaniline”: Interconversion of Metallic and Insulating Forms” Cryst. Liq. Cryst. 1985, 121, 173-180.
46. Macdiarmid, A. G. E., A. J., “Polyanilines: a novel class of conducting polymers ” Faraday Discuss Chem. Soc. 1989, 88, 317-332.
47. Adams, P. N. M., “Characterization of high molecular weight polyaniline synthesized at −40 °C using a 0.25:1 mole ratio of persulfate oxidant to aniline” Synth. Met. 1997, 87, 165-169.
48. (a) Ray, A. A., G. E.; Kershner, D. L.; Richter, A. F.; Macdiarmid, A. G.; Epstein, A. J., “Polyaniline: Doping, structure and derivatives” Synth. Met. 1989, 29, 141-150; (b) Wang, L. J., X.; Wamg, F., “Light-assisted oxidative doping of polyanilines” Synth. Met. 1991, 41, 685-690.
49. Macdiarmid, A. G. M., S. K.; Masters, J. G.; Sun, Y.; Weiss, H.; Epstein, A. J., “Polyaniline: Synthesis and properties of pernigraniline base” Synth. Met. 1991, 41, 621-626.
50. Genies, E. M. S., A. A.; Jsintavis, C. , “Electrochemical Study Of Polyaniline In Aqueous And Organic Medium. Redox And Kinetic Properties.” Mol. Cryst. Liq. Cryst. 1985, 121, 181-186.
51. Albuquerque, J. E. M., L. H. C.; Balogh, D. T.; Faria, R. M.; Masters, J. G.; MacDiarmid, A. G., “A simple method to estimate the oxidation state of polyanilines” Synth. Met. 2000, 113, 19-22.
52. Lu, F. L. W., F.; Nowak, M.; Heeger, A. J., “Phenyl-capped octaaniline (COA): an excellent model for polyaniline” J. Am. Chem.Soc. 1986, 108, 8311-8313.
53. Stafstrom, S. B., J. L.; Epstein, A. J.; Woo, H. S.; Tanner, D. B.; Huang, W. S.; MacDiramid, A. G., “Polaron lattice in highly conducting polyaniline: Theoretical and optical studies” Phys. Rev. Lett. 1987, 59, 1464-1467.
54. Cao, Y. S., P.; Heeger, A. J., “Spectroscopic studies of polyaniline in solution and in spin-cast films” Synth. Met. 1989, 32, 263-281.
55. Inoue, M. N., R. E.; Inoue, M. B., “New soluble polyaniline: Synthesis, electrical properties and solution electronic spectrum” Synth. Met. 1989, 30, 199-207.
56. Salaneck, W. R. L., T.; Hjertberg, T.; Duke, C. B.; Conwell, E.; Paton, A.; MacDiarmid, A. G., Somasiri, N. C. D.; Huang, W. S.; Richter, A. F., “Electronic structure of some polyanilines” Synth. Met. 1987, 18, 291-296.
57. Watanabe, A. M., K.; Mikuni, M.; Nakamura, Y.; Matsnda, M., “Comparative study of redox reactions of polyaniline films in aqueous and nonaqueous solutions” Macromolecules 1989, 22, 3323-3327.
58. NaKajima, T. H., M.; Osawa, R.; Kawaqoe, T.; Furukawa, Y.; Harada, I., “Study on the interconversion of unit structures in polyaniline by x-ray photoelectron spectroscopy” Macromolecules 1989, 22, 2644-2648.
59. Monkman, A. P. S., G. C.; Bloor, D. J. Phys. D, Appl. Phys. 1991, 24, 738.
60. Yue, J. E., A. J., “XPS study of self-doped conducting polyaniline and parent systems” Macromolecules 1991, 24, 4441-4445.
61. Kang, E. T. N., K. G.; Woo, Y. L.; Tan, K. L., Polym. Commun. 1991, 32, 412.
62. Jin, Y.; Gao, X., “Plasmonic fluorescent quantum dots”. Nat. Nanotechnol. 2009, 4, 571-576.
63. Zhang, J.; Fu, Y.; Lakowicz, J. R., “Luminescent Silica Core/Silver Shell Encapsulated with Eu(III) Complex”. J. Phys. Chem. C 2009, 113, 19404-19410.
64. Zhang, J.; Fu, Y.; Chowdhury, M. H.; Lakowicz, J. R., “Single-Molecule Studies on Fluorescently Labeled Silver Particles: Effects of Particle Size”. J. Phys. Chem. C 2008, 112, 18-26.
65. Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S., “Surface-enhanced Raman scattering and biophysics”. J. Phys.: Condens. Matter 2002, 14, R597-R624.
66. Geddes, C. D.; Lakowicz, J. R., “Metal-Enhanced Fluorescence”. J. Fluoresc. 2002, 12 (2), 121-129.
67. Chastain, J., Ed. Perkin-Elmer Corp.: Eden Prairie, MN, and references therein, “Hand book of X-ray Photoelectron Spectroscopy”.
68. Han, C.-C.; Hong, S.-P.; Yang, K.-F.; Bai, M.-Y.; Lu, C.-H.; Huang, C.-S., “Highly Conductive New Aniline Copolymers Containing Butylthio Substituent”. Macromolecules 2001, 34, 587-591.
69. Ma, X.; Wang, X.; Song, C., ““Molecular Basket” Sorbents for Separation of CO2 and H2S from Various Gas Streams”. J. Am. Chem. Soc. 2009, 131 (16), 5777-5783.
70. Skrabalak, S. E.; Wiley, B. J.; Kim, M.; Formo, E. V.; Xia, Y., “On the Polyol Synthesis of Silver Nanostructures: Glycolaldehyde as a Reducing Agent”. Nano Lett. 2008, 8 (7), 2077-2081.
71. Jin, R.; Cao, Y.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G., “Photoinduced Conversion of Silver Nanospheres to Nanoprisms”. Science 2001, 294, 1901-1903.
72. Turkevich, J.; Kim, G., “Palladium: Preparation and Catalytic Properties of Particles of Uniform Size”. Science 1970, 169, 873-879.
73. Kamat, P. V.; Flumiani, M.; Hartland, G. V., “Picosecond Dynamics of Silver Nanoclusters. Photoejection of Electrons and Fragmentation”. J. Phys. Chem. B 1998, 102, 3123-3128.
74. Zhang, J.; Fu, Y.; Lakowicz, J. R., “Luminescent Silica Core/Silver Shell Encapsulated with Eu(III) Complex”. J. Phys. Chem. C 2009, 113, 19404–19410.
75. (a) Silvert, P.-Y.; Herrera-Urbina, R.; Duvauchelle, N.; Vijayakrishnan, V.; Elhsissen, K. T., “Preparation of colloidal silver dispersions by the polyol process”. J. Muter. Chem. 1996, 6 (4), 573-577; (b) Silvert, P.-Y.; Herrera-Urbinab, R.; Tekaia-Elhsissena, K., “Preparation of colloidal silver dispersions by the polyol process Part 2.— Mechanism of particle formation”. J. Mater. Chem. 1997, 7 (2), 293-299.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 含巰基乙醇取代基與含各種不同硫醇取代基之聚苯胺的合成、性質鑑定與應用
2. (一)微米金屬管之製備與鑑定, (2)奈米金屬/導電高分子核-殼型態粒子之製備與鑑定
3. 一、聚苯胺衍生物合成方法之比較:氧化共聚合法及同步還原與取代反應法 二、利用同步還原與取代反應合成高導電性自身摻雜態聚苯胺衍生物
4. 一.利用新穎的電化學方法改進聚苯胺薄膜導電度之研究; 二.合成苯胺寡聚合物及苯胺寡聚合物/金屬自組裝奈米/微米結構
5. 一、共軛高分子暨小分子多層結構PLED元件之研究 二、巰基乙醇取代聚苯胺於PLED及OLED應用之研究
6. 一、聚苯胺於非水溶液之電化學行為的研究 二、含氟衍生聚苯胺之合成、鑑定暨應用
7. 衍生聚苯胺與水性聚苯胺的合成及其抗腐蝕應用的研究
8. 一. 酸與鹼催化空氣氧化固態聚苯胺之現象與機制探討;二.聚苯胺與聚苯胺衍生物在染料敏化型太陽能電池上的應用
9. 含半胱氨酸取代基之聚苯胺共聚物:合成、鑑定與光學活性
10. 聚苯胺共聚物奈米粒子的合成與鑑定
11. 苯胺寡聚合物-銀奈米結構合成與鑑定
12. 含芳香環側鏈取代之聚苯胺共聚合物的合成與鑑定
13. 利用聚苯胺為催化劑氧化硫醇成雙硫化物
14. 高度位向選擇性含硫酚基及2-硫基吡啶之聚噻吩的合成及其在有機染料敏化太陽能電池上的應用
15. 氟取代基苯胺聚合物模型分子之合成與鑑定
 
* *