帳號:guest(52.14.36.153)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄭峻宇
論文名稱(中文):奈米金屬/導電高分子核/殼粒子於非揮發性有機記憶體元件的應用研究
指導教授(中文):韓建中
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:9723564
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:85
中文關鍵詞:聚苯胺非揮發性有機記憶體
相關次數:
  • 推薦推薦:0
  • 點閱點閱:63
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
近來我們利用自行開發的同步還原與取代反應(concurrent reduction and substitution,CRS)合成聚苯胺衍生物Pani-SBu (poly(aniline-co-butylthioaniline)),並且在共溶劑(cosolvent)系統下誘導Pani-SBu生成微胞模版進而還原Ag離子形成核-殼(core-shell)結構型態的Ag/Pan-SBu奈米粒子。在本篇論文中,我們首次嘗試把此新結構型態的奈米粒子應用於有機記憶體中的記憶核心,在探討的過程裡我們曾利用旋轉塗佈(spin-coating)的方式製成元件中的主動層(active layer),而在電性量測的實驗中我們發現到元件在正偏壓施加至臨界電壓(threshold voltage,Vth)時會由高電阻態(off-state)轉換至低電阻態(on-state),且再施加負偏壓時元件則回到原狀態(off-state),另外亦發現到奈米粒子於主動層中的濃度與整體元件表現出的開關比(on/off ratio)具有其正相關性;此外我們改變了沉積奈米粒子的方式,選用滴鑄塗佈(drop-casting)把奈米粒子沉積於陽極上,並於此層之上建構一PVP高分子緩衝層(buffer layer)以改善奈米粒子與陰極界面的不平整度,而由電性量測的結果得知其元件確實具有較優異的表現;另一方面我們由混摻不同數量的PVP高分子於奈米粒子層的實驗,進一步去探討奈米粒子之間的介電層厚度對整體元件的臨界電壓之影響,而我們發現到當奈米粒子之間介電層厚度增加時,其臨界電壓值也會隨之提高;最後我們也利用X-光光電子能譜儀(XPS)來分析並討論元件可能的電阻轉換機制,由分析結果我們了解到當元件在正偏壓的施加下,由高電阻態轉換至低電阻態時,奈米粒子中的殼層高分子Pani-SBu,其主鏈上的N原子會轉為部分帶正電荷,而核心金屬Ag則是部分帶負電荷,因此我們推論在電阻轉換的過程中是由Pani-SBu上的N原子提供電子給核心金屬Ag,進而提高主動層內可移動之自由載子(free carrier)的數目,其轉換機制屬於予體受體間電荷轉移(Donor-Acceptor charge transfer)。
In this thesis we describe a nonvolatile memory device based on the introduction of silver/ poly(aniline-co-butylthioaniline) (Ag/Pani-SBu) core/shell nanoparticles (NPs) as the active layer. About the deposition of the nanoparticles, we have already tried both of the spin-coating and drop-casting fabrication method. In spin-coating method, we find the device will switch from off-state to on-state as the applying voltage is beyond the threshold voltage, and it can be turned off by applying opposite voltage. Besides, the ON/OFF current ratio increases as the concentration of NPs in the device increases. In drop-casting method, we use polyvinylpyrrolidone(PVP) as a top-cast buffer layer to reduce the roughness between NPs layer and cathode(Al), as illustrated experimental of devices D1 to D4. On the other hand, we also discuss whether the thickness of dielectric layer between NPs influences the threshold voltage of the device by mixing PVP polymer into NPs layer. The result indicated that as the addition amount of PVP increased, the threshold voltage of the device became higher. Furthermore, we use X-ray photoelectron spectroscopy (XPS) to analyze and investigate the possible resistance-switching mechanism. The result shows that, during the switching-on stage, the Pani-SBu shell is more positively charged while the Ag core is more negatively charged. This XPS result suggests the resistance-switching mechanism of the device is donor-acceptor charge transfer.
第一章 緒論與文獻回顧 1
1-1 前言 2
1-2 非揮發性記憶體簡介 4
• 1-2-1 快閃記憶體(Flash Memory) 4
• 1-2-2 鐵電記憶體(Ferroelectric Random Access Memory, FeRAM) 5
• 1-2-3 磁性記憶體(Magnetic Random Access Memory,MRAM) 7
• 1-2-4 相變化記憶體(Phase Change Memory,PCM) 8
• 1-2-5 電阻式記憶體(Resistive Random Access Memory,RRAM) 10
1-3 有機非揮發性記憶體簡介 13
• 1-3-1 元件結構 13
• 1-3-2 元件反應機制 14
• 1-3-3 以聚苯胺高分子做為有機記憶體元件結構內的主動層 17
1-4 導電高分子聚苯胺基本性質 19
• 1-4-1 導電高分子聚苯胺簡介 21
• 1-4-2 聚苯胺的性質鑑定 22
1-5 奈米金屬/導電高分子核殼粒子 27
1-6 研究動機 29
第二章 實驗內容 30
2-1 使用的材料及藥品 31
2-2 聚苯胺及其衍生物的合成 33
• 2-2-1 以化學氧化方式合成聚苯胺 33
2-3 Metal/Pani-SBu (M=Ag) 核-殼奈米粒子的合成 36
2-4 非揮發性有機記憶體元件製備及量測 37
• 2-4-1 氧化銦錫玻璃的清潔 37
• 2-4-2 圖型化轉移製程(Pattern Transfer Process) 38
• 2-4-3 主動層及陰極的鍍膜製程 40
• 2-4-4 電流-電壓特性量測 42
2-5 儀器設備與分析方法 43
• 2-5-1 光譜量測 43
• 2-5-2 X-光光電子能譜儀 43
• 2-5-3 高解析穿透式電子顯微鏡(HRTEM)與穿透式電子顯微鏡 (AEM) 44
• 2-5-4 X-光粉末繞射儀(PXRD) 44
• 2-5-5 階梯描繪輪廓儀(alpha-step profilometry) 44
• 2-5-6 掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 44
• 2-5-7 二次離子質譜儀(Secondary Ion Mass Spectrometer,SIMS) 45
第三章 材料與元件之鑑定分析 46
3-1 材料的性質鑑定 47
• 3-1-1 Pani-SBu的性質鑑定 47
• 3-1-2 Ag/Pani-SBu 核-殼形態奈米粒子的性質鑑定 50
3-2 元件的製程比較與電流-電壓電性量測 58
• 3-2-1 旋轉塗佈(spin-coating)製程 58
• 3-2-2 滴鑄塗佈(drop-casting)製程 61
• 3-2-3 在滴鑄塗佈製程下引入電洞注入層(hole-injection layer) 66
3-3 PVP緩衝層薄膜厚度探討與奈米粒子間距討論 68
• 3-3-1 PVP高分子緩衝層薄膜厚度探討 68
• 3-3-2 奈米粒子之間的間距與臨界電壓相對關係的探討 70
3-4 元件電阻轉換機制的探討 75
3-5 結論 79
3-6 參考文獻 80
[1] T. Mikolajick, “Materials for Information Technology: Devices, Interconnects and Packaging”, Springer London Publisher 2005
[2] D. Frohman-Bentchkowsky, Appl. Phys. Lett. 1971, 18, 332
[3] R. H. Fowler, L. Nordheim, Proc. R. Soc. London. A. 1928, 119, 173
[4] R. Bez, E. Camerlenghi, A. Modelli, A. Visconti, Proc. IEEE 2003, 91, 489
[5] S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbe, K. Chan, Appl. Phys. Lett. 1996, 68, 1377
[6] J. T. Evans, R. Womack, IEEE Journal of Solid-State Circuits 1988, 23, 1171
[7] 葉林秀、李佳謀、徐明豐、吳德和,”磁阻式隨機存取記憶體技術的發展—現在與未來” 物理雙月刊 2004, 26, 607
[8] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, Phy. Rev. Lett. 1988, 61, 2472
[9] M. Wuttig, N. Yamada, Nature Mater. 2007, 6, 824
[10] S. Q. Liu, N. J. Wu, A. Ignatiev, Appl. Phys. Lett. 2005, 76, 2749
[11] A. Beck, J. G. Bednorz, Ch. Gerber, C. Rossel, D. Widmer, Appl. Phys. Lett. 2000, 77, 139
[12] C. Rohde, B. J. Choi, D. S. Jeong, S. Choi, J. S. Zhao, C. S. Hwang, Appl. Phys. Lett. 2005, 86, 262907
[13] M. Kund, G. Beitel, C. U. Pinnow, T. Röhr, J. Schumann, R. Symanczyk, K. D. Ufert, G. Müller, IEDM Tech. Dig. 2005, 754
[14] R. Pandian, B. J. Kooi, G. Palasantzas, J. T. M. D. Hosson, Appl. Phys. Lett. 2007, 91, 152103
[15] C. Schindler, M. Weides, M. N. Kozicki, R. Waser, Appl. Phys. Lett. 2008, 92, 122910
[16] R. Waser, M. Aono, Nature Mater. 2007, 6, 833
[17] C. P. Collier, E. W. Wong, M. Belohradsky, F. M. Raymo, J. F. Stodart, P. J. Kuekes, R. S. Williams, J. R. Heath, Science 1999, 285, 391
[18] C. P. Collier, G. Mattersteig, E. W. Wong, Y. Luo, K. Beverly, J. Sampaio, F. M. Raymo, J. F. Stodart, J. R. Heath, Science 2000, 289, 1172
[19] J. E. Green, J. W. Choi, A. Boukai, Y. Bunimovich, E. J. Halperin, E. Delonno, Y. Luo, B. A. Sheriff, K. Xu, Y. S. Shin, H. R. Tseng, J. F. Stodart, J. R. Heath, Nature 2007, 445, 414
[20] M. A. Reed, J. Chen, A. M. Rawlett, D. W. Price, J. M. Tour, Appl. Phys. Lett. 2001, 78, 3735
[21] K. Seo, A. V. Konchenko, J. Lee, G. S. Bang, H. Lee, J. Am. Chem. Soc. 2008, 130, 2553
[22] T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. L. Cheung, C. M. Lieber, Science 2000, 289, 94
[23] G. E. Begtrup, W. Gannett, T. D. Yuzvinsky, V. H. Crespi, A. Zettl, Nano Lett. 2009, 9, 1835
[24] L. V. Gregor, Thin Solid Films 1968, 2, 235
[25] J. Campbell, Scott, L. D. Bozano, Adv. Mater. 2007, 19, 1452
[26] D. Tondelier, K. Lmimouni, D. Vuillaume, Appl. Phys. Lett. 2004, 85, 5763
[27] P. T. Lee, T. Y. Chang, S. Y. Chen, Org. Electron. 2008, 9, 916
[28] L. Ma, Q. Xu, Y. Yang, Appl. Phys. Lett .2004, 84, 4908
[29] H. S. Majumdar, A. Bandyopadhyay, A. J. Pal, Org. Electron. 2003, 4, 39
[30] A. Bandyopadhyay, A. J. Pal, Appl. Phys. Lett. 2004, 84, 999
[31] H. K. Henisch, W. R. Smith, Appl. Phys. Lett. 1974, 24, 589
[32] Y. Segui, B. Ai, H. Carchano, J. Appl. Phys. 1976, 47, 140
[33] S. L. Lim, Q. Ling, E. Y. H. Teo, C. X. Zhu, D. S. H. Chan, E. T. Kang, K. G. Neoh, Chem. Mater. 2007, 19, 5148
[34] L. H. Xie, Q. D. Ling, X. Y. Hou, W. Huang, J. Am. Chem. Soc. 2008, 130, 2120
[35] M. Lauters, B. McCarthy, D. Sarid, Appl. Phys. Lett. 2006, 89, 013507
[36] T. W. Kim, S. H. Oh, H. Choi, G. Wang, H. Hwang, D. Y. Kim, T. Lee, IEEE Electron Device Lett. 2008, 29, 852
[37] C. M. Huang, Y. S. Liu, C. C. Chen, K. H. Wei, J. T. Sheu, Appl. Phys. Lett. 2008, 93, 203303
[38] H. J. Gao, Z. Q. Xue, H. Y. Chen, S. M. Hou, L. P. Ma, X. W. Fang, S. J. Pang, S. J. Pennycook, Phys. Rev. Lett. 2000, 84, 1780
[39] C. W. Chu, J. Ouyang, J. H. Tseng, Y. Yang, Adv. Mater. 2005, 17, 1440
[40] Y. Shang, Y. Wen, S. Li, S. Du, X. He, L. Cai, Y. Li, L. Yang, H. Gao, Y. Song, J. Am. Chem. Soc. 2007, 129, 11674
[41] Q. Ling, Y. Song, S. J. Ding, C. Zhu, D. S. H. Chan, D. L. Kwong, E. T. Kang, K. G. Neoh, Adv. Mater. 2005, 17, 455
[42] Q. D. Ling, S. L. Lim, Y. Song, C. X. Zhu, D. S. H. Chan, E. T. Kang, K. G. Neoh, Langmuir 2007, 23, 312
[43] Q. D. Ling, Y. Song, S. L. Lim, E. Y. H. Teo, Y. P. Tan, C. Zhu, D. S. H. Chan, D. L. Kwong, E. T. Kang, K. G. Neoh, Angew. Chem. Int. Ed. 2006, 45, 2947
[44] Q. D. Ling, F. C. Chang, Y. Song, C. X. Zhu, D. J. Liaw, D. S. H. Chan, E. T. Kang, K. G. Neoh, J. Am. Chem. Soc. 2006, 128, 8732
[45] M. Lauters, B. McCarthy, D. Sarid, G. E. Jabbour, Appl. Phys. Lett. 2005, 87, 231105
[46] C. H. Tu, Y. S. Lai, D. L. Kwong, Appl. Phys. Lett. 2006, 89, 062105
[47] J. H. Krieger, S. V. Trubin, S. B. Vaschenko, N. F. Yudanov, Syn. Metals 2001, 122, 199
[48] F. Verbakel, S. C. J. Meskers, R. A. J. Janssen, Chem. Mater. 2006, 18, 2707
[49] Q. Lai, Z. Zhu, Y. Chen, Appl. Phys. Lett. 2006, 88, 133515
[50] R. J. Tseng, J. Huang, J. Ouyang, R. B. Kaner, Y. Yang, Nano Lett. 2005, 5, 1077
[51] T. Kondo, S. M. Lee, M. Malicki, B. Domercq, S. R. Marder, B. Kippelen, Adv. Funct. Mater. 2008, 18, 1112
[52] H. T. Lin, Z. Pei, Y. J. Chan, IEEE Electron Device Lett. 2007, 28, 569
[53] R. J. Tseng, C. Tsai, L. Ma, J. Ouyang, C. S. Ozkan, Y. Yang, Nature Nanotech. 2006, 1, 72
[54] D. I. Son, C. H. You, W. T. Kim, J. H. Jung, T. W. Kim, Appl. Phys. Lett. 2009, 94, 132103
[55] B. Cho, T. W. Kim, M. Choe, G. Wang, S. Song, T. Lee, Org. Electron. 2009, 10, 473
[56] T. L. Choi, K. H. Lee, W. J. Joo, S. Lee, T. W. Lee, M. Y. Chae, J. Am. Chem. Soc. 2007, 129, 9842
[57] B. Pradhan, S. Das, Chem. Mater. 2008, 20, 1209
[58] J. E. Albuquerque, L. H. C. Mattoso, D. T. Balogh, R. M. Faria, J. G. Masters, A. G. MacDiarmid, Synth. Met. 2000, 113, 19.
[59] F. L. Lu, F. Wudl, M. Nowak, A. J. Heeger, J. Am. Chem.Soc. 1986, 108, 8311.
[60] S. Stafstrom, J. L. Bredas, A. J. Epstein, H. S. Woo, D. B. Tanner, W. S. Huang, A. G. MacDiramid, Phys. Rev. Lett. 1987, 59, 1464.
[61] Y. Sun, A. G. Macdiarmid, A. J. Epstein, J. Chem. Soc. Chem. Common. 1990, 529.
[62] Y. Cao, P. Smith, A. Heeger, J. Synth. Met. 1989, 32, 263.
[63] J. Tang, X. Jing, B. Wang, F. Wang, Synth. Met. 1988, 24, 231.
[64] W. S. Huang, B. D. Humphrey, A. G. MacDiarmid, J. Chem. Soc. Farady. Trans. 1986, 82, 2385.
[65] A. K. Watanabe, K. Mori, Y. Iwasaki, Y. Nakamura, Macromolecules 1987, 20, 1793.
[66] (a) A. Kabumoto, K. Shinozaki, Synth. Met. 1988, 26, 349. (b) T. Kobayashi, H. Yoneyama, H. Tamara, J. Electroanal. Chem. 1984, 177, 293.
[67] B. Garcia, F. Fusalba, D. Bélanger, Can. J. Chem. 1997, 75, 1536.
[68] (a) H. Daifuku, T. Kawagoe, N. Yamamoto, T. Ohsaka, N. Oyama, J. Electroanal. Chem. 1989, 274, 313. (b) J. Desilvestro, W. Scheifele, O. Haas, J. Electrochem. Soc. 1992, 139, 2727.
[69] P. Fiordiponti, G. Pistoia, Electrochim. Acta 1989, 34, 215.
[70] M. Lapkowski, K. Berrada, S. Quillard, G. Louarn, S. Lefrant, A. Pron, Macromolecules 1995, 28, 1233.
[71] Y. Wei, W. W. Focke, G. E. Wnek, A. Ray, A. G. MacDiarmid, J. Phys. Chem. 1989, 93, 495.
[72] A. Ray, A. F. Richter, S. K. Manohar, G. T. Furst, A. G. MacDiarmid, A. J. Epstein, Synth. Met. 1989, 29, E243.
[73] S. Maeda, R. Corradi, S. P. Armes, Macromolecules 1995, 28, 2905.
[74] D. Y. Godovsky, A. E. Varfolomeev, D. F. Zaretsky, R. L. N. Chandrakanthi, A. Kündig, C. Weder, W. Caseri, J. Mater. Chem. 2001, 11, 2465
[75] C. C. Han, S. P. Hong, K. F. Yang, M. Y. Bai, C. H. Lu, C. S. Huang, Macromolecules 2001, 34, 587
[76] B. Dufour, P. Rannou, D. Djurado, H. Janeczek, M. Zagorska, A. Geyer, J. P. Travers, A. Pron, Chem. Mater. 2003, 15, 1587
[77] J. E. Park, S. G. Park, A. Koukitu, O. Hatozaki, N. Oyama, J. Electrochem. Soc. 2003, 150, A959
[78] A. W. Marsman, C. M. Hart, G. H. Gelinck, T. C. T. Geuns, D. M. Leeuw, J. Mater. Res. 2004, 19, 2057
[79] R. J. Tseng, C. O. Baker, B. Shedd, J. Huang, R. B. Kaner, J. Ouyang, Y. Yang, Appl. Phys. Let. 2007, 90, 053101
[80] D. Wei, J. K. Baral, R. Österbacka, A. Ivaska, J. Mater. Chem. 2008, 18, 1853
[81] L. Li, Q. D. Ling, C. Zhu, D. S. H. Chan, E. T. Kang, K. G. Neoh, J. Electrochem. Soc. 2008, 155, H205
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 含巰基乙醇取代基與含各種不同硫醇取代基之聚苯胺的合成、性質鑑定與應用
2. (一)微米金屬管之製備與鑑定, (2)奈米金屬/導電高分子核-殼型態粒子之製備與鑑定
3. 一、聚苯胺衍生物合成方法之比較:氧化共聚合法及同步還原與取代反應法 二、利用同步還原與取代反應合成高導電性自身摻雜態聚苯胺衍生物
4. 一.利用新穎的電化學方法改進聚苯胺薄膜導電度之研究; 二.合成苯胺寡聚合物及苯胺寡聚合物/金屬自組裝奈米/微米結構
5. 一、共軛高分子暨小分子多層結構PLED元件之研究 二、巰基乙醇取代聚苯胺於PLED及OLED應用之研究
6. 一、聚苯胺於非水溶液之電化學行為的研究 二、含氟衍生聚苯胺之合成、鑑定暨應用
7. 衍生聚苯胺與水性聚苯胺的合成及其抗腐蝕應用的研究
8. 一. 酸與鹼催化空氣氧化固態聚苯胺之現象與機制探討;二.聚苯胺與聚苯胺衍生物在染料敏化型太陽能電池上的應用
9. 含半胱氨酸取代基之聚苯胺共聚物:合成、鑑定與光學活性
10. 聚苯胺共聚物奈米粒子的合成與鑑定
11. 苯胺寡聚合物-銀奈米結構合成與鑑定
12. 含芳香環側鏈取代之聚苯胺共聚合物的合成與鑑定
13. 利用聚苯胺為催化劑氧化硫醇成雙硫化物
14. 高度位向選擇性含硫酚基及2-硫基吡啶之聚噻吩的合成及其在有機染料敏化太陽能電池上的應用
15. 氟取代基苯胺聚合物模型分子之合成與鑑定
 
* *